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The coronavirus disease 19 (COVID-19) is a disease caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) that invades lung epithelial

cells and can lead to severe respiratory failure. In this study, we evaluated

whether Clara cell 16 kDa protein (CC16), a serum marker of lung alveolar cell

damage, is predictive for disease severity. Patients suspected of SARS-CoV-2

infection were included in this study. Serum levels of Clara cell 16 kDa protein

(CC16), soluble Fas Ligand, cytochrome C, thymus- and activation regulated

chemokine (TARC) and of oxidate stress related proteins were analyzed. Clinical

patient data were extracted from the Utrecht Patient Oriented Database. COVID-

19 positive patients were divided in two groups according to disease severity. The

mean day difference between COVID-19 diagnosis date and sampling date was

+11 days. Concentrations of TARC were lower in COVID-19 positive versus

COVID-19 negative patients (unpaired t-test, p=0.002). In addition, CC16

serum levels were significantly elevated in sera taken from patients that were

admitted at the intensive care unit (ICU) (p=0.0082). In a matched cohort, sera

taken prior to ICU admission (-3 days) contained higher CC16 levels (paired t-

test, p=0.0072). Multivariable analyses adjusted for known risk factors (age,

gender, blood counts, lactate dehydrogenase, c-reactive protein, underlying

disease) showed that CC16 levels were independently associated to COVID-19

severity (interquartile-range, odds ratio 1.53, p=0.0102). In conclusion, our

findings highlight CC16 as a promising biomarker for early identification of

severe COVID19 cases, which could improve patient management and

resource allocation.
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1 Introduction

Since December 2019, a new pandemic infectious respiratory

disease emerged in China, named coronavirus disease 19 (COVID-

19). The disease is caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). The main target of SARS-CoV-2 is the

respiratory system, mainly invading alveolar epithelial cells. The

majority of patients (80%) develop mild disease, including fever,

cough, and dyspnea as the most prevalent symptoms. Patients that

develop severe disease require oxygen therapy and intensive care unit

(ICU) admission, with respiratory failure from acute respiratory

distress syndrome and/or multi-organ dysfunction (1–3).

Several studies reported a higher age and comorbidities such as

diabetes mellitus, cardiovascular disease, obesity, and chronic lung

diseases (4) as a risk factor for COVID-19 disease severity. Some

immunological markers, like elevated serum levels of interleukin-6

and -10, seemed to be predictive for disease severity. Furthermore, a

positive correlation has been found between elevated C-reactive

protein (CRP) levels and severe disease (4, 5). Lower ferritin, D-

dimer, lactate dehydrogenase (LDH), and aspartate transaminase

have all been associated with a lower mortality risk in patients who

required oxygen therapy (6). Patients with severe and fatal disease

had increased neutrophil counts, and decreased lymphocyte and

platelet counts (5).

Few of these markers are directly linked to lung damage, which

could be a consequence of the infiltration of SARS-CoV-2 inside the

lungs. A literature search was performed to look which markers

could be related to lung injury, and which of these markers had not

yet been studied in the context of COVID-19 disease severity. The

following markers were found to be of interest: Clara cell 16 kDa

protein (CC16), soluble Fas Ligand, cytochrome c, oxidative stress

products, and CCL17 or thymus- and activation-regulated

chemokine (TARC).

CC16 is a secretory protein produced primarily by bronchiolar

club cells, and has extensively been studied as a prognostic

biomarker for epithelial cell damage. Human sino-nasal epithelial

cells also express CC16 (7), and a subset of hematopoietic stem cells

(8), involved in airway epithelial renewal. High CC16 serum

concentrations have been found in patients with acute lung injury

(pulmonary fibrosis) (9) and in critical care patients with acute

respiratory distress syndrome (10). Although few studies have

examined CC16 as a prognostic marker for COVID-19 severity, it

may be associated with worse outcomes (11–13). Furthermore, low
Abbreviations: ARDS, acute respiratory distress syndrome; CC16, club cell

secretory protein; CI, confidence interval; COVID-19, coronavirus disease 19;

CRP, c-reactive protein; ELISA, enzyme linked immunosorbent assay; ICU,

intensive care unit; LDH, lactate dehydrogenase; OR, odds ratio; ROS, reactive

oxygen species; RNS, reactive nitrogen species; RT-PCR, real-time polymerase

chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2;

sFasL, soluble Fas Ligand; TARC, thymus- and activation-regulated chemokine;

UPOD, Utrecht Patient Oriented Database.
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levels of CCL17 or TARC, that plays a role in inflammatory lung

injury, have been identified as a predictive marker to distinguish

mild/moderate COVID-19 disease patients from severe/critical

disease patients (14).

