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Background: Sepsis is a systemic host response to infection with life-threatening

consequence which ranks among the top ten causes of death worldwide.

Nevertheless, our understanding of the molecular and cellular impact of sepsis

remains rudimentary.

Methods: A mouse sepsis model was established through LPS induction and

Escherichia coli (E. coli) infection. Flow cytometry and enzyme-linked

immunosorbent assay (ELISA) were used to detect T helper 1 (Th1) cell subsets

and serum pro-inflammatory cytokines in septic mice. Additionally, in vivo

neutralization experiments were conducted to block IFN-g and CD4+ T cells,

respectively, to explore the regulatory effect of DOCK2 on septic mice. Finally,

the regulatory mechanism of DOCK2 was analyzed using an in vivo RNA-

seq system.

Results: We identified dedicator of cytokinesis 2 (DOCK2) is a critical

downregulating factor for LPS signal pathways. DOCK2-deficient mice were

highly sensitive to LPS-induced sepsis and E. coli sepsis with increased levels of

inflammatory cytokines, especially IFN-g which were mainly due to

hyperresponsive Th1 cells. Ulteriorly, we verified the vital role of DOCK2-

mediated Th1 cells in sepsis by neutralizing both IFN-g and CD4 and found

both of which blockade reduced the severity of sepsis in Dock2−/− mice.

Mechanically, DOCK2-mediated cell cycle progression and cytokine signaling

act in concert to govern peripheral Th1 cell fate.

Conclusion:Our data indicates that DOCK2 acts as a protective role in regulating

systemic inflammation and multi-organ injury in bacterial sepsis by constraining

Th1 response. These findings provide new targets for immunomodulatory
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Abbreviations: DOCK2, dedicator of cytokinesis 2; L

ACK, ammonium-chloride-potassium; WT, wild-type; IF

a, tumor necrosis factor–a; i.p., intraperitoneally.
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therapy of sepsis, suggesting that targeting the DOCK2-Th1 axis may become a

new strategy to improve systemic inflammatory responses associated with

bacterial infections.
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Introduction

Sepsis is a life-threatening organ dysfunction caused by a

dysregulated host response to infection, which remains a major

cause of global morbidity and mortality (1, 2). Septic shock, a

subtype of sepsis that is characterized by severe cardiovascular

abnormalities, is characterized by the more excessive production of

cytokines and a higher risk of death (3). The integral Gram-negative

bacteria wall component, lipopolysaccharide (LPS) can provoke life-

threatening septic shock (4). Sepsis has become the main cause of

death and critical disease worldwide (5). Hence, it is urgently

required further studies to reveal the molecular and cellular

mechanism of sepsis.

Sepsis is characterized by “cytokine storm,” which subsequently

leads to overwhelming organ damage and mortality (4). Interferon-

g (IFN-g) outstands one of the major proinflammatory cytokines in

sepsis, as IFN-g– or T cell–deficient mice are tolerant to

polymicrobial sepsis and Escherichia coli (E. coli) infections, and

neutralization of IFN-g recovers mice from endotoxic shock (6, 7).

T helper 1 (Th1) cell responses have been known as massive IFN-g
production and promoted the pathogenesis of sepsis (8). However,

the underlying mechanisms remain largely unknown.

Dedicator of cytokinesis 2 (DOCK2), a member of the CDM

family of proteins, is a guanine nucleotide exchange factor that is

highly expressed in lymphoid related tissues including the bone

marrow, spleen, and lymph nodes and selectively expressed in

hematopoietic cells (9, 10). Additionally, DOCK2 is essential for

the regulation of the immune system by affecting the adhesion,

migration, proliferation, and differentiation of immune cells (10–

12). DOCK2-deficient mice exhibit a severe reduction of

plasmacytoid dendritic cells in the spleen and lymph nodes and

selective loss of type I IFN induction (13). In addition, it was

reported that biallelic Dock2 mutations in human cause severe

combined immunodeficiency with early-onset, invasive bacterial

and viral infections (14). All these above highlighted the central role

of DOCK2 in immune regulation in both humans and mice.
PS, lipopolysaccharide;

N-g, interferon-g; TNF-
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Nevertheless, the regulatory role of DOCK2 on IFN-g–producing
Th1 response in LPS-induced sepsis has not yet been elucidated.

