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SUMOylation-related genes
define prognostic subtypes in
stomach adenocarcinoma:
integrating single-cell analysis
and machine learning analyses
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Yanan Jiang1, Hongjie Zhan3* and Zhigang Zhao1*
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University, Tianjin, China, 2Department of Oncology, Tianjin Medical University Cancer Institute and
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Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China, 3Department of
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Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research
Center for Cancer, Tianjin, China
Background: Stomach adenocarcinoma (STAD) exhibits high molecular

heterogeneity and poor prognosis, necessitating robust biomarkers for risk

stratification. While SUMOylation, a post-translational modification, regulates

tumor progression, its prognostic and immunological roles in STAD

remain underexplored.

Methods: Prognostic SUMOylation-related genes (SRGs) were screened via

univariate Cox regression, and patients were stratified into molecular subtypes

using unsupervised consensus clustering. A SUMOylation Risk Score (SRS) model

was developed using 69 machine learning models across 10 algorithms, with

performance evaluated by C-index and AUC. Immune infiltration, pathway

enrichment identified key SRGs, and in vitro functional assays were validated.

Results: Two molecular subtypes (A/B) with distinct SUMOylation patterns,

survival outcomes (log-rank p < 0.001), and immune microenvironments were

identified. The random survival forest (RSF)-based SRS model (AUC: 0.97)

stratified patients into high-/low-risk groups, where high-risk patients exhibited

advanced tumor stages, immune suppression, and elevated TIDE scores (p <

0.001). Functional enrichment linked low-risk groups to genome stability

pathways (DNA repair, cell cycle control). In vitro validation confirmed that

L3MBTL2 and VHL knockdown promoted proliferation, migration, and invasion

in AGS cells (p < 0.05).
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Conclusion: This study establishes SRGs as independent prognostic indicators

and defines SUMOylation-driven subtypes with distinct immune and molecular

features. The SRS model and functional validation of L3MBTL2/VHL provide

actionable insights for personalized STAD management and immunotherapy

targeting. (214 words)
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Highlights
• Amachine learning-derived SUMOylation Risk Score (SRS)

model achieved high predictive accuracy (AUC = 0.97) and

stratified patients into clinically distinct risk groups.

• Functional validation revealed tumor-suppressive roles of

L3MBTL2 and VHL, highlighting their potential as

therapeutic targets in STAD.
1 Introduction

Gastric cancer (GC) is the fifth most common cancer and the

fourth leading cause of cancer-related death worldwide (1, 2).

Stomach adenocarcinoma (STAD), arising from the glandular

epithelium of the stomach, represents the predominant

histological subtype and is commonly divided into intestinal and

diffuse forms. Multiple factors such as chronic infection with

Helicobacter pylori, host susceptibility, dietary factors and

environmental exposures contribute to STAD pathogenesis (3–5).

Due to its often asymptomatic nature, many patients are diagnosed

at advanced stages, resulting in a poor prognosis (6, 7). These

challenges highlight the urgent need to identify novel prognostic

biomarkers to support early detection and personalized therapy.

SUMOylation is a reversible post-translational modification

(PTM) mediated by small ubiquitin-like modifiers (SUMOs),

which regulate critical cellular processes including DNA repair,

cell division, and programmed cell death (8–11). Despite increasing

interest in SUMOylation across various cancers such as breast,

colorectal and hematologic malignancies (12–14), systematic

investigations of SUMOylation-related genes (SRGs) and their

prognostic relevance in STAD are still lacking.

The advent of next-generation sequencing technologies,

particularly single-cell RNA sequencing (scRNA-seq) and bulk

RNA sequencing, has transformed our understanding of tumor

heterogeneity and immune landscapes (15–17). Specific cell

populations within the tumor microenvironment serve as

prognostic indicators. For instance, myeloid-derived suppressor

cells (MDSCs) facilitate tumor immune evasion, increasing the

likelihood of poor outcomes, whereas CD8+ T cells are associated
02
with improved clinical outcomes (18–20). By characterizing the

composition of tumor-infiltrating immune cells, we can better

understand the progression and develop immunologically relevant

prognostic tools in various cancers (21).

With the increasing complexity of omics data, machine learning

(ML) approaches are becoming indispensable for deciphering high-

dimensional datasets and identifying disease-relevant molecular

features (22–24). Using multiple ML algorithms enables more

robust feature selection and prediction by minimizing model-

specific limitations (25, 26). In this study, we constructed 69

predictive models across 10 machine learning algorithms to

evaluate the prognostic utility of SRGs.

By integrating single-cell and bulk transcriptomic data with

machine learning, we systematically identified prognostic SRGs and

stratified STAD patients into distinct molecular subtypes. Our findings

reveal two subtypes with differing survival outcomes and immune

profiles, and suggest that genes such as L3MBTL2 and VHL may act as

protective biomarkers. This study offers new insight into the

involvement of SUMOylation in STAD and proposes candidate genes

for prognostic evaluation and therapeutic development. (377 words)
2 Methods

2.1 Data collection and integration

Single-cell RNA sequencing (scRNA-seq) data for stomach

adenocarcinoma (STAD) were obtained from the TISCH database

(tisch.comp-genomics.org, accession number GSE167297),

encompassing 18,351 genes across 22,464 cells. Bulk RNA-seq

data were downloaded from The Cancer Genome Atlas (TCGA-

STAD, https://portal.gdc.cancer.gov/) with 375 patient samples, and

from the Gene Expression Omnibus (GEO, GSE62254, https://

www.ncbi.nlm.nih.gov/geo/) with 300 patient samples. After

merging TCGA-STAD and GSE62254 datasets, a combined

cohort of 654 STAD samples containing 16,928 common genes

was constructed. Batch effects resulting from dataset integration

were corrected using the ComBat function from the “sva” R

package, which applies an empirical Bayes framework to remove

technical variation while preserving biological signals.
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2.2 Single-cell transcriptomics and
functional pathway analysis

The STAD scRNA-seq dataset (GSE167297) was processed

using the “Seurat” R package for normalization, dimensionality

reduction, and clustering. Cell type annotations were obtained from

the TISCH database (27). Marker genes for each cell type were

identified using the “Cell-type Orientation Scoring for Genes

(COSG)” package, and differentially expressed genes (DEGs) were

filtered with the “FindAllMarkers” function (28). The top 5 marker

genes per cell type were visualized via the “DoHeatmap” and

“scRNAtoolVis” packages.