In addition to alveolar damage, one of the hallmarks of a viral

infection, including COVID-19, is the development of oxidative

stress (excessive reactive oxygen species (ROS) and reactive

nitrogen species (RNS) production) (15). For example, oxidative

stress resulted in increased production of sFasL. Increased levels of

sFasL have been found in patients with different pulmonary

diseases, including interstitial lung diseases and fibrotic lung

diseases, and in patients with ARDS (16). Serum sFasL protein

levels were decreased in COVID-19 patients compared to healthy

controls (17, 18). In addition to sFasL, cytochrome c, a 14 kDa

protein, can also be released upon oxidative stress, resulting in

apoptosis. Cytochrome components activity is increased in patients

with ICU-ARDS patients as well as in COVID-19 patients (19).

Given the role of oxidative stress in viral infections and CC16 as

a biomarker for lung damage, this study evaluated CC16, CCL17/

TARC, sFasL, cytochrome C, and ROS/RNS as potential predictors

of COVID-19 severity. To our knowledge, no studies have been

performed investigating whether these biomarkers can be used to

predict a severe disease course.
2 Materials and methods

2.1 Patients

A total of 220 patients suspected positive for SARS-CoV-2 RNA

were enrolled in the study. All patients evaluated for autoimmunity

whom entered the University Medical Center (UMC) Utrecht

between April 2020 and June 2021 were included. If there was no

hospital admission, patients were excluded from the analysis. The

patient cohort is a subgroup of all COVID-19 positive patients who

have been admitted to the UMC Utrecht. Blood samples were

centrifuged for 5 min at 2,000 x g to separate the serum. Residual

biological material was stored at -20°C until further analysis.

Patients without a proven SARS-CoV-2 RNA real-time

polymerase chain reaction (RT-PCR) positive test were defined as

COVID-19 negative patients. Patients with a proven PCR positive

test were categorized into groups according to their ICU admission

status. Patients were either transferred from the ICU of other

facilities (n=6), or admitted to the ICU because of acute

respiratory insufficiency (n=6) or presence of acute respiratory

distress syndrome (n=2). All patients required intubation.
2.2 Ethical approval

The study was approved by the ethics committee for biobanks at

the UMC Utrecht (TCBio; reference number: 21-547, approval date

23 September 2021).
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2.3 Clinical data extraction

For this study data from the Utrecht Patient Oriented Database

(UPOD) were used. UPOD is an infrastructure of relational

databases comprising of data on patient characteristics, hospital

discharge diagnoses, medical procedures, medication orders and

laboratory tests for all patients treated at the University Medical

Center Utrecht (UMC Utrecht) since 2004. UPOD data acquisition

and management is in accordance with current regulations

concerning privacy and ethics. The structure and content of

UPOD have been described in more detail elsewhere (20).
2.4 ELISA procedures

Serum levels of the following markers were determined by

ELISA according to the manufacturer’s instructions: 1) human

cytochrome C (Elabscience, Texas, USA); 2) SCGB1A1/

Uteroglobin (alternative name CC16) (Boster Bio, California,

USA); 3) human FasL (Thermo Fisher Scietific, Massachusetts,

USA); 4) CCL17/TARC (R&D systems, Minneapolis, USA).

