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Introduction: Rheumatoid arthritis (RA) primarily affects the joints but can also

affect multiple organs and profoundly impacts patients’ ability to carry out daily

activities, mental health, and life expectancy. Current treatments for RA are

limited in terms of duration, efficacy, and adverse effects. PD-L1 is a checkpoint

protein that plays important roles in immune regulation and has been implicated

in the initiation and progression of multiple autoimmune diseases.

Method: In a previous study, we demonstrated that intra-articular injection with

adeno-associated virus (AAV) vectors encoding wild type PD-L1 improved local

inflammation in the joint in the collagen-induced arthritis (CIA) mouse model of

RA. To further improve efficacy, we explored AAV-mediated delivery of the

soluble PD-L1 (sPD-L1) to CIA mice.

Result: After intra-articular injection of AAV6 vectors expressing the optimal

isoform of sPD-L1 (shPD-L1), more potency was observed when compared to

wild type PD-L1, with a lower dose of AAV6/shPD-L1 needed for arthritis

improvement. To study the therapeutic effect of systemic expression of sPD-

L1, we administered AAV8/shPD-L1 gene therapy in CIA mice via retro-orbital

injection and found significant improvements in joint inflammation and paw

swelling, exhibiting similar phenotypes to that in naïve mice. The levels of total

immunoglobulin and anti-collagen specific antibodies were lower in AAV8/

shPD-L1 treated CIA mice than those in controls. The levels of pro-

inflammatory cytokines in blood were also significantly decreased in shPD-L1

treated mice. Additionally, T cell apoptosis rates in the spleen showed a 2-fold

increase in treated mice. Finally, we investigated the therapeutic effect of AAV/

shPD-L1 via intramuscular injection. After injection of AAV6/shPD-L1, decreased

paw swelling, reduced joint inflammation, and lower levels of pro-inflammatory

cytokines in blood were achieved. The therapeutic effect of shPD-L1 was dose

dependent via intramuscular treatment with AAV vectors.

Conclusion: In conclusion, the findings in this study suggest that intra-articular

injection of AAV vectors encoding sPD-L1 results in greater therapeutic benefit
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on arthritis, and systemic AAV/sPD-L1 is able to block the development of

inflammatory arthritis with inhibition of the systemic immune response,

underlining the potential of gene therapy with systemic delivery of shPD-L1 via

AAV vectors in RA.
KEYWORDS
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Introduction

Rheumatoid arthritis (RA) is a complex autoimmune disease

primarily characterized by the accumulation of autoantibodies,

cytokines, and immune cells into the joint synovium (1).

Subsequent joint destruction can lead to decreased quality of life,

disability, and early mortality. As RA affects approximately 1% of

individuals worldwide, sustained efforts to advance RA treatment

regimens are important for mitigating the considerable societal and

economic burdens of disease.

One important category of drugs used in the treatment of RA is

disease-modifying antirheumatic drugs (DMARDs) (2–5).

Biological DMARDs (biologics) have emerged as a promising

alternative to conventional synthetic DMARDs for the treatment

of inflammatory arthritis such as rheumatoid and psoriatic arthritis.

Biologics target specific inflammatory molecules or pathways (3),

including interleukins, TNF-a (6), and B-cell and T-cell survival

and activity (7, 8).

However, these treatments typically require repeat dosing and

frequent administration and often result in unsatisfactory

outcomes (9–11). Compared to protein therapy or traditional

pharmaceutical drugs, gene therapy with adeno-associated virus

(AAV) is a promising candidate for addressing the short duration

of biologic protein-based therapies, as it can provide long-term

expression of the packaged therapeutic genes after just a single

dose of administration. In particular, the salient role of immune

cell dysfunction in RA pathogenesis indicates the programmed

cell death protein-1 (PD1)/programmed death-ligand 1 (PD-L1)

axis is an attractive candidate for gene therapy given that the

binding of PD-L1 to the PD1 receptor on lymphocytes results in

immune cell suppression (12).

In a previous study, we used AAV-delivered wild type PD-L1

for local RA treatment, with expression being confined to the knee

joint. Prophylactic and therapeutic intra-articular injections showed

efficiency in preventing and blocking arthritis progression,

respectively (13). However, the effects were limited, partly due to

the relatively low number of transduced cells and the use of wild

type PD-L1 with the transmembrane domain. Soluble proteins,

such as cytokines, antibodies, and peptides, are commonly used for

preventing or treating systemic diseases (14). Part of their appeal is

that soluble proteins occupy a larger range of biomedical
02
applications than insoluble proteins, with multiple approaches

and routes having been explored (15). Gong, et al. demonstrated

the strong affinities of soluble PD-L1 variants with PD1, with a

small number being able to block the effects from PD-L1 targeting

therapies – suggesting the potential physiological role of these

isoforms as decoy targets (16). Similarly, Sagawa, et al. reported a

different soluble splicing variant, PDL1–vInt4. Although no

immunosuppressing function was detected, results suggested its

role as a decoy for PD-L1, offering a potential mechanism for

cancerous resistance to anti-PD-L1 treatment (17).

In this study, we cloned three soluble PD-L1(sPD-L1) variants by

modifying sequences in the transmembrane domain and found the

shPD-L1 variant displayed the most potent immunosuppressive effects.