Gene sets including Hallmark, Biocarta, Kyoto Encyclopedia of

Genes and Genomes (KEGG), Reactome, and WikiPathway were

retrieved from the MSigDB database (29). Enrichment analyses were

performed using the “clusterProfiler” package based on the top 100

marker genes per cell type identified by “COSG”. Pathway activity

scores were calculated by “GSVA” package and visualized with

“pheatmap” to depict subtype-specific pathway activation patterns.
2.3 Expression and scoring of
SUMOylation-related genes

A set of 200 SUMOylation-related genes (SRGs) was compiled

by merging gene lists from a published lung adenocarcinoma study

and the Reactome pathway database (30). Differential expression

analysis of SRGs in STAD was performed using the “limma”

package, applying thresholds of fold change ≥ 2 and false

discovery rate (FDR) < 0.05 for statistical significance (31).

Single-cell data preprocessing, dimensionality reduction, and

clustering were conducted with “Seurat” to facilitate cell type

identification and UMAP visualization. SUMOylation pathway

activity per cell was assessed using the “GSVA” package,

generating SUMOylation scores based on SRGs expression (30).

UMAP plots were used to visualize clusters stratified by high and

low SUMOylation scores.
2.4 Identification of SRGs in STAD

From the merged dataset, 200 SRGs were analyzed, with 179

genes were effectively represented in the expression profile.

Correlation analyses and univariate Cox regression were

conducted via the “survival” and “survminer” packages,

identifying 42 genes significantly associated with prognosis (Cox

p < 0.001). Unsupervised clustering was performed with

“ConsensusClusterPlus” package, which classified the samples

into two subtypes (A and B) (32). Survival differences between

subtypes were evaluated, and differential expression analyses

highlighted subtype-specific gene expression patterns. A heatmap

generated by the “pheatmap” package depicted the relationships

between SRG expression and subtypes.
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2.5 Immune microenvironment analysis
and visualization

Principal component analysis (PCA) was performed via the

“prcomp” function from the “stats” package to visualize the sample

distribution. Immune cell infiltration differences between subtypes

were evaluated by calculating infiltration scores via single-sample

gene set enrichment analysis (ssGSEA) implemented in the “GSVA”

package. To comprehensively assess immune infiltration within the

tumor microenvironment (TME), eight deconvolution methods

from the “IOBR” package-MCPcounter , EPIC, xCell ,

CIBERSORT, IPS, quanTIseq, ESTIMATE, and TIMER- were

applied (33). Heatmaps were generated to illustrate the

relationships between subtypes and immune cells within the

tumor microenvironment (TME).
2.6 Machine learning-based risk signature
construction

The TCGA-STAD dataset was utilized as the training set,

whereas GSE62254 dataset served as the validation set. Ten

widely used machine learning algorithms were employed to

construct prognostic risk models, including Random Survival

Forest (RSF), Least Absolute Shrinkage and Selection Operator

(LASSO), Gradient Boosting Machine (GBM), Survival Support

Vector Machine (Survival-SVM), Supervised Principal

Components (SuperPC), Ridge Regression, Partial Least Squares

Regression for Cox (plsRcox), CoxBoost, Stepwise Cox Regression,

and Elastic Network (Enet) (33). Risk score for each dataset was

calculated via the following formula: risk score = S (coefficient ×

expression) (34). Among these algorithms, RSF, LASSO, CoxBoost,

and stepwise Cox were specifically used for dimensionality

reduction and variable selection. Multiple algorithmic

combinations totaling 69 approaches were tested, with the

optimal model selected based on the highest average concordance

index (C-index) (35). The final SUMOylation Risk Score (SRS)

model quantifies the prognostic impact of SRGs in STAD.
2.7 Evaluation of model performance

Using the best-performing machine learning model, samples

were dichotomized into high- and low-risk groups by the median

risk score in training, validation, and combined cohorts. Receiver

operating characteristic (ROC) curves and area under the curve

(AUC) metrics assessed predictive accuracy. Time-dependent ROC

analyses further evaluated model performance over time (36).

Kaplan–Meier survival analysis and log-rank tests compared

overall survival (OS) between risk groups. Univariate and

multivariate Cox regression analyses verified the independence of

the risk signature. Expression of key genes identified by the random

forest model was visualized in single cells using UMAP plots.
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2.8 Drug sensitivity and immunotherapy
response prediction

Mutation profiles of the high- and low-risk groups were

analyzed via the “maftools” package, and mutation patterns were

visualized via a waterfall plot. Differences in gene mutation

frequencies were compared, and associations with Tumor

Immune Dysfunction and Exclusion (TIDE), EXCLUSION, and

DYSFUNCTION scores were evaluated (37). Additionally,

variations in the mRNA stemness index (mRNAsi), microsatellite

instability (MSI), and tumor mutational burden (TMB) were

analyzed to predict immune evasion, recurrence risk, and

response to immunotherapy. Drug sensitivity between the two

groups was assessed via the “pRRophetic” package (38).
2.9 Cell culture and transfection

The human STAD cells were maintained in RPMI-1640

medium (Gibco, USA) supplemented with 10% fetal bovine

serum (NEWZERUM, China) and 1% penicillin-streptomycin

under standard conditions (37°C, 5% CO2). To achieve gene

knockout of L3MBTL2 and VHL (Von Hippel-Lindau), shRNA

plasmids (Genechem, Shanghai, China) were transiently transfected

into AGS cells using polyethyleneimine (PEI)-mediated

transfection. AGS cells were seeded in 6-well plates at a density of

2.5 × 106 cells per well and incubated overnight until reaching

approximately 80% confluence.

For each well, 12 µg plasmid was diluted in 100 µL Opti-MEM

(Gibco), and PEI (1 mg/mL, 3:1 PEI: DNA ratio) was diluted in

another 100 µL Opti-MEM. After 5 minutes of separate incubation,

the DNA and PEI mixtures were combined and incubated for 15

minutes at room temperature. The mixture was then added

dropwise to the cells. After 6–8 hours of incubation, the

transfection medium was replaced with fresh RPMI-1640 medium

containing 10% FBS and 1% penicillin-streptomycin. Seventy-two

hours post-transfection, cells were collected for western

blot analysis.
2.10 Western blot analysis

Total protein was extracted from AGS cells by lysing cell pellets

in a mixture of RIPA buffer, 10× protease inhibitor cocktail, and

100× PMSF (all from Beyotime, China) on ice for 30 minutes. The

lysates were then sonicated and centrifuged at 4°C to remove cell

debris. The supernatants were collected into fresh EP tubes, and

protein concentrations were determined using the BCA Protein

Assay Kit (Beyotime, China) according to the manufacturer’s

protocol. The optical density (OD) at 562 nm was measured

using a multimode plate reader (PerkinElmer, USA).