Briefly, for cytochrome C and CC16, 100µl of serum was added

to the wells. After 90 minutes incubation at 37°C, the serum was

removed from each well, and 100µl biotinylated detection antibody

was immediately added and incubated for another 60 minutes. For

FasL, precoated microwell strips were washed twice, followed by

addition of 50µl of serum to the wells. Immediately, 50µl of Biotin-

Conjugate was added to the wells, and incubated for 2 hours at

room temperature on a MTS 2/4 digital microtiter shaker (IKA,

Staufen, Germany). For CCL17/TARC, 100µl of Assay Diluent

RD1W was added to the wells, together with 50µl of sample. The

samples were incubated for 2 hours at room temperature. After

washing, conjugate working solution was added and incubated for

30-60 minutes. Unbound conjugate was washed away, followed by

incubation for 10-30 minutes with Substrate Reagent. Finally, Stop

Solution was added. The optical density was measured on a

SpectraMax M3 microplate reader (Molecular Devices LLC,

California, USA) at a wavelength of 450nm.
2.5 ROS/RNS assay

Total ROS and RNS were detected in serum by an OxiSelect in

vitro ROS/RNS assay (Cell Biolabs Inc, California, USA). A

proprietary fluorogenic probe, DCFH-DiOxyO, is primed with a

dequenching reagent to the highly reactive DCFH form. In the

presence of ROS and RNS, the DCFH is rapidly oxidized to the

highly fluorescent DCF. The assay was performed according to

manufacturer’s instructions. Briefly, 50µl of serum was added

together with 50µl of Catalyst. Samples were mixed and incubated

for 5 minutes at room temperature, followed by addition of 100µl of

DCFH solution. This suspension was incubated for 30 minutes in

the dark. Fluorescence was read on a SpectraMax M3 microplate

reader at a wavelength of 480 nm (excitation) and of 530

nm (emission).
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2.6 Statistical analysis

All statistical tests were performed with GraphPad Prism

Software version 9.3 and R version 4.4.0. Differences in patient

characteristics between controls, non ICU admitted and ICU

admitted patients were assessed by the chi-squared test for

categorical variables and the one-way ANOVA test for

continuous variables. Differences in serum titers were assessed via

an unpaired t-test, and differences between matched patients were

assessed via a paired t-test.

To identify CC16 levels as an independent biomarker for

COVID-19 severity, we used an ordered logistic regression model,

fit with the rms R package (version 6.8-0) (21), where CC16 (and

covariates) were regressed on the ordinal COVID severity scale

[hospitalization without oxygen supplementation (n=67),

hospitalization and oxygen supplementation >5 L/min (n=69),

and ICU admission (n=28)]. Odds ratios (OR) were calculated

using the interquartile range. Six missing values (four for LDH; 1 for

lymphocyte count, 1 for neutrophil count) were imputed with their

respective medians. A p-value < 0.05 was considered to be

statistically significant.
3 Results

3.1 Patient cohort

Serum samples were collected of 220 patients suspected of

SARS-CoV-2 infection. Clinical data were not available for 27

patients (no hospitalization), resulting in 193 patients included in

the final data analysis. 20 patients (10%) did not have a proven RT-

PCR COVID-19 positive test result. 11 patients (5.6%) had an

autoimmune disorder. Patients were divided into groups, based on

their ICU admission status. Group one consists of 136 (70%)

hospitalized non-ICU patients, group two of 37 (19.2%)

hospitalized patients who are admitted to the ICU. 9 of these

patients had a serum collection date post ICU admission, and

therefore are excluded from further analysis. The mean difference

in days between COVID-19 diagnosis date and sample collection

date was +10 days (SD ±9) for the non-ICU group, and +12.6 days

(SD ±11) for the ICU group. In the group admitted to the ICU, 14

patients had serum collected at time of ICU admission [mean

difference in days between ICU admission date and sampling date

was +11.9 days (SD ±9.9)], and 14 patients had serum collected

before ICU admission [mean -3.3 days (SD ±3.7)]. 108 patients

were transferred from another facility to the UMCU (31 from

emergency room, 76 from inpatient department, 1 patient

unknown); 11 patients were immediately admitted to the ICU.

Baseline characteristics were compared between groups

(Table 1). The mean age of patients in the COVID-19 positive

group (62.5y) was significantly higher, as well as the percentage of

male patients (58%), compared to patients without infection (49.5y,

and 45%, respectively), both characteristics known to be associated

with COVID-19 disease severity. The length of the hospital stay of

ICU patients was significantly increased (mean 24.9 days)
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compared to non ICU patients (9.5 days). Furthermore, significant

more people died due to COVID-19 infection in the ICU patient

group [9/28 (32%)] compared to the non ICU patient group [7/

136 (5%)].