We then investigated shPD-L1 for AAV vector-mediated gene delivery

via various administration routes. Our results showed that both local

intra-articular and systemic expression of sPD-L1 could block the

progression of arthritis in a collagen-induced arthritis (CIA) mouse

model. The expression of sPD-L1 alleviated paw swelling and

inflammation by decreasing pro-inflammatory cytokine production

as well as regulating the levels of autoantibody production.
Results

Soluble PD-L1 showed higher transgene
expression and efficiency compared to wild
type PD-L1 in CIA mice treated with intra-
articular injection of AAV vectors

We aimed to develop a soluble PD-L1 variant that might be

more advantageous due to its ability to be secreted by any

transduced cells in the joint and would be effective across a wider

range of cell types compared to the wild type non-secretory PD-L1.

Soluble variants of PD-L1 are isoforms of the ligand that are

exported extracellularly, rather than being expressed on the cell

surface like the wild type form, through processes such as extrusion

into extracellular spaces and blood. Soluble PD-L1 can be generated

either by proteolysis or alternative mRNA splicing (18), with

variants reported in tumor patients (17). For instance, as reported

in Gong, et al. (16), these splicing variants appear to have mutations

in the transmembrane domain that allow for secretion.
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In order to enhance transgene secretion, we synthesized and

cloned three distinct PD-L1 variants with alterations in their

transmembrane domain: shPD-L1, hPD-L1, and sec PD-L1

(Supplementary Data). Each variant incorporated a His-tag at the

C-terminus for detection purposes. The three variant sequences

were transfected into HEK-293 cells, and after 48 hours, expression

of the three PD-L1 variants was analyzed using an anti-His-tag

antibody. The shPD-L1 variant was successfully secreted as

indicated by its expression in both the supernatant and cell

lysates, compared to the other two variants, which were only

detected in cell lysates (Figure 1A). To test the efficacy of shPD-

L1, we conducted T cell functional assays by analyzing the effect on

T cell proliferation in vitro. Incubation with shPD-L1 resulted in a

significant decrease in T cell proliferation compared to incubation

with FBS (Figure 1B). We also compared T cell proliferation in cells

incubated with equal amounts of shPD-L1 and PD-L1 molecules

and observed no significant difference between the two groups

(Figure 1B). Moreover, compared to the wild type PD-L1, the total

expression level of shPD-L1 in HEK-293 cells was observed to be

approximately 7 times higher (Figures 1C–E).

Subsequently, shPD-L1 was packaged into AAV6-shPD-L1 for

in vivo studies (Figure 2A). To compare the efficiency of shPD-L1

and PD-L1, we carried out a dose-response study via intra-articular

injection in the CIA mouse model, using doses ranging from 5x109

to 5x104 vector genome (vg) with 10-fold serial dilutions, each

group contained five mice. The results revealed that shPD-L1
Frontiers in Immunology 03
maintained its therapeutic efficacy at a lower dose in comparison

to wild type PD-L1. Specifically, AAV6-PD-L1 lost its ability to

mitigate arthritis when the dose decreased to 5x107 vg, whereas

shPD-L1 continued to show efficacy (p <0.05) (Figures 2B, C).

These findings underscored the enhanced potency of shPD-L1 over

wild type PD-L1.
Local shPD-L1 from intra-articular injection
of AAV vectors did not impact the systemic
immune response

To examine if shPD-L1 leaked into the blood stream post intra-

articular AAV administration, we tested the shPD-L1 levels in

serum using an anti-his tag ELISA kit and found that the shPD-

L1 protein was not detected (data not shown). This is also consistent

with the finding that overall paw swelling symptoms remain, with

no significant difference compared to untreated CIA mice

(Supplementary Data). We also analyzed the T cell composition

in spleen cells by staining for CD4+ and CD8+ positive cells. No

significant differences were observed between the groups

(Supplementary Data). Further, we evaluated the impact on the

systemic autoimmunity by examining the anti-collagen II antibody

levels. Similar to the control treated CIA mice, the anti-collagen II

antibody levels in serum were not altered by intra-articular shPD-

L1 treatment (Supplementary Data).
FIGURE 1

Detection of shPD-L1 secretion and functional activity in vitro. (A) Western blot analysis (n=3) for soluble PD‐L1 protein expression. 48h after
transfection of pTR/CBh-shPD-L1, pTR/CBh-hPD-L1, pTR/CBh-secPD-L1or pTR/CBh-GFP into HEK-293 cell lines, the supernatant and cell lysate
were collected for detection of soluble PD-L1 expression by western blot with antibodies against His tag. a, supernatant, b, cell lysate. (B) T cell
proliferation rate. Purified splenic T cells were stained with CellTrace Violet dye, then co-cultured with FBS, positive control or shPD-L1 in the
presence of anti-CD3/anti-CD28 for 72h. The proliferation of positively stained cells(n=3) was analyzed with flow cytometry. Data were analyzed
using one-way ANOVA followed by Bonferroni multiple comparison test for group comparisons. *p < 0.05. (C) Western blot analysis for protein
expression of shPD-L1 and wild type PD-L1. a, supernatant, b, cell lysate. (D) Western blot analysis for total protein expression in both supernatant
and cell lysates of shPD-L1 and PD-L1. c, a total mixture of supernatant and cell lysate. (E) The ratio of total protein expression level (n=5) of shPD-
L1 to wild type PD-L1.
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Improved joint inflammation and paw
swelling of CIA mice intravenously treated
with AAV8/shPD-L1