Equal amounts of protein were separated by 10% SDS-PAGE,

initially running at 80 V for 30 minutes, followed by 120 V for 60

minutes. Proteins were transferred to PVDF membranes

(IMMOBILON, IPVJ00010) using the Bio-Rad wet transfer system
Frontiers in Immunology 04
at a constant current of 250 mA for either 40 minutes (VHL) or 90

minutes (L3MBTL2). Membranes were blocked with 5% non-fat milk

in TBST for 90 minutes at room temperature and incubated overnight

at 4°C with the following primary antibodies: anti-L3MBTL2 (rabbit

polyclonal, ABclonal, A10331, 1:1000), anti-VHL (rabbit monoclonal,

ABclonal, A23239, 1:1000), and anti-b-actin (ABclonal, AC026,

1:5000) as a loading control. After incubation with HRP-conjugated

secondary antibodies (ProteinTech, Cat No:81115-1-RR, 1:5000),

protein bands were visualized using an ECL detection system.
2.11 Cell proliferation assay

Post-transfection, AGS cells were seeded at a concentration of

3,000 cells per well. Cell viability was measured at 0, 24 and 48 hours

using the Cell Counting Kit-8 (CCK-8; Dojindo, Japan) following

manufacturer instructions. Absorbance at 450 nm was measured to

evaluate proliferation using a microplate spectrophotometer

(BioTek, USA).
2.12 Transwell migration and invasion assay

Transwell chambers (8 mm pore size, 24-well format; Corning,

USA) were used to evaluate the migration and invasion abilities of

AGS cells. For invasion assay, upper chambers were pre-coated with

a mixture of Matrigel and serum-free medium at a ratio of 1:7, and

incubated at 37 °C overnight to allow gel formation. No coating was

applied for the migration assay.

AGS cells were harvested and resuspended in serum-free

medium. A total of 1 × 105 cells were seeded into the upper

chambers (coated or uncoated), while the lower chambers were

filled with complete medium containing 10% FBS medium. After 12

hours of incubation, non-migrated or non-invaded cells were

removed from the upper membrane surface. Cells that had passed

through the membrane were fixed with anhydrous methanol for 20

minutes, stained with 0.1% crystal violet for 20 minutes, and

visualized using a light microscope at 4× magnification. The

number of cells was counted in three randomly selected fields per

well. All experiments were performed in triplicate, and quantitative

results were expressed as mean ± SD.
2.13 Wound healing scratch assay

AGS cells were plated into 6-well plates at a density of 5 × 105 cells

per well and incubated overnight at 37°C in a humidified incubator

with 5% CO2. Upon reaching approximately 90% confluence, a linear

scratch was generated across the cell monolayer using a sterile 200 mL
pipette tip under uniform pressure. Detached cells were carefully

removed by washing twice with phosphate-buffered saline (PBS),

followed by incubation in serum-free medium to minimize the

influence of cell proliferation. Phase-contrast images of the wound

area were acquired at 0, 12, and 24 hours using an inverted microscope

at consistent magnification. The extent of cell migration was evaluated
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by quantifying the wound area using ImageJ software (version 1.54p,

NIH, USA), and the wound closure rate was calculated using the

following formula:

Wound closure %ð Þ = Area0h − Area12hð Þ=Area0h � 100%
2.14 Statistical analysis

Kaplan–Meier curves and the log-rank test were applied to

assess survival differences between risk groups. Correlations

between continuous variables were determined using Pearson’s

correlation analysis. The Wilcoxon rank-sum test was used to

compare differences in non-normally distributed data. All

analyses and data visualization were carried out using R software

(version 4.2.2), with a two-tailed p-value < 0.05 considered

statistically significant. Microscopic image analysis was performed

using ImageJ (version 1.54p, NIH, USA).
3 Results

3.1 Single-cell landscape reveals cellular
heterogeneity and activation of immune-
associated pathways in STAD

Nine distinct cell clusters were identified via dimensionality

reduction and clustering, including B cells, CD8+ T cells, dendritic

cells (DCs), endothelial cells, epithelial cells, fibroblasts, mast cells,

monocyte-macrophages, and plasma cells (Figure 1A).

The top five marker genes for each cluster were selected and

visualized in a heatmap to highlight cluster-specific gene expression

patterns (Figure 1B), with further refinement confirming the most

and least expressed genes unique to each cell type (Figure 1C).

Pathway activity analysis across the nine cell types revealed that

epithelial cells exhibited significantly elevated activity in

proliferation, cell cycle regulation, and energy metabolism

pathways, notably enriched in E2F targets, G2M checkpoint, and

MYC targets (Figure 1D). Functional enrichment of the top 100

genes per cell type showed distinct pathway profiles in KEGG and

Reactome databases (Figures 1E, F). B cells and CD8+ T cells were

enriched in pathways related to cell adhesion molecules and Th1/

Th2 cell differentiation. Reactome analysis highlighted their

involvement in immune signaling processes, including the

translocation of ZAP-70 to the immunological synapse, CD3 and

TCR zeta chain phosphorylation, and PD-1 signaling.
3.2 High SUMOylation activity correlates
with B cell reduction and activation of
proliferation pathways in STAD

SUMOylation-related genes (SRGs) showed distinct expression

patterns across the nine cell populations, with GSVA-based scoring

revealing variable SUMOylation activity levels (Figures 2A, B).
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Based on the median SRGs scores, all the cells were categorized

into high- and low-score groups, and their spatial distributions was

visualized using a UMAP plot (Figure 2C).