In the ICU admitted patient group, significantly more people

receive an antiviral therapy (43%, and 13% in the non ICU admitted

group). Lymphocyte cell counts were significantly decreased in the

patients admitted to ICU (0.77 x 109/L) compared to the other

COVID-19 positive patients (1.13 x 109/L. Furthermore, CRP, and

LDH levels were significantly increased in ICU patients (106 mg/L,

and 434 U/L, respectively) compared to patients without ICU

admission (70.7 mg/L, and 328 U/L, respectively).
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3.2 ROS/RNS, Cytochrome C, and sFasL
serum levels were neither detectable nor
correlated to disease severity

Serum concentrations of ROS/RNS, cytochrome C and sFasL

were analyzed in patient samples collected around the time of

COVID-19 diagnosis. Levels of ROS/RNS could be detected in 140/

220 patients. For 22 patients, clinical data were not available,

resulting in detectable levels in 61% of patients (118/193) with

clinical data. Most patients did have levels within the normal range

(1-5µM). We observed no correlation with disease severity

(unpaired t-test). Mean ROS/RNS levels in non-ICU patients was
TABLE 1 Patient demographic and clinical characteristics.

Characteristics Controls (n=20)

COVID-19+ patients

p-valuenon IC (136) IC (n=28)

Age, y, mean ± SD 49.5 ± 17.6 62.3 ± 13.3 62.8 ± 13.6 0.0006a

Sex, male, n (%) 9 (45) 77 (57) 18 (64) 0.4132b

Comorbidities, n (%)

Hypertension 2 (10) 47 (34.6) 11 (39.3) 0.0654b

Diabetes mellitus type II 5 (25) 29 (21.3) 7 (25.0) 0.8707b

Chronic pulmonary diseasec 4 (20) 11 (8.0) 4 (14.3) 0.0625b

Chronic cardiac disease N/A 30 (22.1) 5 (17.9) 0.6212b

Peripheral vascular disease N/A 5 (3.7) 0 (-) 0.3028b

Obesity N/A 40 (29.4) 9 (32.1) 0.7737b

Therapies, n (%)

Tocilizumab 0 19 (14.0) 6 (21.4) 0.0989b

Antiviral agentd N/A 18 (13.2) 12 (42.9) 0.0002b

Blood tests

Lymphocytes, count (x 109)/L, mean
[min-max] 1.27 [0.21-2.85] 1.13 [0.15-3.40] 0.77 [0.12-2.58] 0.0185a

Neutrophils, count (x 109)/L, mean
[min-max] 7.77 [1.98-13.32] 6.72 [0.13-18.6] 6.68 [1.63-20.37] 0.4572a

Platelet, count (x 109)/L, mean [min-max] 307.5 [93.3-669.4] 277.0 [6.24-597.1] 248.7 [4.75-555.0] 0.2693a

Creatinin, µmol/L, mean [min-max] 73.7 [34.0-201.0] 95.9 [37.0-1005.0] 95.0 [36.0-433.0] 0.6482a

C-reactive protein, mg/L, mean [min-max] 79.2 [0.5-276.0] 70.7 [0.5-299.0] 106.0 [0.5-351.0] 0.0445a

Ferritin, µg/L, mean [min-max] 386.8 [26.0-1361.0]
980.1

[34.0-12459.0]
1313.0

[69.0-4073.0] 0.0996a

Lactate dehydrogenase, U/L, mean [min-max] 260.4 [106.0-532.0] 328.0 [76.0-1148.0]
433.9

[145.0-1126.0] 0.0024a

Hemoglobulin, mmol/L, mean [min-max] 12.3 [5.5-16.7] 13.0 [5.6-17.8] 12.8 [8.1-16.3] 0.4019a

Hospital stay, days, mean
± SD 14.7 ± 16.0 9.5 ± 6.9 24.9 ± 12.7 <.0001a

Death, n (%) 1 (5) 7 (5.1) 9 (32.1) <.0001b
aOne-way ANOVA for continuous variables.
bChi-square test for categorical variables.
cChronic pulmonary diseases including chronic obstructive lung disease (COPD), fibrosis, and cystic fibrosis (CF).
dincluding lopinavir/ritonavir, remdisivir, (hydroxy)chloroquine, oseltamivir, and acyclovir.
COVID-19, coronavirus disease 19, ICU, intensive care unit, SD, standard deviation.
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1.89µM, and in ICU patients 2.04µM. COVID-19 negative patients

had comparable levels (mean 1.52µM) (Supplementary Figure 1A).