Given that PD-L1 is an immunoinhibitory protein, its systemic

introduction into the context of RA could lead to two potential

outcomes: it might alleviate symptoms on a systemic level, or it

could introduce adverse effects, including immune dysfunction,

among others. To assess the systemic impact on immunity of shPD-

L1, we administered AAV8 vectors encoding shPD-L1 (AAV8/shPD-

L1) or luciferase as a control (AAV8/luc) to CIA mice via intravenous

injections. We choose AAV8 due to the superior liver-directed

transduction efficiency of AAV8 relative to other AAV serotypes (19).

First, we studied the clinical manifestation of RA in CIA mice.

2x1011vg of AAV8/shPD-L1 vectors were intravenously administered

to the mice two weeks prior to CIA induction (Figures 3A). CIA mice

treated with AAV8/shPD-L1 showed similar clinical scores, evaluated

by visually assessing paw swelling, to naïve mice and exhibited around

4-fold less redness and paw swelling when compared to CIA AAV8/luc

control mice (2.4 ± 1.4 vs 10.7 ± 2.2) (p <0.05) (Figures 3B, C). After

7w, mice were sacrificed, and the knee joints were collected and stained

with hematoxylin and eosin (H&E). The results showed around 5-fold

less inflammation (1.8 ± 1.4 vs 9.9 ± 1.3) (p <0.05) in the H&E stains

from shPD-L1 treated mice (Figures 3D, E) compared to CIA

control mice.

The protein levels of shPD-L1 in the blood were examined at

week 3 and week 7 post injection and were 422.8 ± 144.5 ng/mL at
Frontiers in Immunology 04
week 3 and 330 ± 160.8 ng/mL at week 7. No significant difference

was observed in the average protein levels between week 3 and week 7

and no PD-L1 was detected in the AAV8/luc mice (Figure 4A) (20).

Interestingly, the body weights of the mice in each group exhibited a

distinct trend. The CIA control mice without shPD-L1 showed a

significant decrease in body weight (%) (-4.2 ± 5.0), while the treated

group showed a slight increase in body weight (4.9 ± 5.0), and the

naïve mice showed a significant increase in body weight (19.0 ± 11.5)

(Figure 4B). These data manifested that intravenous AAV

administration affected clinical symptoms, including body weight,

paw swelling, and joint inflammation.
Decreased levels of total IgG and collagen-
specific IgG in CIA mice intravenously
injected with AAV8/shPD-L1

In terms of the total mouse IgG level, control CIA mice treated

with AAV8/luc showed significantly higher IgG levels,

approximately 1.5-fold higher than CIA mice intravenously

treated with AAV8/shPD-L1, and 4-fold higher than naïve mice

(7.9 ± 1.88mg/ml vs 5.6 ± 1.38mg/ml vs 1.7 ± 0.8mg/ml)

(Figure 4C). Moreover, we also analyzed the levels of anti-

collagen antibodies. In naïve mice, no antibodies were detected.

By week 7, we observed a 2-3-fold lower anti-collagen antibody level

in CIA mice with AAV8/shPD-L1 treatment compared to those

without treatment (1.2x106 ± 9.1x105 vs 3.8 x106 ± 1.6 x106)
FIGURE 2

shPD-L1 showed a higher efficacy in alleviating joint inflammation than PD-L1 in CIA mice. (A) Diagram of mouse injections. Mice underwent primary
immunization and intraarticular injection simultaneously on day 0. Booster injections were performed on day 21, and mice were sacrificed on day
49. (B) Joint histology analysis with H&E staining. Representative images of H&E staining from the CIA mouse knees intraarticularly injected with 5e7
vg of AAV6/shPD-L1, AAV6/PD-L1, AAV6/luc, or naïve mice at week 7 are shown (n=5, bar=200mm). (C) The knee joint histological score (n=5).
Different doses of AAV6/shPD-L1 or AAV6/PD-L1 were injected into the knees of CIA mice on day 0. On the same day, the primary immunization
with type II collagen was applied, and on day 21, the booster immunization was applied. At week 7, joints were collected for histology analysis.
Histopathological evaluation was performed and scored by two independent observers for the following changes: synovial hyperplasia, leukocyte
infiltration, pannus formation, and cartilage necrosis/erosion. Data are represented as means ± SEM. Data were analyzed using two-tailed unpaired
Student’s t test. *p < 0.05.
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(p<0.05) (Figure 4D). This evidence indicated that intravenous

AAV administration altered the systemic antibody profiles.
Reduced cytokine levels in serum from CIA
mice intravenously injected with AAV8/
shPD-L1

Seven weeks after CIA induction, serum from mice injected

with AAV8/shPD-L1, AAV8/luc, and naïve mice were collected and

the levels of IL-1a, IL-6, IL-17, IL-10, and TNF-a were measured.