Notably, compared the cell composition between the two groups,

B cells were significantly enriched in the low-score group, whereas the

populations of other cell types exhibited only minor variations

(Figure 2D). This pattern was validated in bulk patient datasets,

which confirmed the predominance of CD8+ T cells and relatively

low mast cell abundance, consistent with single-cell observations

(Figure 2E). The strong alignment between single-cell and bulk data

emphasizes that B cells and CD8+ T cells are major immune

components within the STAD microenvironment. Notably, although

CD8+ T cells remained abundant regardless of SUMOylation status, B

cells significantly decreased in the high SUMOylation group,

suggesting a specific association between SUMOylation activity and

B cell regulation.

Functionally, pathway enrichment analysis revealed that high

SUMOylation activity correlated with enhanced signaling in

proliferation, metabolism, and cell cycle-related pathways,

particularly the G2M_CHECKPOINT, E2F_TARGETS, and

MYC_TARGETS V1/V2 pathways (Figure 3A), suggesting that

SRGs may facilitate tumor progression by promoting cell growth

and metabolic activity.

Correlation analyses further linked SRG scores positively with

oncogenic pathways such as MYC targets, DNA repair, and

mTORC1 signaling, predominantly in epithelial cells, while B

cells exhibited an inverse relationship with SUMOylation

(Figure 3B). Together, these findings highlight the context-

dependent influence of SUMOylation in modulating tumor cell

behavior and shaping the immune microenvironment, particularly

through its impact on B cell dynamics.
3.3 SRGs-based molecular classification
reveals prognostic and immunological
heterogeneity in STAD

Based on TCGA-STAD and GSE62254 datasets, we curated a

total of 179 SRGs for integrated analysis. Through univariate Cox

regression analysis (p < 0.001), 42 SRGs were identified as

significantly prognosis-related (p < 0.001), including 13 risk and

29 favorable genes, and their functional interaction analysis

revealed strong connectivity (Figure 4A; Supplementary Figure 1A).

These SRGs were subjected to unsupervised consensus clustering,

which revealed two robust molecular subtypes, designated as Group A

and Group B (Figure 4B; Supplementary Figure 1B). Kaplan–Meier

survival analysis revealed that patients in Cluster A exhibited

significantly better overall survival than those in Cluster B (p <

0.001, Figure 4C). Stratified survival analysis further confirmed that

high expression of favorable SRGs was associated with improved

prognosis (Supplementary Figure 1C; p < 0.001). These results

suggest that the prognostic value of SRGs as potential biomarkers.

Expression comparisons between groups showed clear subtype-

specific patterns: Group B exhibited elevated expression of risk

factors and lower favorable genes in Group A (Figure 4D). Three
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FIGURE 1

Single-cell RNA sequencing (scRNA-seq) data analysis integrating TISCH and MsigDB databases. (A) UMAP visualization of cell subpopulation.
Clusters were annotated based on the expression of canonical cell marker genes. (B) Heatmap showing the top five differentially expressed genes
(DEGs) for each cell cluster. (C) Dot plot illustrating the top five upregulated and downregulated genes within each cell cluster. Gene expression
levels are represented by color intensity. (D)Heatmap depicting pathway enrichment scores for individual cell clusters across 50 hallmark pathways
from the MSigDB database. (E) KEGG pathway enrichment analysis of the top 100 cluster-specific genes identified by COSG. Significantly enriched
pathways are highlighted. (F) Reactome pathway enrichment analysis of the top 100 cluster-specific genes identified by COSG.
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genes (CETN2, PML, and DNMT3A) did not display significant

differential expression. Clinical parameters such as recurrence

status, tumor stage, age, gender, and survival outcomes were also

differentially distributed, reinforcing the clinical relevance of this

molecular classification (Figure 4E).

To elucidate the functional differences between the subtypes, we

performed GSVA using multiple pathway databases, including

Biocarta, HALLMARK, KEGG, Reactome, and WikiPathways

(Figures 5A–E). Cluster B was enriched in cell proliferation and

oncogenic signaling pathways, such as E2F targets, G2M

checkpoint, and MYC signaling. These findings indicate that

SUMOylation-based molecular subtypes are strongly associated

with both prognosis and distinct biological behaviors in STAD.
3.4 Distinct immune landscapes between
SRGs-based STAD subtypes

Our PCA-driven dimensionality reduction analysis further

validated the robustness of our classification, yielding distinct

clustering patterns for Group A (450 samples) and Group B (225

samples) from the merged data, thereby confirming the accuracy of
Frontiers in Immunology 07
our categorization approach (Figure 6A). To explore differences in

the tumor immune microenvironment (TIME) between the two

subtypes, we quantified immune cell infiltration using the single-

sample gene set enrichment analysis (ssGSEA) method. We

observed significant differences in the infiltration levels of 18

immune cell types between the two groups (Figure 6B).

Additionally, Group B exhibited elevated infiltration in the

majority of immune cell populations, except for activated CD4+

T cells and CD56^dim^ natural killer (NK) cells, which were more

abundant in Group A. Furthermore, integration of eight established

immune cell estimation algorithms demonstrated consistent

divergence in immune composition between the subtypes

(Figure 6C). Together, these findings indicate that SUMOylation

is a key regulator of the tumor microenvironment, particularly

influencing immune dynamics and tumor progression.
3.5 SUMOylation risk score accurately
predicts prognosis in STAD

Based on the 42 prognosis-associated SUMOylation-related

genes (SRGs) identified in the earlier analysis (Figure 4), we
FIGURE 2

Expression patterns and GSVA scoring of SUMOylation-related genes (SRGs) in STAD single-cell data. (A) Bubble plot showing SRGs expression across
nine cell types. (B) Cellular-level SUMOylation activity scores, illustrating the distribution of scores across individual cells. (C) UMAP visualization of cell
clustering based on median SUMOylation activity scores. Cells were categorized into high- and low-score groups. (D) Cell composition analysis. Left:
Proportions of cells stratified by high and low SUMOylation activity scores. Right: Trends in cell type distribution between high- and low-scoring groups.
(E) Patient-specific cell composition, highlighting the proportion of cells with high and low SUMOylation activity scores.
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constructed a SUMOylation Risk Score (SRS) model to predict

patient outcomes. To ensure robustness and generalizability, a total

of 69 machine learning models were developed using 10 algorithmic

frameworks. Among these, the random survival forest (RSF) model

achieved the best performance, with the highest average C-index of

0.774 (Figure 7A). We ranked these genes according to their

variable importance derived from the RSF model, and illustrated

the expression patterns of the top 10 key genes at the single-cell level

resolution (Figure 7B; Supplementary Figure 2). Using the median

SRS value as a cutoff, patients were stratified into high- and low-risk

groups. Survival analysis showed significantly worse outcomes in

the high-risk group (p <0.0001) (Figure 7C). The RSF-based model

demonstrated excellent predictive power, with AUCs of 0.974 and

0.963 for one- and three-year survival, respectively (Figures 7D, E).