In this work, we identified an essential role for DOCK2 in

bacterial sepsis. Dock2−/− mice have shown reduced animal survival

after LPS-induced sepsis and exhibited much severe organ injury

and more excessive Th1 immune response. Furthermore, DOCK2

deficiency promoted host susceptibility to E. coli sepsis and

exhibited evaluated Th1 response that is required. Ulteriorly,

depletion endogenous CD4+ T cells alleviated susceptibility of

LPS-induced sepsis in Dock2−/− mice. Mechanistically, DOCK2-

mediated cell cycle progression and cytokine signaling act in

concert to govern peripheral Th1 cell fate. Overall, these findings

suggest DOCK2 as an essential, negative regulator in LPS responses

that protect the host from harmful hyperresponsiveness to LPS and

may provide new insight into the endotoxin-induced sepsis.
Materials and methods

Mice

Dock2−/− mice and wild-type (WT) C57BL/6J mice were

purchased from GemPharmatech Co., Ltd. (China). Sex-matched

Dock2−/− mice and WT littermate controls were used at 8–12 weeks

old (body weight, 20–25 g). All mice were maintained under specific

pathogen–free conditions with restricted 12-h day/night cycle at a

temperature 18°C–22°C and humidity 50%–60%. Protocols for animal

experiments were approved by the Institutional Animal Care and Use

Committees of the Southern Medical University. For body weights

assays, mice that lost ≥ 20% of initial weight were euthanized.
Mouse model of LPS-induced sepsis

Dock2−/− and WT mice were intraperitoneally (i.p.) injected with E.

coli LPS (5 mg/kg or 25 mg/kg body weight, O55:B5, Sigma), diluted in

pyrogen-free phosphate-buffered solution (PBS) or PBS as control. The

survival, weight, and eye exudate formation of the mice were monitored

over the next 72 h. Mice were euthanized, and the peripheral blood and

the organs (spleen, lung and liver) were harvested at 72 h after LPS

challenge and used in the assays described below.
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Mouse model of E coli sepsis

The E. coli strain (American Type Culture Collection (ATCC)

25922) was stored at −80°C in 50% glycerol. E. coli stock solution (10

mL) was incubated in 10 mL of Luria-Bertani (LB; Sangon Biotech)

medium at 37°C and 200 Revolutions Per Minute (rpm) shaking for 12

h and washed twice with cold PBS. The optical density 600nm (OD600)

(optical density 600nm) value was measured in a spectrophotometer to

estimate the number of E. coli [OD600 = 1 = 2 × 109 colony-forming

units (CFU)/mL]. The bacterial density was adjusted to 1 × 109 CFU/

mL. Dock2−/− andWTmice were i.p. injected 2 × 108 CFU of E. coli in

200 mL of PBS. Survival rates were monitored for 72 h.
Determination of bacterial burden

To determine the bacterial burden in mice, blood and peritoneal

lavage fluid (PLF) of mice were obtained 72 h after E. coli injection.

