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Periodontitis is a significant global public health issue associated with the onset

and progression of various systemic diseases, thereby requiring additional

research and clinical attention. Although ferroptosis and cuproptosis have

emerged as significant areas of research in the medical field, their precise roles

in the pathogenesis of periodontitis remain unclear. We aim to systematically

summarize the current research on ferroptosis and cuproptosis in periodontal

disease and investigate the roles of glutathione pathway and autophagy pathway

in connecting ferroptosis and cuproptosis during periodontitis. Further, we

propose that a homeostatic imbalance of copper and iron, driven by

periodontal pathogens, may contribute to elevated periodontal oxidative stress,

representing a potential unifying link between ferroptosis and cuproptosis

involved in periodontitis. This article presents a comprehensive overview of the

molecular mechanisms underlying ferroptosis and cuproptosis in periodontitis,

offering novel theoretical insights into its pathogenesis and potential

therapeutic targets.
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1 Introduction

Periodontitis is a multifaceted inflammatory oral disease initiated by pathogenic

biofilms. This condition might lead to persistent destruction of the periodontium,

characterized by periodontal inflammation and alveolar bone loss, and subsequently

tooth loss. Periodontitis represents a significant global health threat, affecting individuals

across all age groups and contributing to a considerable public health burden (1).

Numerous studies have confirmed that periodontitis is not only limited to a significant

oral health concern but also closely associated with the initiation and development of

systemic or organ-specific diseases (2–8). However, the underlying molecular mechanisms

of periodontitis remain poorly understood. Therefore, investigating its pathogenesis and
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uncovering novel therapeutic targets are pivotal for advancing safe

and efficacious treatments for periodontitis, with profound clinical

implications for oral and systemic health.

Recently, the concept of cell death has evolved to primarily

encompass two categories, including necrosis and programmed cell

death (PCD). PCD is a series of regulated cellular suicide

mechanisms to maintain organismal homeostasis, including

apoptosis, autophagy, necroptosis, pyroptosis (9–12). Several

novel PCD pathways, such as ferroptosis and cuproptosis, have

gradually become recent research hotspots in the medical field (13,

14). Although plenty of studies have found that PCD may be

involved in the periodontal inflammatory response, the precise

roles of ferroptosis and cuproptosis in the pathogenic mechanism

of periodontitis have not yet been fully clarified. Therefore, the

present article aims to systematically synthesize empirical findings

that elucidate the critical function of ferroptosis and cuproptosis

during periodontitis and investigate the roles of glutathione (GSH)

pathway and autophagy pathway in linking ferroptosis and

cuproptosis within periodontal inflammation. Furthermore, we

suppose that a homeostatic imbalance of copper and iron,

mediated by periodontal pathogens, may constitute a significant

factor contributing to elevated periodontal oxidative stress,

potentially representing a unifying mechanism that elucidates the

intricate interconnection between the two forms of PCD during

periodontitis. A better understanding of these pathogenic

mechanisms may guide the development of innovative

therapeutic approaches for periodontitis.
2 Ferroptosis in periodontitis

Ferroptosis, a novel form of PCD characterized by an iron-

dependent oxidative imbalance in the intracellular microenvironment,

is primarily triggered by the dysfunction of glutathione peroxidase 4

(GPX4), an important regulator of intracellular redox homeostasis (13).

Iron balance serves a vital function in the redox cycle reactions to carry

out normal biological functions, while intracellular iron overload can

facilitate the generation of substantial quantities of reactive oxygen

species (ROS) and lipid peroxidation through the Fenton reaction,

leading to exaggerated inflammatory cascades that underlie the

pathogenesis of inflammatory diseases (15).

Research has increasingly focused on the role of ferroptosis in

periodontal inflammation. Extensive bioinformatics analyses have

indicated that ferroptosis is involved in the etiology and progression

of periodontitis (16–23). Both basic and clinical research has also

unveiled common pathophysiological features of periodontitis and

ferroptosis, such as oxidative stress and lipid peroxidation (24–27).