Compared to those treated with shPD-L1, the levels of IL-1a in CIA

AAV8/luc treated mice were found to be 2.5-fold higher (126.3 ±

60.5 vs 257 ± 49.1), IL-6 8-fold higher (14.3 ± 10.6 vs 93.5± 51.0),

IL-17 4-fold higher (1.8 ± 1.1vs 7.1 ± 5.5), and TNF-a 3-fold higher

(5.6 ± 2.9 vs 15.9 ± 6.5). However, there was no significant

difference in the level of IL-10 between these groups (Figure 5).
Intravenous injection with AAV8/shPD-L1
altered immune cell profile in the spleen of
CIA mice

Since shPD-L1 is a potential immunosuppressant, we further

analyzed the systemic immune response following shPD-L1
Frontiers in Immunology 05
injection. We specifically focused on the spleen as it is one of the

largest and most important lymphoid tissues in the body. We

observed that spleen sizes were the largest in control treated CIA

mice, followed by CIA mice treated with shPD-L1, and then naïve

mice (Figures 6A, B). Additionally, levels of Th2 (%) (11.2 ± 1.6 vs

7.9 ± 1.3) and Th17 cells (%) (11.0 ± 2.3 vs 7.3 ± 1.6) were found

to be higher in CIA mice (Figure 6C) compared to naïve mice

(p <0.05). There was no observed difference in B cell percentages,

with a positive rate of around 60% in each group (Figure 6D). We

further assessed the apoptosis rate of T cells in the spleen among

those groups and found that the T cell apoptosis rate (%) was also 2-

fold higher in mice treated with shPD-L1(30.2± 9.7) compared to

CIA mice without treatment (11.9 ± 2.0) and naïve mice (13.6 ± 1.5)

(Figures 6E, F). This finding further demonstrated that shPD-L1

could induce the immune cell apoptosis thus decrease the activated

immune cells systemically.
Intramuscular injection with AAV6/shPD-L1
improved overall symptoms and
corresponding biomarkers in CIA mice

One concern with intravenous delivery of shPD-L1 is its

potential overexpression in the liver. The high expression of

shPD-L1 in the liver might cause liver toxicity and immune
FIGURE 3

Joint histology and paw swelling of CIA mice intravenously treated with AAV8/shPD-L1. (A) Diagram of mouse injections. Mice were injected intravenously
via the retro-orbital vein 2 weeks prior to primary immunization on day 0, and booster injections were performed on day 21. Sacrifice was performed on day
49. (B) The representative images of mice with swollen paws. The leftmost picture was CIA mice intravenously injected with AAV8/luc, the middle picture
was CIA mouse intravenously injected with AAV8/shPD-L1, the rightmost picture was naïve mouse. (C) Paw score of mice treated with AAV8/shPD-L1(n=10),
AAV8/luc(n=10), and naïve mice(n=5). The paw swelling score was assessed independently by two observers, with each of the four paws receiving a score
ranging from 0 to 4. The total score for each mouse was calculated by summing the individual paw scores. Data were analyzed using one-way ANOVA
followed by Bonferroni multiple comparison test for group comparisons.****, p < 0.001 (D) Joint histology analysis with H&E staining. Representative images
of H&E staining from the CIA mouse knees intravenously injected with 2e11 vg of AAV8/shPD-L1, CIA+AAV8/luc, or naïve mice at week 7 are shown (a-c,
bar=200mm; d-f, bar=20mm). (E) Histological scores of CIA mice intravenously injected with AAV8/shPD-L1 (n=10), AAV8/luc (n=10), and naïve mice (n=5).
Data were analyzed using one-way ANOVA followed by Bonferroni multiple comparison test for group comparisons.****, p < 0.001.
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suppression, which further facilitates infections and even

tumorigenesis (21).

Based on our in vivo imaging, we used both AAV6/luc and

AAV8/luc for systemic delivery. We found that the luciferase signal

from intravenously delivered AAV8 primarily localized to the liver,

whereas intramuscularly injected AAV6 remained mainly at the

injection site (Supplementary Data). Therefore, we explored

systemic treatment via intramuscular injection (IM) using AAV6,

as it is the most effective serotype for muscle transduction and less

liver transduction (22) (Figure 7A). We administrated the AAV6/

shPD-L1 vector to the mice intramuscularly in both legs at a dose of

2x1011 vg/mice in a total volume of 100 µL. Throughout our

observation period, we detected that the protein levels in injected

mice sera remained over 200 ng/mL (Figure 7B). The body weight

changes (%) in AAV6/shPD-L1 treated CIA mice, AAV6/luc

treated CIA mice, and naïve mice were 7.8 ± 5.9, -8.2 ± 2.3, and

19.0 ± 11.5, respectively (Figure 7C). There was around a 50%

improvement in paw swelling (Figure 7D) and joint histology

(Figure 7E) as well as the decline of antibodies and inflammatory

cytokine levels (Supplementary Data). This delivery method also

conveys an advantage of negligible genome expression in the liver
Frontiers in Immunology 06
(data not shown), compared to intravenous injection which results

in strong gene expression in the liver.