These findings were consistently validated in both the independent

validation cohort and the combined dataset (Supplementary

Figures 3A, B). Together, these findings confirm that the SRS

model derived from SRGs provides a reliable and accurate tool

for survival prediction in STAD, with potential utility in risk

stratification and individualized treatment planning.
3.6 SRS prognostic model correlates with
clinical outcomes and tumor progression

Analyses revealed distinct distributions of model scores across

clinical features, including survival status (Alive vs. Dead),

recurrence status (No vs. Yes), sex (Female vs. Male), and tumor

stage (Stage I-IV) (Figures 8A–D). The high-risk group exhibited a
Frontiers in Immunology 08
significantly higher proportion of deceased patients compared to

the low-risk group (Alive: 16% vs. 67%; Dead: 84% vs. 33%; p <

0.001), along with a higher recurrence rate (Recurrence: 49% vs.

30%; p < 0.001). Advanced tumor stages were more prevalent in the

high-risk group, with Stage IV representing 22% versus 16% in the

low-risk group (Stage IV: 22% vs. 16%; p < 0.001). However, no

significant gender-based difference in risk scores was observed (p =

0.44). These findings established SRGs as independent prognostic

indicators for overall survival (OS).

Furthermore, both univariate and multivariate Cox regression

analyses confirmed the significant association between model-

derived risk scores (RS) and OS (HR = 1.062, 95% CI: 1.054–

1.069, p < 0.001; HR = 1.055, 95% CI: 1.046–1.064, p < 0.001,

respectively) (Figures 8E, F). These findings collectively suggest that

the SRGs-based model RS maintains significantly correlation with

STAD progression and serves as an independent prognostic

indicator for patient outcomes.
3.7 Low-risk group exhibits enrichment in
genome stability and cell cycle regulation
pathways

Biological pathway analyses stratified by risk scores revealed

distinct molecular signatures between groups (Figures 9A, B). Gene

Set Enrichment Analysis (GSEA) showed that the low-risk group

was significantly enriched in biological processes related to genome

stability and cell cycle regulation (Figures 9C–E). GO analysis

revealed significant enrichment in genome stability-related
FIGURE 3

Correlation analysis between SUMOylation activity scores and hallmark pathway scores. (A) Heatmap displaying hallmark pathway scores for high
and low SUMOylation activity score groups. Scores were derived from 50 hallmark pathways in the MSigDB database. (B) Heatmap illustrating the
correlation between SUMOylation activity scores and hallmark pathway scores across individual cell clusters **p<0.01, ***p<0.001, ****p<0.0001.
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pathways, such as DNA repair, nuclear division, and chromosome

segregation in the low-risk group (Figure 9C). KEGG analysis

further confirmed that the low-risk group was enriched in

pathways crucial for DNA damage repair and cell cycle

regu la t ion , inc lud ing mismatch repa i r , homologous

recombination, Fanconi anemia pathway, and DNA replication

(Figure 9D). Reactome pathway analysis corroborated these

findings, showing a predominance of cell cycle control and

chromosomal maintenance pathways in the low-risk

group (Figure 9E).

Overall, these results suggest that STAD patients in the low-risk

group maintain more stable genomic integrity and effective cell
Frontiers in Immunology 09
cycle regulation, which may contribute to a lower malignant

potential and better prognosis (Figure 9).
3.8 High-risk group displays a
dysfunctional and immune-excluded tumor
microenvironment

To ga in fur ther ins ight into the tumor immune

microenvironment, we implemented eight computational

methodologies (MCPcounter, EPIC, xCell, CIBERSORT, IPS,

quanTIseq, ESTIMATE, and TIMER) to assess the tumor
FIGURE 4

Identification of SUMOylation-related genes (SRGs) and their prognostic significance. (A) Correlation and univariate regression analyses of 42 SRGs
(Cox p values < 0.001). Purple nodes indicate prognostic risk factors, whereas green nodes represent protective factors. Connecting lines between
nodes denote correlations among the genes. (B) Unsupervised clustering analysis categorizes the 42 genes into two distinct subtypes. (C) Kaplan-
Meier survival analysis comparing the two subtypes, highlighting differences in overall survival. (D) Differential gene expression analysis between the
two subtypes, illustrating significant transcriptional variations. (E) Heatmap depicting the association between gene expression patterns and the
identified subtypes, with hierarchical clustering applied to both genes and samples. *p<0.05, **p<0.01, ***p<0.001, ns, not significant.
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infiltration. The associations between model-derived risk scores and

immune cell populations were systematically visualized through

comprehensive heatmap analysis (Figure 10A). Employing the

CIBERSORT algorithm, CD4+ T cells and macrophages were

significantly reduced in the high-risk group. Additionally,

ESTIMATE results showed reduced tumor purity but elevated

immune and stromal scores in the high-risk group, indicating a

more complex and heterogeneous immune landscape (Figure 10A).

Interestingly, although certain immune cell types were increased in

the high-risk group, the overall level of immune cell infiltration was

lower than that in the low-risk group, potentially reflecting reduced

sensitivity to immunotherapy in this subgroup (Figure 10A). To

further delineate immune-related differences, we compared the

expression profiles of various immunoregulatory molecules,

including chemokines and their receptors, interleukins,

interferons, and other cytokine families, between the two risk

groups (Figure 10B). This comprehensive evaluation provided

additional insights into the relationship between the immune
Frontiers in Immunology 10
microenvironment characteristic and the identified risk groups

(Figure 10B). These findings collectively suggest that the high-risk

group may exhibit features of immune exclusion or dysfunction,

which could compromise the effectiveness of immune

checkpoint blockade.
3.9 High-risk group exhibits immune
evasion and reduced sensitivity to anti-
tumor therapies

To investigate the differences in immunotherapy response and

drug sensitivity between the high- and low-risk groups, we

performed somatic mutation analysis using the “MAFTOOL” R

package. TTN, TP53, LRP18, MUC16, SYNE1 were identified as the

top three genes with the highest mutation frequencies in both risk

groups (Figures 11A, B). Odds ratio (OR) analysis supported this

finding, indicating a significantly lower mutation probability in the
FIGURE 5

Pathway enrichment analysis of Group A and Group B across multiple databases. Pathway activity was evaluated using the Gene Set Variation
Analysis (GSVA) tool in R. (A) Biocarta, (B) HALLMARK, (C) KEGG, (D) Reactome, and (E) WikiPathways.
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low-risk group (Supplementary Figure 4A). With respect to tumor

biological features, mRNAsi scores decreased as risk scores

increased, suggesting that that the high-risk group exhibits

reduced cellular stemness. No significant difference in

microsatellite instability (MSI) was observed between the groups.