Elevated iron levels are closely associated with the initiation and

severity of periodontitis, indicating that alterations in iron

metabolism may occur during periodontitis and thus provide

possible positive feedback that reinforces periodontal damage

(28–31). An excessive level of iron can exacerbate ROS generation

within periodontal tissues and accelerate susceptibility to infection by

periodontal pathogens, ultimately inducing cellular ferroptosis and

subsequent periodontium damage (31–36). Therefore, iron-
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dependent oxidative stress likely underlies both periodontitis and

ferroptosis. Nevertheless, the specific mechanisms by which

ferroptosis contributes to periodontitis remain incompletely elucidated.

Recently, increasing evidence has revealed an association

between periodontitis and ferroptosis, indicating that ferroptosis

may be a crucial risk factor for the development and progression of

periodontal inflammation. Butyrate, a short-chain fatty acid from

periodontal pathogens, promoted nuclear receptor coactivator 4

(NCOA4)-mediated ferritinophagy and ferroptosis in periodontal

ligament fibroblasts through p38/hypoxia inducible factor-1a (HIF-

1a) signaling and bromodomain-containing protein 4 (BRD4)/

cyclin-dependent kinase 9 (CDK9) complexes (37). Similarly,

lncRNA LINC00616 aggravated ferroptosis in human periodontal

ligament stem cells (hPDLSCs) via the microRNA-370/transferrin

receptor axis (38). Activating transcription factor 3 (AFT3)

inhibited osteogenic differentiation of lipopolysaccharide (LPS)-

stimulated hPDLSCs by activating ferroptosis through the nuclear

factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-

1) pathway (39). Other empirical studies have also found that

ferroptosis acts as a catalyst in the progression of periodontitis in

human gingival fibroblasts (HGFs) and murine models (40, 41).

Moreover, IL-17 administration alleviated osteoblast ferroptosis

and promoted osteogenic differentiation via the direct interaction

of phosphorylated signal transducer and activator of transcription 3

(STAT3) with NRF2 in periodontitis models (42). Inhibition of zinc

finger DHHC-type palmitoyl transferases 16 (ZDHHC16)

facilitated osteogenic differentiation of dental pulp stem cells by

inhibiting ferroptosis through cAMP-response element binding

protein (CREB) pathway, suggesting a negative association

between ferroptosis and alveolar bone repair (43). These findings

suggest that ferroptosis may be a risk factor for periodontitis

development. Appropriate inhibition of ferroptosis may have

certain clinical application value in periodontitis treatment

(Table 1) (44–50).

Significantly, periodontitis has also been demonstrated to be a

potential risk factor for systemic diseases through activating

ferroptosis in other organs. The association is largely attributed to

the strong epidemiological link between periodontal pathogens and

systemic disorders, mediated by the ability of oral microbiota to

ectopically colonize distant tissues and induce systemic

inflammation through aberrant secretion of proinflammatory

cytokines. Xiong et al. underscored the critical roles of

periodontal pathogenic bacteria in driving ferroptosis in lung

tissue, aggravating chronic obstructive pulmonary disease (51).

Porphyromonas gingivalis (P.g) could exacerbate alcoholic liver

disease and nonalcoholic fatty liver disease in murine models,

potentially mediated by ferroptosis activation in hepatocytes (52,

53). Additionally, indoxyl sulfate in the gingival crevicular fluid

from mice with chronic kidney disease promoted ferroptosis-

mediated osteogenic differentiation disorder in MC3T3-E1 cells

via blocking the SLC7A11/GPX4 pathway (54).