Blood and PLF were serially diluted with sterile PBS. Serial dilutions

(50 mL) were seeded on LB agar plates and incubated at 37°C for 12–

18 h to determine the CFU of E. coli. The data were log-transformed

for statistical analysis.
In vivo neutralization experiments

For the neutralization of IFN-g experiments, mice were i.p.

treated with 300 mg of anti–IFN-g–InVivo (XMG1.2, Selleck) as well

as isotype controls (rat IgG2b isotype control–InVivo, Selleck) 4 h

after LPS injection and then monitored survival for 72 h. For the

CD4+ T-cell depletion experiments, mice were received anti–CD4-

InVivo (GK1.5, Selleck) (i.p., 200 mg per mouse every 2 days) at the

day before LPS injection.
Preparation of single-cell suspensions from
mouse tissue samples

After anesthetizing mice with isoflurane, the peripheral blood of

the mice was collected into a heparin anticoagulant tube, then

euthanized, and perfused with cold PBS through the right ventricle

of the heart before removal of tissues. For lung and liver, tissues

were weighed, and dissected tissues were cut into small pieces and

digested for 45 min at 37°C with collagenase type D (1 mg/mL;

Worthington) and deoxyribonuclease (DNase) I(25 mg/mL; Roche)

in Roswell Park Memorial Institute 1640 medium (RPMI 1640)

medium supplemented with 10% Fetal Bovine Serum (FBS)

(Biological Industries) and 1% penicillin/streptomycin (Life

Technologies). Digested samples were passed through 70-mm cell

strainers (BD Falcon) and washed with flow staining (Fluorescence-

activated cell sorting (FACS)) buffer [PBS containing 1% FBS and

2 mM Ethylene Diamine Tetraacetic Acid (EDTA) (pH 8.0)].

Mononuclear leukocytes were fractionated by a 40%–80% (lung)
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or 30%–70% (liver) Percoll (GE Healthcare) density gradient

centrifugation and washed in FACS buffer. Then, red blood cells

(RBCs) were lysed in 1× ammonium-chloride-potassium (ACK)

buffer. Single-cell suspensions were used for subsequent flow

cytometry staining. Suspensions of spleen cells were obtained by

mashing the spleen through a 70-mm nylon cell strainer, and RBCs

were lysed in 1× ACK buffer. For peripheral blood serum isolation,

peripheral blood was left to settle at 4°C until serum precipitation

occurred and centrifugated at 1,200g for 7 min at 4°C to obtain

serum for cytokine concentration detection.
Flow cytometry analysis and sorting

Single-cell suspensions were blocked with anti-Fc receptor

blocking antibody (anti-CD16/CD32, BioLegend, clone 93) in

FACS buffer for 10 min to avoid false-positive staining.

For surface protein of cells staining, single-cell suspensions were

counted and diluted into proper concentrations and incubated for 30

min in the dark at 4°C with the following fluorescently conjugated

antibodies: CD3 (eBioscience, clone 17A2), CD4 (eBioscience, clone

GK1.5), CD45 (BioLegend, clone 30-F11), NK1.1 (eBioscience, clone

PK136), CD11c (eBioscience, clone N418), CD11b (eBioscience,

clone M1/70), F4/80 (eBioscience, clone BM8), CD8a (eBioscience,

clone 53-6.7), Ly6C (eBioscience, clone HK1.4), and Ly6G

(eBioscience, clone RB6-8C5). The stained cells were then washed

with FACS buffer and further stained with Fixable Viability Stain 700

(BD Biosciences) at 4°C under darkness for 30 min.

For detection of intracellular cytokine expression, the stained

cells were suspended and stimulated in complete RPMI 1640

medium + 10% FBS with Phorbol 12-myristate 13-acetate (PMA)

(50 ng/mL; Sigma-Aldrich), ionomycin (1 mg/mL; Sigma-Aldrich),

and brefeldin A (1 mg/mL; eBioscience) for 4 h at 37°C and 5% CO2.

Cells were subsequently surface protein-stained, fixed (intracellular

fixation buffer, eBioscience), permeabilized (10× permeabilization

buffer, eBioscience), and stained with indicated cytokine antibodies:

IFN-g (BioLegend, clone XMG1.2), and tumor necrosis factor–a
(TNF-a; BioLegend, clone MP6-X722). Ki-67 (BioLegend, clone

16A8) staining was performed with the Foxp3/Transcription Factor

Staining Buffer Set (Thermo Fisher Scientific) according to the

manufacturer’s instructions. Various immune cells of mouse lung,

liver, spleen, and Peripheral blood (PB) were gated as Th1 cells

(Live&Dead−CD3+CD4+IFN-g+), CD8+ T cells (Live&Dead−

CD8+), and macrophage cells (Live&Dead−CD11b+ F4/80+). All

stained cells were acquired on an LSRFortessa flow cytometer (BD

Biosciences) and analyzed by FlowJo V10.0.7.