However, the tumor mutational burden (TMB) was significantly

lower in the high-risk group compared to the low-risk group,

potentially indicating poorer immunotherapy responsiveness

(Supplementary Figures 4B–D). In evaluating immunotherapy

response indicators with four analyses, 41% of the low-risk

samples were predicted to respond to immune checkpoint

blockade, compared to only 23% of the high-risk samples

(Figure 11C). Moreover, the high-risk group exhibited a

significantly higher immune exclusion score and a slightly

elevated immune dysfunction score, alongside a markedly higher

TIDE score (p < 0.001), reflecting an immune microenvironment

prone to exclusion and dysfunction (Figures 11C–F). These features

collectively suggest a greater likelihood of immune evasion and

impaired immunotherapeutic efficacy in high-risk patients. Finally,

analysis of drug response sensitivity revealed that the high-risk

group had significantly higher estimated IC50 values for several

antitumor agents (e.g., BMS-345541, BX-912, and AZD7762),

indicating reduced drug sensitivity. Conversely, the low-risk
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group exhibited higher IC50 values for agents such as AZD8055

(Figure 11G). Overall, these findings highlight substantial

differences in mutation landscapes, immune evasion potential,

and drug responsiveness between the two groups, suggesting that

patients in the high-risk group may experience greater immune

suppression and diminished sensitivity to both immunotherapy and

certain chemotherapeutic agents.
3.10 Knockdown of L3MBTL2 or VHL
enhances proliferation and invasion in
STAD cells

To date, the functional roles of L3MBTL2 and VHL in the

pathogenesis of STAD remain largely unexplored. In our research,

AGS cells with transient knockdown of L3MBTL2 or VHL exhibited

significantly reduced protein levels, as confirmed by Western

blotting (Figures 12A, B). Functional assays revealed that

knockout of L3MBTL2 and VHL significantly enhanced cell

proliferation, as indicated by increased absorbance in the CCK-8

assays (Figures 12C, D). Furthermore, wound healing assays

demonstrated accelerated wound closure in L3MBTL2- or VHL-

knockdown cells, indicating enhanced migratory capacity
FIGURE 6

Validation of immune microenvironment differences between Group A (450 samples) and Group B (225 samples). (A) Principal Component Analysis
(PCA) plot illustrating the distinct separation between Group A and Group B based on immune microenvironment profiles. (B) Comparative analysis
of immune cell infiltration levels between Group A and Group B, highlighting significance differences in immune cell composition. (C) Heatmap
depicting the association between the identified subtypes and immune cells in cell populations within the immune microenvironment, with
hierarchical clustering applied to visualize patterns. *p<0.05, **p<0.01,***p<0.001, ns, not significant.
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(Figures 12E, F). Consistently, transwell migration and invasion

assays showed that silencing L3MBTL2 or VHL significantly

promoted AGS cell migration and invasion (Figures 12G, H).

These findings collectively suggest that L3MBTL2 and VHL

may function as tumor suppressors in STAD by restraining cell

proliferation, migration, and invasion. Their loss may contribute to

malignant progression and thus represent potential therapeutic

targets in STAD.
4 Discussion

Stomach adenocarcinoma (STAD) is a globally prevalent

malignancy with high mortality, and its early detection remains

challenging due to non-specific or absent clinical symptoms (39–

41),. Thus, identifying robust biomarkers and novel molecular

subtypes is essential for improving patient outcomes. SUMOylation,

a dynamic post-translational modification (PTM), plays multifaceted

roles in cancer biological processes (10, 42, 43). However, its specific

role in STAD has not been comprehensively explored.

To address this, we applied an integrative approach combining

single-cell RNA sequencing (scRNA-seq) with bulk transcriptomic

data to characterize SUMOylation-related genes (SRGs) and their
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biological significance in STAD. SRGs are predominantly expressed in

epithelial tumor cells, driving key oncogenic pathways such as

epithelial-mesenchymal transition (EMT), KRAS signaling, and IL6-

JAK-STAT3 activation, highlighting their contribution to tumor

progression and invasiveness. Elevated SUMOylation levels were

negatively correlated with B cell infiltration and TNFa/NF-kB
signaling, indicating a potential contribution to immune evasion.

Notably, epithelial cells with high SUMOylation activity exhibited

hyperactivation of proliferative pathways (e.g., E2F_TARGETS,

G2M_CHECKPOINT), further supporting the role of SUMOylation

as a metabolic regulator promoting tumor aggressiveness. These

findings align with prior studies linking SUMOylation to metastasis

and chemoresistance in gastrointestinal cancers (11, 44, 45). Based on

the expression of 42 SRGs, we identified two molecular subtypes of

STAD. Cluster B tumors displayed activated oncogenic pathways and

impaired DNA repair mechanisms, correlating with significantly

worse prognosis.

To further quantify the clinical utility of SRGs, we constructed a

SUMOylation Risk Score (SRS) model using a comprehensive

machine learning framework, incorporating 10 algorithms and 69

combination strategies. This robust model identified 42 prognostically

relevant genes, including 16 with high feature importance, such as

INCENP, BRCA1, VDR, L3MBTL2, and VHL.
FIGURE 7

Construction and validation of a prognostic model based on SUMOylation-related genes. (A) Concordance index (C-index) analysis demonstrating
the performance of the prognostic model. The TCGA dataset was used as the training set, while external datasets were used for validation. (B) Ket
genes identified by random forest analysis and their contribution to the prognostic scoring model. (C) Prognostic risk stratification analysis in the
training cohort (TCGA dataset). (D) Kaplan–Meier survival curve for the training set, stratified by high-risk and low-risk groups. (E) Time-dependent
receiver operating characteristic (ROC) curve for the training set, evaluating the model’s predictive accuracy at 1, 2, and 3 years.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1527233
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2025.1527233
Many of these genes are mechanistically linked to SUMOylation-

related processes. For instance, INCENP activates Aurora B and

promotes its SUMOylation (46, 47). BRCA1, acts as a SUMO E3

ligase involved in DNA damage response in gastric cancer (48, 49).