In summary, ferroptosis is regarded a potential periodontal risk

factor, associated with the incidence and severity of periodontitis

and related systemic disease. A positive feedback loop may exist

between periodontal pathogens and iron concentration in

periodontitis. Periodontal pathogens induce iron overload to
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disrupt the antioxidant system in the periodontium by degrading

iron-binding proteins, while elevated iron concentrations may

further increase the susceptibility of periodontal tissue to

infection and oxidative stress (28, 31, 34, 35, 55, 56). However,

previous research has shown that Saikosaponin A attenuate alveolar

bone resorption in experimental periodontitis rat models by

promoting ferroptosis of osteoclasts via the NRF2/SLC7A11/

GPX4 axis, indicating a protective role of ferroptosis against

alveolar bone loss (57). Ferroptosis may exhibit different

regulatory roles in periodontitis depending on the types of

periodontal cells in which ferroptosis occurs. Notably, ferroptosis

inhibition as a therapeutic approach for periodontitis is in the

exploratory data analysis phase and warrants further study. Given

the presence of similar characteristic markers (e.g., iron and ROS)

involved in autophagy, apoptosis and pyroptosis, it remains unclear

whether ferroptosis coexists with other types of PCD during

periodontitis and their specific correlation in periodontal disease.

Differences between animal models and humans have generally led

to the perception that interventions of ferroptosis inhibitors on

periodontitis in animals may not be reproducible in human.

Besides, the intricate regulatory networks underlying ferroptosis

remain incompletely characterized, which may limit the therapeutic

efficacy of single-target inhibitors across diverse pathological

conditions. Current pharmacological interventions targeting

ferroptosis inhibition are hampered by insufficient tissue

selectivity and nonspecific biodistribution, resulting in ineffective

targeting of periodontal lesional microenvironments.
3 Cuproptosis in periodontitis

Copper is an essential trace metal for human health, acting as a

catalytic cofactor in various enzyme-driven physiological processes.

Cuproptosis is a recently discovered form of PCD triggered by

excessive copper, which is highly correlated with mitochondrial

respiration and protein lipoylation. Copper overload stimulates

lipoylated protein aggregation and subsequent iron−sulfur cluster
Frontiers in Immunology 03
protein loss through direct binding to lipoylated components in the

tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and

subsequent cell death (14, 58–60). The discovery of cuproptosis may

provide new insights into molecular mechanisms and therapeutic

targets for various pathological conditions.

Growing evidence indicates potential crosstalk between

cuproptosis and periodontitis. Significantly elevated copper levels in

saliva and serum of periodontitis patients compared to healthy

controls indicated disrupted copper homeostasis and a positive

correlation with the periodontal index (61, 62). In addition, 11

cuproptosis-related hub genes associated with periodontitis were

identified by bioinformatics analysis and further verified in

periodontal tissue from periodontitis patients and healthy controls

via real-time quantitative PCR and immunohistochemistry (63). Liu

et al. also revealed that the intracellular copper concentration tripled

in P.g LPS-treated HGFs compared to controls (64). Furthermore,

age-associated differences in cuproptosis-related gene expression

were noted in gingival tissue biopsies from experimental

periodontitis macaque models (65). In contrast, copper chelator

tetrathiomolybdate significantly reduced cuproptosis-associated

marker levels in LPS-stimulated RAW 264.7 cells and murine

periodontitis models, suggesting that cuproptosis inhibition could

alleviate macrophage dysfunction in periodontitis (66). Similarly,

curcumin gel decreased copper levels, proinflammatory cytokines,

and clinical indicators in periodontitis patients (67).

Cuproptosis is considered a possible PCD contributing to

periodontal inflammation, offering more comprehensive understanding

of periodontitis pathogenesis. Dual immunomodulatory effect of copper

complicates the interaction between pathogens and host (68, 69).

Invading microorganisms must acquire copper from host to ensure an

adequate supply of essential cuproenzymes during infection, whereas

excessive copper has a substantial bactericidal effect through ROS

production and enzyme mismetalation. Hence, we hypothesize that

the host immunomodulation response to periodontal infection impacts

copper homeostasis in the periodontium, leading to cuproptosis and

initiation of periodontitis. Changes in the inflammatory

microenvironment likely intensify copper-induced cytotoxicity and
TABLE 1 Summary of periodontitis treatment based on ferroptosis inhibitors. .

Ferroptosis inhibitors Research model Results Reference

Ferrostatin-1 Rats
Ferrostatin-1 induced significant upregulation of SLC3A2/SLC7A11 and GPX4 while
concomitantly suppressing inflammatory cytokine release.