For flow cytometric sorting, CD4+ T cells of spleen were sorted

from Dock2−/− and WT mice at sepsis state for RNA sequencing

(RNA-seq). Firstly, debris and doublets were excluded for cell types

using forward scatter (FSC) and side scatter (SSC). Then, CD4+ T cell

was gated as follow: CD44+CD4+ T cells (Live&Dead−CD4+CD44+).

BD FACSAria III Cell Sorter (BD Biosciences) was used. The gating

strategies and sorting purity of flow cytometry were included in the

supplemental information.
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Histopathological analysis

The spleen, lung, and liver tissues were perfused with cold PBS

to reduce blood cell-induced background and then were harvested

and fixed in 4% phosphate-buffered formaldehyde solution for at

least 24 h. Fixed and paraffin-embedded tissues were cut into 5-mm-

thick sections, followed by hematoxylin and eosin (H&E) staining,

and tissue injury severity analysis was measured under a

microscope (Olympus BX63).
ELISA

The levels of mouse IFN-g, TNF-a, interleukin-6 (IL-6), and

IL-1b in serum were measured by enzyme-linked immunosorbent

assay (ELISA) according to the manufacturer’s protocol (R&D).

Serum was prepared from blood collected from the eye socket after

LPS treatment. After centrifugation, the supernatants were used for

cytokine measurement.
Bulk RNA-seq and data analysis

Five thousand activated CD4+ T cells (Live&Dead−CD3+

CD4+CD44hi) from the spleen of LPS challenged mice were lysed

in 10 mL of TCL buffer plus 1% 2-mercaptoethanol. Libraries were

processed with SMARTSeq2 (15) with three biological replicates per
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condition and paired-end sequenced (150 bp × 2) with a 75-cycle

NextSeq 500 high-output V2 kit. Obtained RNA-seq reads were

aligned to the mouse genome and transcriptome (GENCODE

GRCm38 vM25, mm10) using Spliced Transcripts Alignment to a

Reference (STAR) (version 2.7.5c) (16) with “twopassMode Basic,”

expression abundances were estimated using RSEM (version 1.3.3)

(17). The count matrices’ outputs from gene results were processed

with the R package (version 3.32.0) to analyze differential gene

expression (18) with default parameters. Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment was performed using

custom script with clusterProfiler (version 3.16.1) (19) and

hierarchical file from “http://rest.kegg.jp” and visualized using

ggplot2 (version 3.3.3) (20). Gene set enrichment analysis (GSEA)

was run with the official tool (GSEA version 4.2.1, MsigDB hallmark

v7.3) and replot in R. Overall expression was computed as

previously described (21, 22).
Statistical analysis

Data analysis and representation were performed with

Prism (GraphPad version 10.0). The p-values were calculated using

an unpaired two-tailed Student’s t-test or two-way ANOVA. A

p-value < 0.05 was considered statistically significant and are

displayed as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p <

0.0001; and not significant (ns), p > 0.05. Data in all figures are

displayed as mean ± SEM.
FIGURE 1

Reduced survival in DOCK2-deficient (Dock2−/−) mice after LPS challenge. (A–D) Eight to 12-week-old WT and Dock2−/− (n ≥ 12 per group) mice
were intraperitoneally (i.p.) injected with LPS (25 mg/kg or 5 mg/kg body weight), and survival was monitored. (A, C) Experimental design. (B, D) The
survival rate of septic mice expressed as a percentage. *p < 0.05 and **p < 0.01 by Kaplan–Meier analysis.
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Results

DOCK2-deficient mice are more
hyperresponsive to LPS

To investigate the involvement of DOCK2 in the sensitivity to

bacterial pathogen, we i.p. injected various doses of E. coli LPS into

age- and sex-matched Dock2−/− mice and WT cohorts (Figures 1A,

C). Almost all Dock2−/− mice but not WT littermates died within

72 h after challenge with 25 mg/kg body weight LPS (Figure 1B).