Cytochrome C levels were below the detection limit in 198/220

patients. In 15 patients with clinical data cytochrome C levels were

detectable, and no clear correlation to disease severity could be

observed (14 patients not admitted, and 1 patient admitted to the

ICU). The COVID-19 negative patients had undetectably low

cytochrome C levels (Supplementary Figure 1B).

For sFasL serum levels, we also hardly obtained measurable

levels. 13/220 patients had levels above the detection limit of the

assay, of which 2 patients had no clinical data, resulting in sFasL

serum concentrations >0.10ng/mL in 8 non-ICU patients, and 3

ICU patients (Supplementary Figure 1C).
3.3 CCL17/TARC and CC16 serum levels
correlated to disease severity

TARC/CCL17 concentrations and CC16 protein levels were

measured in serum samples of 20 patients without and in 173

patients with a proven COVID-19 RT-PCR positive test. Most

serum samples were collected after a proven infection (mean 9.2

days (range -3 till +34 days) after the diagnosis date). We observed

lower TARC/CCL17 concentrations in COVID-19 positive patients

(median serum levels are 124.4 pg/mL in the non ICU admitted

patient group, and 131.7 pg/mL in the ICU admitted patient group)

compared to COVID-19 negative patients (median 301.3 pg/mL)

(Figure 1A, p = 0.002).

CC16 serum levels were significantly (p = 0.0023) elevated in the

patients that are admitted to ICU compared to COVID-19 negative

patients (median 46.15 ng/mL, and 22.47 ng/mL, respectively), and

also compared to patients without ICU admission (p = 0.0082, 23.53

ng/mL) (Figure 1B).

CC16 and TARC/CCL17 levels are not correlated to each other;

patients with high CC16 levels did not have low TARC/CCL17

levels or vice versa (Figure 1C).
3.4 CC16 is an independent biomarker for
COVID-19 severity

To investigate whether CC16 levels can predict severe disease

outcome, we compare concentrations in patients prior to ICU

admission to patients without ICU admission. Patients were

matched for age, gender, comorbidities (hypertension, chronic

pulmonary disease, diabetes mellitus type II, chronic cardiac

disease), and time from COVID-19 diagnosis. Serum CC16

concentrations were significantly higher (p = 0.0072) in patient

samples collected on average 3.3 days before ICU admission

compared to non ICU admitted patients (median [CC16] 40.09

and 14.78 ng/mL, respectively) (Figure 2). Furthermore, CC16 also

seemed to be able to predict the outcome of patients admitted to the

ICU six weeks after hospital discharge. The lowest CC16 levels were

found in patients discharged home (median 32.74 ng/mL), the

median levels in patients hospitalized in medium care or in a
Frontiers in Immunology 05
rehabilitation unit (46.30 ng/mL), and the highest levels in

patients who died after infection (67.11 ng/mL) (Supplementary

Figure 2A). CC16 levels remain high after ICU discharge (median

levels 43.3, Supplementary Figure 2B).

In a univariable ordinal regression model, CC16 levels were

significantly associated with COVID-19 severity (Table 2, OR 1.44,

95% CI 1.06-1.96, interquartile range 14.6-58.1 ng/mL, p = 0.0187).

The multivariable analysis, adjusted for age, gender, levels of CRP,

levels of LDH, blood lymphocyte count, blood neutrophil count,

blood platelet count, presence of underlying diabetes mellitus type

II, chronic pulmonary disease, and hypertension, showed that

serum CC16 levels are also an independent biomarker for

COVID-19 severity, as it remained significant, with a slightly

larger effect size (Table 2, OR 1.53, 95% CI 1.11-2.11, p = 0.0102).

All parameters were not correlated to CC16, and besides CC16, only

LDH levels were significantly associated with COVID-19 severity

(Supplementary Table 1).
4 Discussion

In this study, it has been shown for the first time that serum

levels of CC16, a biomarker for epithelial cell damage, can be used

to rule out a severe COVID-19 illness, e.g. ICU admission. In

addition, CC16 levels seemed to be independently associated with

COVID-19 severity. Furthermore, CCL17/TARC serum levels were

lower in COVID-19 positive patients versus negative patients.