(44)

Curcumin
Mice

Curcumin and resveratrol played a protective role against ferroptosis through the
SLC7A11/GPX4 axis.

(45)

Resveratrol (46)

Bomidin Mice; hPDLSCs
Bomidin mitigated ferroptosis by activating the KEAP1/NRF2 pathway, ultimately
alleviating the inflammatory response in periodontitis therapy.

(47)

Osteoimmuno-modulatory biopatch Rats; hPDLSCs
Osteoimmunomodulatory biopatch improved osteogenic differentiation of hPDLSCs
and inhibited periodontitis by simultaneously regulating IL-17 and ferroptosis.

(48)

Peroxiredoxin 6 HGFs
Peroxiredoxin 6 alleviated LPS-induced inflammation and ferroptosis in periodontitis
via regulating NRF2 signaling.

(49)

ALDH2 Rats; hPDLSCs
ALDH2 facilitated osteogenic differentiation of hPDLSCs and reduced periodontal
inflammation by blocking ferroptosis via activating NRF2 pathway.

(50)
SLC3A2, Solute carrier family 3 member 2; SLC7A11, Solute carrier family 7, member 11; GPX4, Glutathione peroxidase 4; hPDLSCs, Human periodontal ligament stem cells; KEAP1, Kelch-1ike
ECH-associated protein l; NRF2, Erythroid 2-related factor 2; IL-17, Interleukin-17; HGF, Human gingival fibroblast; LPS, Lipopolysaccharide; ALDH2, Aldehyde dehydrogenase 2.
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oxidative damage to periodontal tissue by further raising copper levels

(70, 71). However, the characteristic markers of cuproptosis in

periodontal tissues and its precise relationship with other types of

PCD in periodontitis pathogenesis are ambiguous. In addition, further

research is warranted to elucidate whether cuproptosis serves as a critical

link connecting periodontitis and systemic diseases.
4 Crosstalk between ferroptosis and
cuproptosis in periodontitis

Iron and copper are crucial metal elements involved in human

physiological processes, such as cellular metabolism, oxygen

transport, DNA and RNA synthesis, signaling transduction, and

enzyme catalysis. A homeostatic imbalance of iron or copper plays a

significant role in the pathogenesis and exacerbation of multiple

diseases. Notably, increased intracellular copper levels may be

important regulators of ferroptosis. Elesclomol-induced copper

retention within mitochondria promoted oxidative stress and

consequent ferroptosis in colorectal cancer cells via copper-

transporting ATPase 1 (ATP7A) degradation and ROS

accumulation (72). Copper-mediated GPX4 degradation drove

autophagy-dependent ferroptosis via direct interaction of copper

with GPX4 cysteines (Cys 107 and Cys 148) (73). Furthermore,

consistent with the cuproptosis mechanism, blocking iron−sulfur

cluster biogenesis could decrease mitochondrial lipoylation in

brown adipose tissue, suggesting a regulatory role of iron in

cuproptosis (74). Accumulating evidence has illuminated the

mutual connections between ferroptosis and cuproptosis in

various diseases (75–81). However, their interaction in

periodontitis needs further clarification. This section describes the

possible relevance of ferroptosis and cuproptosis in periodontitis

pathogenesis (Figure 1A).
4.1 GSH pathway

Copper/iron chelator GSH may be a central signal mediator of

both ferroptosis and cuproptosis, albeit with distinct roles in these

processes. In ferroptosis, GSH functions as a cofactor for GPX4

activation to mitigate lipid peroxidation and ROS accumulation,

whereas it serves as a copper chaperone to inhibit lipoylated protein

aggregation in the TCA cycle in cuproptosis (13, 14). GSH synthesis

suppresses both ferroptosis and cuproptosis, suggesting a potential

unifying mechanism that clarifies their interconnection (13, 82, 83).