Then, we narrowed down LPS dose to 5 mg/kg body weight as

shown in Figure 1C and found that nearly half of Dock2−/−mice still

died within 72 h after LPS administration, whereas it does not cause

mortality in the WT littermates (Figure 1D). These data led to the

notion that DOCK2 plays a protective role in LPS-induced sepsis.
DOCK2-deficient mice suffer more severe
endotoxin-induced septic shock

The weight loss and eye exudate formation of mice in sepsis

induced by systemic inflammation can provide references for
Frontiers in Immunology 05
sickness progression and recovery. Thus, we tracked weight loss

and eye exudates in septic mice administrated with LPS (5 mg/kg of

body weight). The weight loss in Dock2−/− mice and WT littermate

controls was comparable within 36 h. As time went on, the weight of

WT mice but not Dock2−/− ones began to recover. At 72 h after LPS

injection, Dock2−/− mice showed lower body weight when compared

toWT littermates (Figure 2A). In addition, DOCK2 deficiency led to

more eye exudate formation and blunted recovery of eye exudates

(Figure 2B). As sepsis is closely associated with multiple-organ injury

and dysfunction, we next evaluated histopathology changes in the

spleen, lung, and liver of the Dock2−/− and WT mice by H&E

staining. The Dock2−/− mice exhibited structural disorganization in

the spleen, severe injury and inflammation in the lung, thicken

alveolar wall and inflammatory cell infiltration increasing in the

lung, and widespread hemorrhaging in the liver, whereas the WT

ones had much slighter organ damage after LPS treatment

(Figure 2C). Increased serum aspartate aminotransferase (AST)

also indicated more severe sepsis-induced liver injury in Dock2−/−

mice (Supplementary Figure 2). As sepsis is characterized by

“cytokine storm” which subsequently leads to overwhelming organ

damage and mortality (4). We next focused on proinflammatory

cytokines that play a major role in sepsis, including IFN-g, TNFa,
FIGURE 2

Dock2−/− mice are more susceptible to LPS-induced sepsis. (A–D) Dock2−/− mice and WT littermates (n ≥ 4 per group) i.p. injected with LPS (5 mg/
kg) as in Figure 1C; weight loss was recorded as a measure of sickness and recovery; and eye exudate formation in zero, one, or two eyes were
monitored up to 72 h. On 72 h after LPS administration, mice were anesthetized, and tissues were harvested. Weight loss curves (A) and eye exudate
formation (B) for mice after LPS administration. (C) Representative morphological changes of the spleen, lung, and liver section from septic mice
(H&E staining, ×100 magnification). (D) The serum concentrations of IFN-g, TNF-a, IL-6, and IL-1b in Dock2−/− mice were measured at 72 h after LPS
injection. For all panels, error bars show the means ± SEM. Not significant (ns), *p < 0.05; **p < 0.01 by an unpaired Student’s t-test. Data are
representative of three independent experiments.
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IL-6, and IL-1b. Serum cytokine levels were determined at 72 h after

LPS treatment. As the data shown, the production of major

proinflammatory cytokines, including IFN-g and TNF-a, were
significantly evaluated in Dock2−/− mice compared with WT ones

(Figure 2D). Together, these data suggest that DOCK2-deficiency

lead to more susceptible to LPS-induced sepsis.
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Enhanced IFN-g–producing CD4+ T cells in
septic Dock2−/− mice