Cytochrome C, sFasL or ROS/RNS serum levels seemed not to be

correlated to disease severity. We found lower lymphocyte cell and

platelet counts in ICU admitted patients, in line with literature (5).

Increased levels of ferritin, CRP and LDH were observed in the

patient group who were admitted to the ICU, compared to the non

ICU admitted patient group. These findings are in line with

previous studies that described the association of these

biomarkers with disease severity (4–6).

CC16 is a biomarker for epithelial cell damage in the lungs.

Patients with inflammation in the bronchial airways tend to have

lower CC16 levels, whereas higher levels were found in patients with

inflammation affecting the alveoli (13). In relation to SARS-CoV-2

infection, Tiezzi et al. (12) demonstrated that CC16 kinetics with

higher serum levels on day 5 compared to day 1 upon

hospitalization may have a predictive value for disease outcome.

Rohmann et al. showed a positive correlation of CC16 serum levels

to disease duration and activity in already severely ill COVID-19

positive as well as in sepsis patients (11). They also found a negative

correlation with platelet count. We did not find such a correlation

(Supplementary Figure 3), possibly due to the larger sample size of

our cohort. Another very small cohort consisting of 7 healthy

controls and 9 severe COVID-19 patients showed decreased

serum CC16 levels in COVID-19. They also found reduced

number of distal bronchiolar club cells, which could explain the

reduced CC16 serum levels (22). In critically ill patients, SARS-

CoV-2 has infected the lower respiratory tract and may cause

alveolar cell damage (23). Patients with inflammatory cell damage

involving the alveolar-capillary barrier, such as fibrosis or ARDS,
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have higher serum levels of CC16. Our results with concomitant

higher levels of CC16 – even prior to the ICU admission – in more

severe patients seemed to reflect alveolar involvement in COVID-19

disease progression. Our study highlighted the role of CC16 as a

promising biomarker to identify severe COVID-19 cases at an

early stage.
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COVID-19 infection has three distinct phases: phase one is the

initial viral replication phase, phase two the inflammatory lung injury

phase, and phase three the post-acute sequelae phase (24). In phase

one, monocytes and macrophages will migrate to the site of

inflammation (lungs), and one of the triggers for monocyte/

macrophage migration is CCL17 or TARC (25). Animal studies
FIGURE 1

Serum concentrations in coronavirus disease 19 (COVID-19) negative patients, and in COVID-19 positive patients without or with intensive care unit
(ICU) admission during hospitalization. COVID-19 positivity was proven by a real-time polymerase chain reaction. Patients were categorized according to
disease severity. Non ICU was defined as no admission to the ICU at any time during their hospital stay; ICU as ICU admission at any time (early, middle
or late during COVID-19 disease activity). Samples were collected prior or around the time of ICU admission. Thymus- and activation-regulated
chemokine (TARC/CCL17) concentrations were measured by ELISA, and values are displayed in pg/mL (median) (A). Clara cell 16 kDa protein (CC16)
concentrations were also measured by ELISA, and values are displayed in ng/mL (median) (B). Differences in serum concentrations between groups were
analyzed with an unpaired t-test (two-tailed). Correlation between serum concentrations of CC16 and TARC (C) was assessed with a Pearson R test
(r2 = 0.002, p=0.5085).
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showed that mice infected with either a rhinovirus or with acute

respiratory syncytial virus have higher levels of CCL17/TARC (26, 27).

For SARS-CoV-2 virus infection, the opposite has been shown in a

relatively small cohort. Low CCL17/TARC levels were a predictive

marker to distinguish mild/moderate COVID-19 disease patients

from severe/critical disease patients (14).

In addition, CCL17/TARC is a biomarker of progression in

several diseases, including atopic dermatitis and asthma, attracting

Th2 cells to the site of inflammation (28, 29). During viral infection

and replication, a displaced Th2 response can result in Th2 cell

infiltrates (30). Moreover, SARS-CoV-2 infected non-human

primates with the most severe disease outcomes were shown to
Frontiers in Immunology 07
have higher CCL17/TARC levels, which were strongly associated

with viral replication (25). However, in the current cohort, we found

decreased CCL17/TARC serum levels in SARS-CoV-2 positive

patients. Others found no difference in plasma CCL17/TARC

levels between SARS-CoV-2 positive and negative patients, but

higher plasma levels in the SARS-CoV-2 positive patients were

correlated to a worser outcome (31). CCL17/TARC does not only

recruit Th2 cells, but can also induce regulatory T cells. It has been

hypothesized that dysfunction of regulatory T cells in the lungs

could induce lung cell damage, and may contribute to the

development of severe illness in SARS-CoV-2 positive patients

(14, 32). More research is needed to understand the role of

CCL17/TARC in COVID-19 disease development.