Conversely, SLC7A11 blockade boosted the susceptibility of

hepatocellular carcinoma cells to disulfiram/copper treatment,

inducing both ferroptosis and cuproptosis via GSH depletion

(84). More recent evidence also suggests that concurrent

induction of these processes via GSH depletion may be a

promising cancer treatment (85–87). Ferroptosis activators

sorafenib and erastin could promote cuproptosis in primary liver

cancer cells through elevating copper-dependent lipoylated protein

aggregation via inhibiting GSH synthesis and mitochondria-

dependent ferredoxin 1 (FDX1) protein degradation (88). Similar

results were obtained in myelodysplastic syndromes cell lines (89).
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GSH, a common biomarker of oxidative stress, may act as the

intersection of ferroptosis and cuproptosis during periodontitis

(26, 45, 90–92). Nevertheless, their crosstalk has not been

established in periodontitis. We hypothesize that a self-

accelerating cycle of ferroptosis and cuproptosis with robust

proinflammatory potential may arise from GSH consumption

under periodontal pathogen attack. Pathogen-stimulated iron

overload induces ferroptosis through GSH depletion and

mitochondrial dysfunction, resulting in excess intracellular copper

and subsequent cuproptosis in the periodontium. Cuproptosis

initiates lipoylated protein aggregation, iron–sulfur cluster protein

loss, and ultimately the release of free Fe3+. The reaction between

Fe3+ and GSH could further deactivates the GSH/GPX4 pathway

through the transformation of GSH into oxidative GSH (GSSG) and

provides abundant Fe2+ for the Fenton reaction, which accelerates

ferroptosis in periodontal tissue. Consequently, targeting GSH may

represent a novel approach to periodontitis treatment through

simultaneous inhibition of ferroptosis and cuproptosis in

periodontal cells. However, whether GSH pathway is involved in

other PCD pathways in periodontitis and which pathway dominates

periodontitis deserve further study.
4.2 Autophagy pathway

Autophagy is a complex cellular process contributing to the

phagocytosis and degradation of various substrates, which

maintains cellular homeostasis under normal physiological

conditions and evokes autophagic cell death under pathological

circumstances. Ferroptosis and cuproptosis are usually

accompanied by autophagy activation, suggesting its role as a

common hub for these processes. Multiple studies have

demonstrated that selective autophagy plays a crucial role in the

initiation of ferroptosis. Autophagy could act as a catalyst for

ferroptosis to amplify iron-dependent lipid peroxidation and ROS

accumulation through degradation of anti-ferroptotic factors, such

as ferritin, GPX4, lipid droplets, and cadherin 2 (73, 93–99). The

precise regulatory mechanism linking cuproptosis and autophagy

remains incompletely understood. However, disruption in copper

homeostasis can regulate the autophagy process through multiple

pathways, triggering either a protective response or autophagic cell

death based on stimulus strength and substrate properties

(100–105). Moreover, cuproptosis improved chemosensitivity to

docetaxel in prostate cancer cell lines by hindering autophagy via

the dihydrolipoamide S-acetyltransferase (DLAT)/mammalian

target of rapamycin (mTOR) pathway (106). The cuproptosis key

gene ferredoxin-1 (FDX1) and its related genes were positively

correlated with the expression of autophagy marker genes via recent

bioinformatics analysis. Additionally, FDX1-mediated blockade of

mitophagy also indicated a possible interplay between FDX1-

mediated cuproptosis and autophagy (107, 108).

Existing data support the importance of autophagy as a

bidirectional regulator of periodontitis pathogenesis, including

cellular protection against apoptosis, enhancement of

angiogenesis in periodontal tissues, promotion of other types of
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PCD, and regulation of alveolar bone homeostasis (109, 110). IL-