VDR is SUMOylated by SENP1 and SENP2, while L3MBTL2

stabilizes RBPJ binding to Notch genes via the SUMO-modified

PRC1.6 complex (50, 51). RANGAP1 is SUMOylated with SUMO-1,

enhancing its interaction with RanBP2 and regulates its role in the

Ran GTPase cycle (52). SATB1 is SUMOylated at lysine-744, a

modification regulated by PIAS1, which controls its cleavage by

caspase-6 at PML nuclear bodies (53). PCNA, when modified by

SUMO, exhibits increased conformational flexibility, facilitating the

recognition of effector proteins and the formation of PCNA tool belts

(54). PGR, as a member of the steroid hormone receptor (SHR)
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family, undergoes SUMOylation and phosphorylation (S294, S400),

which regulate its interaction with growth factor signaling, subcellular

localization, and degradation (55, 56). Additionally, ubiquitination at

the K388 site inhibits ERa activity, IKBKE is involved in NF-kB
activation through NEMO SUMOylation (57). NDC1 and NUP50

play roles in SUMO-regulated DNA repair, with NUP50 affecting

nonhomologous end joining but not 53BP1 sumoylation (58, 59).

SMC1A accelerates gastric cancer (GC) progression by upregulating

SNAIL, thereby promoting EMT and enhancing cell proliferation,

migration, and invasion (60). In GC, NUP43 is closely linked to

prognosis, especially in the high-risk group, where its expression

correlated with immune scores, immune cell infiltration, and the

enrichment of cancer and immune pathways (61). NUP37 enhances

GC cell proliferation, migration, and invasion by activating the PI3K/
FIGURE 8

Association between the prognostic model score and clinical characteristics. (A)Kaplan-Meier survival curves stratified by the prognostic model
score, illustrating the relationship between model score and overall survival (OS). (B) Distribution of the model score stratified by recurrence.
(C) Distribution of the model score stratified by gender. (D) Distribution of the model score stratified by tumor stage. (E, F) Univariate and
multivariate regression analyses demonstrating the prognostic model score as an independent predictor of clinical outcomes.
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FIGURE 9

Functional enrichment analysis based on the prognostic model score. (A, B) Heatmaps showing the top 50 positively correlated genes (A) and
negatively correlated genes (B) with the prognostic model score. (C–E) GSEA based on the correlation analysis results, highlighting significantly
enriched pathways in: (C) GO terms, (D) KEGG pathways, and (E) Reactome pathways.
FIGURE 10

Immune infiltration and cytokine expression profiles in high- and low- risk groups. (A) Heatmap showing the correlation between the prognostic
model score and immune cells infiltration levels, assessed using eight computational methodologies. (B) Heatmap showing the correlation between
the prognostic model score and the expression of immune-related molecules, including chemokines and their receptors. High-score groups exhibit
low immune infiltration, predicting poor response to immunotherapy. *p<0.05, **p<0.01, ***p<0.001.
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AKT/mTOR signaling pathway (62). Taken together, these functional

associations reinforce the biological plausibility of our model and

underscore the central role of SUMOylation in STAD tumorigenesis.

In terms of mutational landscapes, TTN, TP53, LRP1B, MUC16,

and SYNE1 were the most frequently mutated genes in both risk
Frontiers in Immunology 15
groups, with higher mutation frequencies observed in the low-risk

group. TTN, TP53, LRP1B, and SYNE1 are frequently mutated not

only in solid tumors but also in hematologic malignancies (63–71).

MUC16 promotes ovarian cancer progression by inducing an

inflammatory and immunosuppressive neutrophil phenotype and
FIGURE 11

Genetic alterations, immunotherapy response, and drug sensitivity analysis in high- and low-risk groups. (A, B) Mutation landscape analysis in the
high-risk (A) and low-risk (B) groups, highlighting the mutated genes and their mutation frequencies. (C–F) Tumor Immune Dysfunction and
Exclusion (TIDE) analysis, including: (C) TIDE scores, (D) Exclusion scores, (E) Dysfunction scores, and (F) TME analysis. (G) Drug sensitivity analysis,
comparing the half-maximal inhibitory concentration (IC50) values of various anticancer drugs between the high-score and low-score groups.
Higher IC50 values indicate lower sensitivity **p<0.01, ***p<0.001, ****p<0.0001.
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playing a critical role in immune modulation and disease prediction

(72–74).

Beyond prognostication, the SRS model demonstrated clinical

relevance by correlating with tumor stage, recurrence risk, and

response to therapy. High-SRS patients exhibited advanced-stage

disease, worse overall survival, and poor response to immune

checkpoint inhibitors (ICIs).

These differences were further reflected in somatic mutation

profiles and tumor mutational burden (TMB), with the high-risk

group showing a lower TMB and fewer mutations. Consistently, the

high-SRS group also exhibited elevated immune dysfunction and

exclusion scores, features associated with reduced sensitivity to

immunotherapy. Drug sensitivity analysis revealed potential
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resistance of the high-risk group to several chemotherapeutic and

targeted agents, suggesting that personalized or alternative

therapeutic strategies may be required for these patients.