We further compared the dose response of intramuscular

treatment with six doses of 2x1011, 6x1010, 1.5x1010, 4x109, 1x109,

and 0 vg, with a total volume of 100 µL in each mouse, five mice were

included in each dose group. Seven weeks after CIA induction, the paw

swelling in eachmouse was scored independently by two observers and

averaged. Our finding indicates a dose-dependent effect. Specifically,

the highest dose, 2e11vg, partly mitigated the paw swelling (5.4 ± 1.1 vs

10 ± 2.0) and joint inflammation (4.9 ± 1.4 vs 9.3 ± 0.8) compared to

AAV6/luc treated mice (p <0.05), whereas the lower doses failed to

produce any improvement with no significant difference between those

groups and control treated mice (Figure 7D). Based on the dose-

response analysis, intramuscular injection appears to be a safer option;

however, its efficiency may still require further optimization.
Discussion

RA is a complex systemic autoimmune disorder that primarily

targets the joints. Various biologic treatments have been explored
FIGURE 4

Overall symptoms and corresponding antibody levels in CIA mice intravenously injected with AAV8/shPD-L1. (A) Protein level of shPD-L1 in the
serum of mice at 3- and 7-weeks post-injection (n=6). Data were analyzed using two-tailed unpaired Student’s t test. (B) Body weight changes from
0w to 7w between CIA mice intravenously injected with AAV8/shPD-L1(n=10), AAV8/luc(n=10), and naïve mice(n=4). (C) Total mouse IgG level
between CIA mice intravenously injected with AAV8/shPD-L1(n=6), AAV8/luc(n=6), and naïve mice(n=5). (D) Anti-collagen II antibody level between
CIA mice intravenously injected with AAV8/shPD-L1(n=6), AAV8/luc(n=5), and naïve mice(n=3). Data from panels (A–D) were analyzed using one-
way ANOVA followed by Bonferroni multiple comparison test for group comparisons. *p < 0.05, **p < 0.01, ****p < 0.001.
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and face challenges in maintaining drug pharmacokinetics and

stabilizing protein or chemical concentrations within the joint,

including intra-articular delivery (23). Compared to those

treatments, gene therapy with AAV vectors offers sustainable

potency while maintaining a favorable safety profile (23).

Previously, we explored the intra-articular injection of AAV

encoding wild type PD-L1, which provided partial relief from

arthritis and locally blocked immune cell infiltration (13). In the

present study, we engineered a soluble PD-L1 variant (shPD-L1)

with strong secretion capability that exhibited greater efficacy than

wild type PD-L1 when administered at the same dose via intra-

articular injection. We also demonstrated the therapeutic effect of

systemic expression of shPD-L1 by delivering AAV vectors

encoding shPD-L1 via intravenous and intramuscular routes.

Specifically, intravenous injection nearly restored inflammation to

naïve phenotype levels, and intramuscular injection also resulted in

therapeutic benefits in the overall findings of inflammatory arthritis.

Intra-articular injection has been a common route of gene delivery

for local gene therapy in arthritis due to precise effects with fewer

adverse events. Several serotypes, including AAV5 and AAV6 (24),

among others, have been used as viral vectors to deliver transgenes

intraarticularly, as they demonstrated limited liver transduction and
Frontiers in Immunology 07
ideal transduction in the joint (25, 26) when compared to other AAV

serotypes. In our study, similar to the results from previous reports

using AAV5 (27), shPD-L1 expression via intra-articular injection was

exclusively detected in AAV6 vector-transduced joints. This study

demonstrated that shPD-L1 effectively blocked immune cell

infiltration and decreased inflammation in the arthritic knee joints

following local injection. It is worth noting that the collagen antibody

titers in serum were not altered, and shPD-L1 protein expression in

serumwas not detected (data not shown). These results further support

the conclusion that the effects of shPD-L1 from AAV vector intra-

articular injection were confined within the local joint area and indicate

a good safety profile for intra-articular injection of AAV vectors for

arthritis treatment.

However, intra-articular injection also faces some challenges.

One limitation is their limited ability in treating multiple joints

simultaneously with one single intra-articular injection. Though

some patients exhibit arthritis in only one or a few joints or at the

least a flare in only one joint, polyarthritis is still the most common

presentation in various inflammatory joint-related disorders such as

RA. Additionally, RA is a systemic disease characterized by

circulating auto-antibodies and activated immune cells in the

systemic circulation. Other tissues besides articular joints such as
FIGURE 5

Cytokine levels in serum from mice intravenously injected with AAV8/shPD-L1. 7w after CIA induction, serum from mice injected with AAV8/shPD-L1
(n=5), AAV8/luc (n=7), and naïve mice (n=4) were collected, IL-1a (A), IL-6 (B), IL-17 (C), IL-10 (D), and TNF-a (E) were detected using cytokine
multiplex kit. Data were analyzed using one-way ANOVA followed by Bonferroni multiple comparison test for group comparisons. *p < 0.05,
**p < 0.01, **** p < 0.001.
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the lungs and heart are also involved in 10-20% of RA patients.

Intra-articular administration of AAV vectors can effectively block

lymphocytes in the joints, however, local PD-L1 expression is not

able to prevent circulating antibodies from migrating into the

synovial fluid to induce joint damage, then diminishing the

treatment’s overall efficacy.