Sepsis is characterized by concurrent unbalanced

hyperinflammation and aberrant immune responses. To explore the

immune mechanisms by which Dock2−/− mice exhibited much higher
FIGURE 3

Dock2−/− mice exhibit an enhanced Th1 response to LPS. (A, B) Dock2−/− mice and WT littermates (n ≥ 3 per group) i.p. injected with 5 mg/kg of LPS
as in Figure 1C. On day 3 after injection, mice were anesthetized and peripheral blood, spleen, lung, and liver were harvested, and immune cells
were isolated for flow cytometric analysis. (A) Based on the gating strategies shown in Supplementary Figure 1. Representative flow plots of Th1 cells
(Live&Dead−CD3+CD4+IFN-g+) and statistical analysis of percentages and relative numbers of Th1 cells are shown. (B) Ki-67+ Th1 cells were further
analyzed. Representative flow plots and statistical analysis of the percentages and relative numbers of Ki-67+ Th1 cells are shown. For all panels,
error bars show the means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 by an unpaired Student’s t-test. Data are representative of
three independent experiments.
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level of IFN-g in the LPS-induced sepsis, we next profiled the major

potential immune cells closely associated with sepsis, including

macrophages (23), nature killer (NK) cells (24), and T cells (25).

Flow cytometry analyzes that the loss of DOCK2 had increased

frequencies and numbers of IFN-g–producing CD4+ T cells (also

named Th1) in the spleen, lung, and liver compared with those in

control mice (Figure 3A). Consistently, we found that Dock2−/− mice

exhibited higher frequencies of Ki-67–expressing Th1 cells than WT

littermate controls (Figure 3B). However, DOCK2 deficiency had

minor role in regulating macrophages as well as IFN-g–producing
CD8+ T and NK cells in the above tissues from LPS-induced septic

mice (Supplementary Figures 3A–C). Given that IL-12 was the major

driver of IFN-g production and Th1 polarization, we observed

markedly increased serum IL-12 in Dock2−/− mice at 12 h after LPS

injection (Supplementary Figure 4A). Consistently, Th1 cells also

elevated in in Dock2−/− mice at 12 h after LPS treatment

(Supplementary Figure 4B). Moreover, we also investigated the

expression profile of DOCK2 in Th1 cells at different time points.

The data revealed a downward expression of DOCK2 after LPS

treatment and a much lower DOCK2 expression at 72 h after LPS

injection, indicating that DOCK2 has an important role in the host

immune response to septic inflammation (Supplementary Figure 4C).

Thereafter, we mainly focus on 72 h after sepsis induction. Further
Frontiers in Immunology 07
analysis showed that Dock2−/− and WT control mice also manifested

comparable frequencies of TNF-a–producing CD4+ T, CD8+ T, and

NK cells and macrophages (Supplementary Figures 5A–D).

Collectively, hyperresponsive IFN-g–producing CD4+ T cells in septic

Dock2−/− mice might contribute to the severe inflammation and

organ injury.
2 DOCKdeficiency causes high
susceptibility to E. coli sepsis and
overwhelming Th1 response

Although DOCK2 protected against LPS-induced shock via

blunting the cytokine storm, especially IFN-g response, the role of
DOCK2 in resisting live bacterial infections remains largely