17A-mediated iron metabolism prompted ferritin expression in

osteoblasts, eventually bolstering osteogenic differentiation and

alveolar bone repair via autophagy activation in murine
Frontiers in Immunology 05
periodontitis models. In addition, LPS-induced cuproptosis

impeded autophagosome biogenesis and mitophagy in

macrophages during periodontitis (66). Therefore, autophagy

plays a significant role in both ferroptosis and cuproptosis,
FIGURE 1

The potential crosstalk between ferroptosis and cuproptosis in periodontitis. (A) As possible periodontal risk factors, ferroptosis and cuproptosis are
regarded as positively associated with the incidence and severity of periodontitis. A positive feedback loop exists between periodontal pathogens
and iron concentration during periodontitis, ultimately triggering ferroptosis in the periodontium. The immunomodulatory responses to periodontal
infection affect copper homeostasis in the periodontium, potentially resulting in the occurrence of cuproptosis and periodontitis. The increased
inflammatory microenvironment may exacerbate copper toxicity and oxidative damage to periodontal tissue through further elevating copper levels.
Notably, a self-accelerating cycle of ferroptosis and cuproptosis with robust proinflammatory potential may arise because of GSH consumption
under attack by periodontal pathogens. Besides, autophagy exhibits both protective and pathological effects through pro-bacterial and antibacterial
autophagy, ultimately regulating both ferroptosis and cuproptosis during periodontal inflammation. (B) The GSH pathway and autophagy pathway
are closely related to alterations in oxidative stress levels during periodontitis. A homeostatic imbalance of copper and iron mediated by periodontal
pathogens may contribute significantly to elevated periodontal oxidative stress. This phenomenon represents a unifying mechanism that elucidates
the intricate interconnection between ferroptosis and cuproptosis in periodontitis.
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potential ly serving as a central hub linking them in

periodontal inflammation.

Autophagy exhibits both protective and pathological effects in

periodontitis, which may constitute a significant factor contributing

to the intricate influence of autophagy on ferroptosis and

cuproptosis. This phenomenon is likely attributable to different

responses of autophagy to bacterial infections, depending on the

types of infected cells and periodontal pathogens (111). Autophagy

can not only prevent periodontal infection and production of pro-

inflammatory cytokines but a l so es tab l i sh a unique

microenvironment conducive to the replication and immune

evasion of periodontal pathogens. Furthermore, excessive

accumulation of iron and copper induced by periodontal

pathogens could damage the antioxidant system in the

periodontium, ultimately resulting in ferroptosis and cuproptosis

during periodontitis. Thus, diverse responses of autophagy to

periodontal infection may exert multifaceted effects on ferroptosis

and cuproptosis through modulating the oxidative stress in

periodontitis. Nevertheless, the specific regulatory mechanisms by

which autophagy influences ferroptosis and cuproptosis in

periodontitis remain elusive. Moreover, the precise relationship

between ROS and autophagy initiation in periodontitis warrants

further exploration for a comprehensive understanding of the

association between ferroptosis and cuproptosis.
4.3 The potential unifying mechanism
linking ferroptosis and cuproptosis
in periodontitis

The GSH pathway and autophagy pathway are closely

associated with alterations in oxidative stress levels during

periodontitis. Oxidative stress can induce and interact with

autophagy, whereas autophagy mitigates oxidative stress and

confers cellular protection against oxidative damage in the

periodontium. GSH functions as a critical antioxidant in the

cellular defense against oxidative stress and is converted to GSSG

through the action of GSH peroxidase in response to oxidative

stress. A reduced GSH/GSSG ratio typically indicates the presence

of oxidative stress and is widely recognized as a significant

biomarker for the oxidative damage associated with periodontitis.

In addition, increasing evidence suggests that mitochondrial

dysfunction is implicated in the onset and progression of

periodontitis. Fluctuations in mitochondrial function represent

critical signaling events and serve as direct indicators of cellular

responses to periodontal pathogen infection. Diverse manifestations

of mitochondrial dysfunction, including oxidative stress,

mitophagy, mitochondria-mediated apoptosis, and metabolic

disorders, are commonly observed in periodontal disease

(112–117). Interestingly, oxidative stress frequently drives

mitochondrial dysfunction, which in turn aggravates oxidative

stress through ROS overgeneration (118). Mitochondrial iron and

copper are widely recognized as critical regulators of mitochondrial

electron transport chain function and various other mitochondrial

processes. Disruption of mitochondrial metal homeostasis can

result in excessive ROS generation and induce ferroptosis and
Frontiers in Immunology 06
cuproptosis (119–122). Therefore, increased oxidative stress is

likely to be a key factor in the shared pathophysiological

mechanisms of ferroptosis and cuproptosis in periodontitis.