To overcome the shortcomings of intra-articular injection, we

further explored the therapeutic effect of systemic expression of

shPD-L1 from AAV gene therapy in CIA mice. The common routes

for systemic delivery are intravenous injection (IV) and

intramuscular injection (IM). Among them for AAV delivery,

intravenous injection has been shown to provide a rapid onset of

expression and a broad distribution of targeted genes based on AAV

serotypes, as the AAV vector can circulate in the blood, access the

central compartment, and effectively bypass the digestive system

(28). In our study, intravenous injection of AAV8/shPD-L1 vectors

induced a high efficacy with improvements in joint histology and

paw scores in CIA mice, almost reaching that in the naïve mouse,

along with a significant drop in pro-inflammatory cytokine and

auto-antibody levels in sera. The spleen also showed a significant

increase in T cell apoptosis rate. These results indicate that

intravenous injection altered the systemic immune response,

impacting the overall systemic inflammation.

Based on the results from clinical trials, liver targeting by IV

administered AAV raises several safety concerns. When administered

systemically, AAV vectors tend to accumulate in the liver due to its

high blood flow (29). Liver toxicity has been reported in 30-50% of
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patients, with some cases resulting in fatal outcomes (30). Therefore, we

explored an alternative approach for systemic transgene expression via

intramuscular administration of AAV vectors. Compared to IV, the IM

route was a more feasible and less invasive route (31–33). This method

effectively transduces muscle cells and when secretory proteins are

used, as in this study, the secreted proteins can be effectively distributed

into the bloodstream. The IM route has been successfully employed in

treating various diseases in preclinical studies, such as hemophilia and

metabolic diseases (34). However, a disadvantage of IM was lower

transgene expression compared to IV. In our study, shPD-L1 levels in

the blood from IM were approximately 50% lower than that from IV,

leading to reduced efficacy. This indicates the necessity to explore

effective strategies to enhance shPD-L1, for example, optimization of

the shPD-L1 codon, utilization of strong promoters, or engineering

AAV capsid for high muscle tropism. Another strategy could be to

inject in multiple sites or muscles, since one muscle injection of AAV

vectors at a high dose may lead to saturation of protein expression.

Additionally, combining shPD-L1 with another type of inhibitory

protein, such as CTLA4, could potentially enhance the

treatment’s efficacy.

In this study, systemic expression of shPD-L1 impacts systemic

immune responses. The antibody levels in sera, including both total

IgG and anti-collagen II, were 2-3-fold lower in treated mice than that

in control CIA mice without treatment. Interestingly, the arthritic

symptoms in mice treated with IV AAV8/shPD-L1 were similar to

the phenotype in naïve mice, but the antibody levels including total

IgG and collagen-specific IgG in treated mice remained significantly
FIGURE 6

Intravenous injections with AAV8/shPD-L1 altered immune cell profile in spleen. (A) Representative image of size comparison of spleens. a, CIA+I.V.
AAV8/luc, b, CIA+I.V. AAV8/shPD-L1, c, naïve. (B) Quantification of spleen size(n=5). (C) the percentages of T cell subsets between CIA mice
intravenously injected with AAV8/shPD-L1, AAV8/luc, and naïve mice(n=3). (D) CD19+ cells percentage between CIA mice intravenously injected
with AAV8/shPD-L1, AAV8/luc, and naïve mice(n=3). (E) Apoptosis rate of T cells between CIA mice intravenously injected with AAV8/shPD-L1,
AAV8/luc, and naïve mice. (F) Summary of apoptosis in spleen (n=3). Apoptosis rates per group were determined by gating for the shift in the
Annexin V-positive population in the flow cytometry histograms. Data from panels (B, C, D, F) were analyzed using one-way ANOVA followed by
Bonferroni multiple comparison test for group comparisons. *p < 0.05, **p < 0.01, ***p < 0.005.
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higher than those in the naïve mice. This implies that partially

blocking the inflammation and immune response may be sufficient

to manage the disease and improve the symptoms. This finding is

consistent with reports that some patients in the early phase show

biomarker upregulation without displaying symptoms. Among the

cytokines we observed, the most significant difference was observed

in TNF-a and IL-6 levels although all of the proinflammatory

cytokines were significantly decreased in mice treated with IM and

IV shPD-L1 compared to control treated mice. These two cytokines

have already been largely reported and established as important single

pharmaceutical targets (35). Due to limited resources, we did not

investigate other immune cells besides B cells and T cells, such as

macrophages, neutrophils, and monocytes. However, it is possible

that shPD-L1 treatment may have also affected these other immune

cell populations. The reduction in both antibodies and cytokines

was more pronounced in the CIA mice receiving IV when compared

to IM (Supplementary Data), closely related to phenotypic correction
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of arthritis. One direct factor contributing to this difference is the level