unknown. To address this issue, we studied E. coli sepsis. Namely,

Dock2−/− mice and WT littermates were i.p. injected with E. coli

ATCC25922 (Figure 4A). Expectedly, we observed impaired

survival of Dock2−/− mice when compared to with WT animals

within 72 h of E. coli infection (Figure 4B). This was paralleled by a

substantial increase in the bacterial burden in PLF and peripheral

blood of Dock2−/− mice (Figure 4C). In addition, we found that the

deficiency of DOCK2 significantly augmented the frequencies and
FIGURE 4

Deficiency of DOCK2 enhances host susceptibility and Th1 response to E. coli sepsis. (A–D) Eight- to 12-week-old WT and Dock2−/− mice were i.p.
injected with E. coli (2 × 108 CFU), and survival was monitored for 72 h. Seventy-two hours after E. coli administration, mice were anesthetized, and
tissues were harvested. (A) Experimental scheme. (B) The survival rate of E. coli septic mice expressed as a percentage (n = 13 for Dock2−/− mice and
n = 16 for WT mice). (C) The bacterial burden in the blood and PLF 72 h after injection of E. coli was determined (n ≥ 4 per group). (D) Based on the
gating strategies shown in Supplementary Figure 1, statistical analysis of percentages and relative numbers of Th1 cells (Live&Dead−CD3+CD4+ IFN-
g+) are shown (n = 4 per group). For all panels, error bars show the means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 by
Kaplan–Meier analysis for survival rate and an unpaired Student’s t-test for others. Data are representative of three independent experiments.
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numbers of CD4+IFN-g+ inflammatory Th1 cells in the spleens,

lungs, and livers in response to E. coli infection (Figure 4D),

resembling the phenotypes of LPS challenge. Taken together,

these data indicated that DOCK2 provides robust protection

against live bacterial infection, other than LPS-induced sepsis.
Blockade of IFN-g–producing CD4+ T cells
alleviates LPS-induced sepsis on Dock2−/−

mice

To further explore whether DOCK2 regulates IFN-g–producing
CD4+ T cells that trigger LPS-induced sepsis or not, firstly, we

detected the role of IFN-g in DOCK2-deficient mice when they

suffered from endotoxin-induced septic shock. Dock2−/− mice were

i.p. administered anti–IFN-g or PBS 4 h after LPS injection and then

monitored survival for 72 h. Data show that blocking IFN-g
efficiently prolonged the survival of LPS-treated Dock2−/− mice

(Supplementary Figures 6A, B). These data suggested IFN-g
played a critical role in process of endotoxin-induced septic shock

in Dock2−/− mice. Furthermore, we i.p. treated Dock2−/− mice and

WT littermates with depleting anti-CD4 antibody (26, 27) ahead of

LPS administration and strengthen depletion at on the third day,

and survival was monitored (Figure 5A). As shown in Figure 5B, the
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depletion of CD4+ T cells significantly increased the survival rate of

Dock2−/− mice within 72 h after LPS injection, and there was

basically no death. At day 3 after LPS treatment, we confirmed the

depletion efficiency of anti-CD4 antibody by flow cytometric analysis

of CD4+ T cells. As expected, anti-CD4 antibody treatment resulted

in the clearance of CD4+ T cells from the spleen, lung, and liver

(Supplementary Figures 6C, D).Moreover, histomorphologic analysis

of the spleen, lung, and liver showed that, compared with WT

littermate controls, Dock2−/− mice had no obvious structural

disorganization in the spleen and no obvious infiltration of

inflammatory cell in liver and lung tissue (Figure 5C). Consistently,

CD4+ T cell–depleting Dock2−/− mice manifested comparable serum

IFN-g, when compared with CD4+ T cell–depleting WT controls

(Figure 5D). All these results together suggested that IFN-g–
producing CD4+ T cells are critical for systemic inflammation and

multiple-organ injury in LPS-induced septic DOCK2-null mice.
1 DOCK2-mediated cell cycle progression
and cytokine signaling act in concert to
govern peripheral Thcell fate

To investigate the mechanisms underlying DOCK2-mediated

suppression of Th1 responses in the septic mouse, we performed
FIGURE 5

CD4+ T-cell depletion alleviates the effects of LPS-induced sepsis on DOCK2-deficient mice. (A–D) Dock2−/− mice and WT littermates i.p. injected
with anti-CD4 antibody (200 mg per mice per time) or isotype controls and LPS (5 mg/kg of body weight). Survival of mice was monitored for 72 h.
Seventy-two hours after LPS administration, mice were anesthetized, and tissues were harvested. (A) Experimental scheme. (B) The survival rate of
LPS-induced septic mice expressed as a percentage (n = 9 per group). (C) Representative morphological changes of the spleen, lung, and liver
section from septic mice (H&E staining, ×100 magnification). (D) The serum concentrations of IFN-g were measured at 72 h after LPS injection. Not
significant (ns), by Kaplan–Meier analysis for survival rate and an unpaired Student’s t-test for IFN-g level. Data are representative of three
independent experiments.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1527934
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2025.1527934
FIGURE 6