As previously discussed, the possibility that a positive feedback

loop exists between periodontal infection and iron levels has been

raised. Periodontal pathogens may trigger iron overload by

degrading iron-binding proteins and destroy the antioxidant

system in periodontal t issue, whereas increased iron

concentrations further enhance the vulnerability to infection by

periodontal pathogens and aggravate oxidative damage. Similarly,

periodontal infection facilitates copper overload in the periodontal

microenvironment to ensure an adequate supply of essential

cuproenzymes, thereby intensifying periodontal oxidative damage

and exacerbating the local inflammatory milieu. Additionally,

extensive crosstalk occurs between copper and iron in various

physiological and pathological processes; consequently, either iron

imbalance or copper imbalance may simultaneously modulate both

ferroptosis and cuproptosis through copper−iron interactions

(72–74, 123–125). We infer that a homeostatic imbalance of

copper and iron, which is mediated by periodontal pathogens,

may constitute a significant factor contributing to elevated

periodontal oxidative stress. This phenomenon potentially

represents a unifying mechanism that elucidates the intricate

interconnection between ferroptosis and cuproptosis in

periodontitis (Figure 1B).

Antioxidant and antibacterial therapies are expected to become

effective treatment options against ferroptosis and cuproptosis in

periodontitis. Several natural antioxidant agents have been

demonstrated to be promising approaches against oxidative

damage in the context of periodontitis. Quercetin has been shown

to decrease oxidative damage in periodontal ligament cells through

the activation of NRF2 signaling while also reducing alveolar bone

loss in murine models of experimental periodontitis (126). Silibinin

has demonstrated significant anti-inflammatory and antioxidative

effects against periodontitis both in vitro and in vivo by

downregulating the expression of NF-kB and NLRP3 while

upregulating NRF2 expression (127). Similarly, resveratrol can

prevent alveolar bone loss in an experimental rat model of

periodontitis by ameliorating the production of circulating ROS

via the NRF2/HO-1 axis (128). The local administration of

curcumin gel also exerts an antioxidant effect on attenuating

ligature-induced periodontitis in diabetic rats (129). In addition,

novel treatment alternatives against periodontal pathogens, such as

zinc materials, probiotics, N-chlorotaurine and antimicrobial

photodynamic therapy, are being explored (130–134).
5 Conclusions and perspective

In conclusion, these findings revealed the involvement of

ferroptosis and cuproptosis in the pathogenesis of periodontitis.

Although the cause-and-effect relationship between ferroptosis and

cuproptosis remains unclear, we propose several potential

associations of these two forms of PCD in periodontitis, including

the GSH pathway and the autophagy pathway. Elevated oxidative

stress may constitute a unifying mechanism underlying the complex
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interrelationship between ferroptosis and cuproptosis in

periodontitis. Antioxidative and antibacterial therapies may serve

as efficacious treatment modalities for periodontal damage through

inhibition of ferroptosis and cuproptosis.

Future research is imperative to address the following issues.

The biomarkers of ferroptosis and cuproptosis in periodontal

disease, as well as their precise relationships with other forms of

PCD in periodontitis pathogenesis, remain poorly understood. The

overlapping characteristic markers (e.g., iron, copper, p53, ROS,

and inflammatory mediators) underscore the potential crosstalk

among different PCD forms during periodontitis. Targeting shared

nodes may yield synergistic therapeutic effects, offering novel

combinatorial regimens to halt periodontitis progression.

Furthermore, the disparity between animals and humans has

contributed to the perception that the effects of ferroptosis

inhibitors or cuproptosis inhibitors on periodontitis observed in

animals may not be reliably replicated in humans. The potential

effects of inhibiting ferroptosis and cuproptosis in periodontitis on

the proliferation and dissemination of periodontal pathogenic

bacteria necessitate further investigation.

Elucidating the roles of ferroptosis and cuproptosis in

periodontitis may yield novel insights for future investigations to

explore the specific pathogenic mechanisms underlying periodontitis.
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