To experimentally validate the biological relevance of key SRGs, we

selected two representative genes, L3MBTL2 and VHL, for functional

assays based on their strong prognostic value and limited prior

characterization in STAD. Knockdown of either gene significantly

enhanced proliferation, migration, and invasion in vitro. These findings

are consistent with previous reports of L3MBTL2 acting as a metastasis

suppressor through chromatin remodeling (75–77), as well as VHL

functioning as a negative regulator of angiogenesis via HIF-1a
degradation (78, 79) Our results therefore provide in vitro evidence

supporting their tumor-suppressive roles in STAD.
FIGURE 12

Functional validation of L3MBTL2 and VHL as tumor suppressors in STAD. (A, B) Western blot analysis confirming efficient knockdown of L3MBTL2
(A) and VHL (B) protein levels in AGS cells transfected with shRNA plasmids via PEI-mediated transfection. b-actin served as a loading control. (C, D)
CCK-8 proliferation assays showing enhanced cell viability in L3MBTL2- (C) and VHL-knockdown (D) cells compared to scramble controls at 0, 24 and
48 hours (p < 0.01, two-way ANOVA). (E, F) Wound healing assays demonstrating accelerated migration in L3MBTL2- (E) and VHL-depleted (F) cells at 12
hours post-scratch. Quantified wound closure rates are shown (mean ± SD; p < 0.01, unpaired t-test). (G, H) Transwell migration (upper panels) and
Matrigel-based invasion (lower panels) assays revealing increased migratory and invasive capacities of L3MBTL2- (G) and VHL-knockdown (H) cells.
Representative images (left) and quantifications (right; mean ± SD; p < 0.01, unpaired t-test) are shown. All experiments were performed in triplicate.
NC: negative control. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Interestingly, while epidemiological studies have shown a male

predominance in gastric cancer incidence (80, 81), our analysis

revealed no significant sex-related differences in SRS distribution,

suggesting that SUMOylation-related transcriptional programs may

operate independently of sex hormone signaling. Further studies

focusing on hormone receptor expression or subtype-specific effects

may help clarify this observation.

In summary, our study presents a comprehensive characterization

of the SUMOylation landscape in STAD and highlights the

translational potential of SRGs. By integrating scRNA-seq with bulk

RNA-seq, we developed a biologically grounded and clinically

applicable SRS model that stratifies patients by prognosis and

therapeutic responsiveness. However, several limitations must be

acknowledged: (1) our functional validation was limited to AGS cells

and lacked in vivo verification; (2) spatial and temporal dynamics of

SUMOylation in the tumor immune microenvironment were not

addressed. Future research incorporating organoid systems, animal

models, and spatial transcriptomics will be essential for fully elucidating

the therapeutic potential of SUMOylation in STAD.
5 Conclusions

This study highlights the pivotal role of SUMOylation-related

genes (SRGs) in the progression and immune landscape of stomach

adenocarcinoma (STAD). By integrating single-cell and bulk

transcriptomic data, we developed a robust SUMOylation risk

score (SRS) model that effectively predicts prognosis and

treatment response. Functional validation of key SRGs, including

L3MBTL2 and VHL, confirmed their tumor-suppressive roles.

These findings provide new insights into SUMOylation as a

potential biomarker and therapeutic target in STAD.
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SUPPLEMENTARY FIGURE 1

Univariate analysis and subtype clustering based on SUMOylation-related
genes. (A) Forest plot showing the results of univariate Cox regression analysis

for SUMOylation-related genes. (B) Unsupervised clustering analysis dividing
samples into distinct molecular subtypes based on SUMOylation-related
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gene expression (k=3-6). (C) Representive Kaplan-Meier survival curves for

favorable SUMOylation-related genes.

SUPPLEMENTARY FIGURE 2

Single-cell expression analysis of key genes identified by the random forest
model. Uniform Manifold Approximation and Projection (UMAP) plot

visualizing the single-cell expression patterns of the 10 key genes identified
by the random forest model.

SUPPLEMENTARY FIGURE 3

Validation of the prognostic model in external cohorts. (A) Validation in the

GSE62254 cohort: Left: Kaplan-Meier survival curves stratified by the prognostic
model score. Middle: Receiver operating characteristic (ROC) curve evaluating

the model’s predictive accuracy. Right: Time-dependent ROC curve assessing
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the model’s performance at different time points. (B) Validation in the merged

cohort, showing consistent performance of the prognostic model.

SUPPLEMENTARY FIGURE 4

Molecular characteristics and immunotherapy response in high- and low-risk
groups. (A)Differential genemutation analysis between high-risk and low-risk

groups, highlighting the top mutated genes and their frequencies. (B) Analysis
of cell stemness (mRNAsi): Left: Correlation between the prognostic model

score and mRNAsi values. Middle: Relationship between the prognostic

model score and mRNAsi expression. Right: Distribution of mRNAsi values
in high-risk and low-risk groups. (C) Microsatellite instability (MSI) analysis,

comparing MSI levels between high-risk and low-risk groups. (D) Tumor
mutational burden (TMB) analysis, showing lower TMB in the high-risk group,

indicating a potential poor response to immunotherapy.
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AUC area under the curve
Frontiers in Immunol
BP biological process
CCK-8 Cell Counting Kit-8
CI Confidence Interval
C-index concordance index
COSG cell-type orientation scoring for genes
DCs dendritic cells
DEGs differentially expressed genes
EMT epithelial–mesenchymal transition
Enet Elastic Network
FBS Fetal Bovine Serum
FDR false discovery rate
GBM Gradient boosting machine
GC gastric cancer
GEO Gene Expression Omnibus
GO Gene Ontology
GSVA gene set variation analysis
H. pylori Helicobacter pylori
IC₅₀ Half-Maximal Inhibitory Concentration
IL6 Interleukin 6
IPS Immunophenoscore
KEGG Kyoto Encyclopedia of Genes and Genomes
KM Kaplan–Meier
LASSO least absolute shrinkage and selection operator
MDSCs myeloid-derived suppressor cells
MMR mismatch repair
mRNAsi mRNA stemness index
MSI microsatellite instability
OD optical density
ogy 20
OR odds ratio
OS overall survival
PCA principal component analysis
PD-1 programmed death-1
PEI polyethylenimine
PGR progesterone receptor
PlsRcox partial least squares regression for Cox
PR progesterone receptor
PTM post-translational modification
PTMs post-translational modifications
PVDF polyvinylidene fluoride
ROC receiver operating characteristic
RS risk score
RSF random survival forest
scRNA-seq single-cell RNA sequencing
SENPs SUMO-special proteases
SHR steroid hormone receptor
SRGs SUMOylation-related genes
ssGSEA single-sample gene set enrichment analysis
STAD stomach adenocarcinoma
SUMOs small ubiquitin-like modifiers
SuperPCs Supervised Principal Components
Survival-SVM survival support vector machine
TCGA-STAD The Cancer Genome Atlas Stomach Adenocarcinoma
TIME tumor immune microenvironment
TMB tumor mutational burden
TME tumor microenvironment
VHL Von Hippel-Lindau
ZAP-70 Zeta-chain-associated Protein Kinase 70.
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