of shPD-L1 expression. Another potential reason may be due to

locally high PD-L1 expression from liver targeting of AAV vectors

and high volume of blood that will provide more opportunity for

interaction of shPD-L1 and immune cells and then execute a greater

potential to regulate an immune response. While an appropriate

amount of PD-L1 can effectively inhibit excessive inflammation,

excessive PD-L1 could contribute to immune evasion, potentially

leading to tumorigenesis (36). In our study, we did not observe any

significant abnormalities or tumor growth in the liver, spleen, heart,

lung, kidney, or intestine. However, it is crucial to monitor the

immune status and minimize the risk of tumorigenesis. The

strategies include determining the optimal PD-L1 dose to balance

immune stimulation and suppression, localizing PD-L1 expression to

the desired tissue and reducing PD-L1 levels in the liver and other

tumor-prone organs using tissue-specific promoters or modified

AAV capsids. Additionally, using an inducible promoter for PD-L1
FIGURE 7

Effects of intramuscularly injected AAV6/shPD-L1 in CIA mice. (A) Diagram of mouse injections. Mice were injected intramuscularly 2 weeks prior to
primary immunization on day 0. Booster injections were performed on day 21, and mice were sacrificed on day 49. (B) Protein level of shPD-L1 in mice
serum at 3w and 7w(n=4). Mice were injected with 2e11vg of AAV6/shPD-L1 or AAV6/luc, and serum was collected at 3w and 7w. Data were analyzed
using two-tailed unpaired Student’s t test. (C) Body weight change between CIA mice intramuscularly injected with AAV6/shPD-L1(n=5), AAV6/luc(n=4),
and naïve mice(n=4). (D) Paw score of mice treated with different doses (n=5) of AAV6/shPD-L1, AAV6/luc, and naïve mice. (E) Histological scores of CIA
mice intramuscularly injected with AAV6/shPD-L1(n=5), AAV6/luc(n=4), and naïve mice(n=4). Data from panels (B-D) were analyzed using one-way
ANOVA followed by Bonferroni multiple comparison test for group comparisons. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
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expression could ensure that PD-L1 is only expressed during

promoter activation.

In conclusion, this paper studied the efficacy of multiple

delivery routes for AAV-mediated shPD-L1 delivery in the

treatment of RA using the mouse CIA model. We found that

shPD-L1, delivered via intra-articular injection of AAV vectors,

demonstrated a more potent therapeutic effect compared to wild

type PD-L1. Intravenous injection for systemic expression of PD-L1

was effective in blocking the progression of arthritis, while

intramuscular injection emerged as a promising and safe

alternative. Future work will aim to optimize transgenes and

AAV capsids to enhance transgene expression when muscle

tissues are targeted for systemic expression of shPD-L1.
Materials and methods

Cell culture and AAV vector production

HEK-293 cells were grown in Dulbecco’s Modified Eagle Medium

(Thermo Fisher, Waltham, Massachusetts, US) supplemented with

10% fetal calf serum, 100 mg/mL of penicillin G, and 100 mg/mL of

streptomycin at 37°C. The cells were regularly passaged at a 1:5 ratio

three times per week after reaching approximately 90% confluence.

To produce AAV vectors, HEK-293 cells were triple transfected.

Cells and supernatants were purified using a cesium chloride (CsCl)

ultracentrifugation gradient. AAV titers were measured using

quantitative real-time polymerase chain reaction (qPCR) at a 10

mL volume in 96-well plates, detected using the Fast SYBR Green

Master Mix (Applied Biosystems, Foster City, California, USA).

AAV vector genome integrity was confirmed via alkaline gel

electrophoresis. SYPRO Ruby protein gel stain (Thermo Fisher,

Waltham, Massachusetts, US) was used to verify the capsids

contained all three VP1, VP2 and VP3 proteins. Details were

previously described in Li et al., 2024 (24).
Construction of AAV cassette for soluble
PD-L1 protein expression

The cDNA of PD-L1 variants (shPD-L1, hPD-L1, and secPD-L1)

was synthesized and cloned into the pTR-CBh-PD-L1 backbone using

the restriction enzymes HindIII and NotI, as well as Golden Gate

assembly. The expression was driven by the CBh promoter, which has

been characterized by robust, long-term, and ubiquitous transgene

expression (37). The 6* His-tag (CACCATCACCATCACCAT) was

fused to PD-L1 variants directly upstream of the stop codon. The three

variant sequences were confirmed through whole plasmid sequencing.
Western blot for PD-L1 expression

The pTR-CBh-PD-L1 plasmid was transfected into HEK-293 cells

cultured in a 6-well plate. After 48 hours, both supernatants and cell

lysates were harvested. GAPDH and beta-actin were used as loading

control. Details were previously described in Li et al., 2023 (13).
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T cell assays for PD-L1 function

shPD-L1 protein was purified from shPD-L1-transfected HEK-

293 cells. The supernatant and cell lysates were collected and shPD-

L1 protein was purified using a HisTrap column (Cytiva, MA,

USA); Pan T cells from mouse spleen were stained with CellTrace

Violet dye as indicated by the CellTrace™ Violet Cell Proliferation

Kit (Thermo Fisher, Waltham, Massachusetts, US), then incubated

with 2x105 anti-CD3/CD28 beads (Thermo Fisher, Waltham,

Massachusetts, US) and 10U/ml IL-2 (R&D, MN, USA) with or

without 5 mg/ml of purified PD-L1. Recombinant PD-L1 and PBS

were used as positive and negative controls, respectively. T cells

cultured with no anti-CD3/CD28 beads were also designed. After

72h, the percentage of proliferating T cells from each group were

determined by Attune Flow Cytometer (Thermo Fisher, Waltham,

Massachusetts, US) with an emission of 405/445nm. Details were

previously described in Li et al., 2023 (13).
Collagen-induced arthritis mouse model

All animal care and housing requirements were followed under

the guidance of the National Institutes of Health Committee on the

Care and Use of Laboratory Animals of the Institute of Laboratory

Animal Resources, and all animal protocols were reviewed and

approved by the Institutional Animal Care and Use Committee at

the University of North Carolina at Chapel Hill. Male DBA/1J mice

at the age of 7-8 weeks were used to mimic the acute inflammatory

conditions of RA (38).