Viral infection could be accompanied by excessive ROS and RNS

production. In turn, oxidative stress could result in increased

production of soluble sFasL. In COVID-19, sFas/sFasL interactions

could induce hyperinflammation, recruit immune cells, and could

contribute to maintenance of neutrophil activation. sFasL itself

inhibited the interaction between Fas and FasL and thereby

blocked apoptosis (17, 33). In our study, we hardly detected sFasL

concentrations in patient serum samples. Viral infected cells could

evade apoptosis induced by cytotoxic T cells by upregulating FasL

(34). On the other hand, increased apoptosis of CD4 and CD8 T cells

from COVID-19 patients is correlated to increased FasL expression

on T cells (35). Whether this observation is accompanied with lower

Fas expression on cells is not known, nor whether it is associated

with cellular apoptosis, which is a limitation of the study.

In addition to sFasL serum levels, we could detect cytochrome C

levels in only a few COVID-19 patients. Literature has shown that

the activity of cytochrome components is increased in COVID-19.

We did not measure sFasL nor cytochrome C levels consecutively

over time. It may be that the sampling time, i.e. for most patients a

few days after the proven COVID-19 diagnosis date, is the reason

that sFasL or cytochrome C serum concentrations were below the

detection limit of the assay.

Serum CC16 levels in COVID-19+ patients were measured at a

single time point, around the moment patients were hospitalized for

COVID-19 infection. It could be that some patients in the non ICU

admitted group may actually belong to the severe group (requiring

ICU admission), but weren’t admitted due to space constraints or

discussed policy that no ICU admission is desired. Furthermore, the

patient cohort consisted of a specific group of patients (suspicion of

autoimmunity), which could limit its generalizability, as there is

some evidence that patients with pre-existing autoimmunity were

more likely to have a severe disease course (36). Despite those

limitations, our data show that CC16 positively correlates with

disease severity, and that CC16 – besides LDH – was a significant

predictor of the entire COVID-19 severity scale. In addition to

CC16, other lung injury markers such as surfactant protein D, or

vascular permeability markers, are known to be increased in

patients with COVID-19 (37, 38). We did not include these

markers in our analyses, which could potentially confound the

data. Future studies should validate these findings in larger,

multicenter cohorts and assess the impact of demographic and

comorbid conditions on CC16 levels.
TABLE 2 Uni- and multivariable analyses of the effect of CC16 serum
levels on COVID-19 severity.

Odds ratio 95% CI p-value

Univariate 1.44 1.06-1.96 0.0187

Multivariable 1.53 1.11-2.11 0.0102
In this multivariable analysis we evaluated the effect of the presence of serum CC16 levels on
COVID-19 severity. We adjusted for differences in the following covariates: age, sex, levels of
c-reactive protein, levels of lactate dehydrogenase, blood lymphocyte count, blood neutrophil
count, blood platelet count, presence of underlying diabetes mellitus type II, underlying
chronic pulmonary disease including chronic obstructive lung disease, fibrosis and cystic
fibrosis, and underlying hypertension. CC16, club cell secretory protein; COVID-19,
coronavirus disease 19; CI, confidence interval.
FIGURE 2

Serum Clara cell 16 kDa protein (CC16) concentrations in coronavirus
disease 19 (COVID-19) positive patients collected prior to the intensive
care unit (ICU) admission and in matched controls. Patients were
matched for age, gender, comorbidities (hypertension, chronic pulmonary
disease, diabetes mellitus type II, and chronic cardiac disease), and time
between COVID-19 diagnosis and sample collection. CC16 levels were
measured by ELISA, and values are displayed in ng/mL. Differences
between groups were analyzed with a paired t-test (two-tailed).
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In conclusion, our study showed for the first time using a

regression model, the potential of serum CC16 as a biomarker to

distinguish ICU admitted from non ICU admitted patients in

COVID-19 disease.
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