Two immunization doses of bovine type II collagen (Chondrex,

Woodinville, WA, USA) were injected at the root of the mouse tail

at day 0 and day 21 respectively. Details were previously described

in Li et al., 2023 (13).
Animal study design

For local treatment, AAV was injected on the same day as the

primary immunization with type II collagen. One group of mice

received intra-articular administration of self-complementary (sc)

AAV6/PD-L1 driven by the CBh promoter at different doses in a

total volume of 5 ml in the left knee joint. AAV6/shPD-L1 was applied

in the contralateral right knee joint as a control. The positive control

group consisted of AAV6/luc. The negative control group consisted of

naïve mice. For systemic treatment, two injection routes were applied

two weeks before primary immunization: intravenously via the retro-

orbital (RO) venous sinus using a total volume of 100 ml, and
intramuscularly in the hindlimb muscle in a total volume of 100 ml.
Paw swelling measurement

To evaluate paw swelling, mouse paws and toes were evaluated

and scored by 2 independent, blinded observers. Each paw was

assessed using a 4-point scale and the scores from all four paws were

added together to get the total score for each mouse. The scoring
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scale is as follows: 0 indicates normal; 1 indicates redness in one or

two toes; 2 indicates redness or swelling in more than two toes; 3

indicates swelling of the entire paw; and 4 indicates severe swelling

or ankylosis. Thus, the total scoring scale is from 0 to 16 (39).
Tissue histopathology

After 7 weeks post-primary CIA immunization, the mice were

sacrificed, and knee joints were collected by dissecting the femur and

tibia 5 mm from the knee joint. Harvested knees were processed for

H&E. Details were previously described in Li et al., 2023 (13).

Histopathology scores were on a 12-point scale and were based on

the following four conditions: synovial hyperplasia (0–3), infiltration

of leukocytes into the synovial membrane/joint space (0–3), pannus

formation (0–3), and the necrosis/erosion of cartilage (0–3) (40).
Cytokine assay

Following mouse euthanization on week 7 post-primary CIA

immunization, sera were analyzed by first collecting blood from the

retro-orbital plexus using non-heparinized micro-hematocrit capillary

tubes (DWK Life Sciences, Millville, NJ, US) from each mouse. The

blood was then set for 30 min at room temperature. The blood was

centrifuged at 3,000 rpm for 10 min and the supernatants were

collected. Total protein concentration was measured through BCA

assay. Multiple cytokines in the knee joint homogenization, including

IL-1, IL-6, IL-17A, TNF-a, and IL-10, were measured using a Luminex

MAGPIX system (Luminex Corporation, Austin, TX, USA). Cytokine

levels were expressed in picograms per milliliter (pg/ml), and levels

below the detection limit were defined as 0 pg/ml for each cytokine.

The cytokine levels per mg of protein were calculated.
Flow cytometry

The mouse spleens were processed into a single-cell suspension,

strained through a 70 µm cell strainer, followed by red blood cell lysis

using ACK buffer and 2 washes with PBS. For the apoptosis assay,

CD3-APC (BD Biosciences, Franklin Lakes, NJ, US) and Annexin V-

FITC (BD Biosciences, Franklin Lakes, NJ, US) were used to stain the

spleen cells, followed by flow cytometry analysis. To stain the T cell

subsets, splenocytes were stimulated at approximately 1e6 cells/mL

with 2 µL of Leukocyte Activation Cocktail and 2 µL of GolgiPlug (BD

Biosciences, Franklin Lakes, NJ, US) per mL of culture, followed by a 4-

hour incubation at 37°C. Following stimulation, surface staining was

performed using anti-mouse CD4-FITC antibody (BD Biosciences,

Franklin Lakes, NJ, US), after which cells were fixed and permeabilized

using the Fix/Perm kit (eBioscience, San Diego, CA, US) and stained

for the following intracellular markers: IFNg-eFluor660, IL-4-PE, IL-
17-eFluor, CD25-eFluor, and FOXP3-PE. The stained cells were then

analyzed using an Attune flow cytometer (Thermo Fisher, Waltham,

Massachusetts, US) and the data was processed and interpreted using

FlowJo software.
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Detection of antibodies

To detect anti-collagen II antibodies in sera, 50 ng/ml type II

collagen was mixed with 100 ml 1x coating buffer (BioLegend, San

Diego, CA, US) and coated on a Corning Costar Brand 96-Well

EIA/RIA Plate (Thermo Fisher, Waltham, Massachusetts, US)

overnight. Details were previously described in Li et al., 2023

(13). To detect total mouse IgG, a commercial kit was used

(Abcam, Cambridge, UK). OD value was measured at 450nm.
Statistical analysis

Statistical analysis was conducted using GraphPad Prism 9

software. Results are presented as mean ± SD, with descriptive

statistics depicted using box and whisker plots. Group differences

were assessed through one-way ANOVA or Student’s t test, with

Bonferroni and Sidak tests employed for multiple comparisons

between groups. A significance level of 0.05 was utilized. Based on

power analysis of our preliminary data using nQuery software, the

powerofmouse sample size exceeded80%ata significance level of 0.05.
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