DOCK2 is required for cell cycle progression of peripheral Th1 cells. (A–F) Bulk RNA-seq analysis of spleen activated T cells (CD3+CD4+CD44+) from
DOCK2-deficient mice and WT littermates (n = 3 per group). (A) Principal component analysis plot based on the top 2,000 most variable genes.
(B) Volcano plot from DESeq2 analysis depicting differential expressed genes (DEGs), with significant downregulated genes marked in green and
upregulated genes in red. Key genes are additionally highlighted. (C) Upregulated TLR and IFN-g signaling genes in DOCK2-deficient mice. (D–F)
Weighted gene co-expression network analysis depicting the magenta module, which contains 1,909 genes and is significantly enriched in Dock2−/−

mice (D) Heatmap of normalized expression levels (Z-scores) of genes in magenta module, comparing Dock2+/+ and Dock2−/− conditions.
(E) Comparative expression levels of the magenta module between Dock2+/+ and Dock2−/− mice, with statistical significance indicated (unpaired
two-tailed Student’s t-test). (F) Dot plot of the Gene Ontology (GO) enrichment results for the 1,909 genes in the magenta module, with the x-axis
representing gene ratio and with the dot color and size indicating the −log10 of the adjusted p-value and count of enriched genes, respectively. Key
GO biological pathways are annotated. (G) Gene set enrichment analysis (GSEA) of hallmark 10,731 filtered genes with indicated false discovery
rate (FDR).
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bulk RNA-seq analysis on CD3+CD4+ CD44+ T cells sorted from

WT and Dock2−/− mice treated with LPS. Principal component

analysis clearly segregated the activated CD4+ T-cell transcriptome

profile of Dock2−/− mice from that of WT controls, suggesting

the populations to be transcriptionally distinct (Figure 6A).

Differentially expressed gene (DEG) analysis revealed that Dock2−/

− CD4+ T cells expressed higher levels of cell cycle genes (Cdk6) (28),

proliferation genes (Mki67), IFN-induced genes (Ifitm2) (29),

cytokine receptor genes (Il1r2, Il18r1, Il7r, and Il18rap) (30), gene

associated with migration and adhesion (Ccr6) (31), T-cell migration

gene (Itga4) (32), immune cell homing gene (Ccl5) (33), and

immunoregulatory gene (Lilrb4a, Zfp36l2, Penk, and Cish) (34, 35)

compared to Dock2+/+ CD4+ T cells (Figure 6B). More significantly,

DOCK2 deficiency resulted in upregulated TLR and IFN-g signaling
genes, including Tlr4, Nfkbi2, Il12rb2, Ifngr1, and Mapk14

(Figure 6C). Further weighted gene co-expression network analysis

was performed on the DEGs to identify co expression modules

(Figures 6D, E). Gene Ontology analysis demonstrated that the

DEGs were mainly linked to lymphocyte differentiation and

regulation of T-cell activation (Figure 6F). In addition, GSEA

revealed that the cell cycle and cytokine-cytokine receptor

interaction gene sets were differentially enriched between WT and

Dock2−/− CD4+ T cells (Figure 6G). Thus, DOCK2 directly regulated

the expression of its target genes involved in mitotic cell cycle and

effector cytokine expression associated with the CD4+ T cells to

control overwhelming Th1 responses.
Discussion

Uncontrolled systemic inflammatory response and multiple-

organ injury are thought to play a crucial role in the pathogenesis

of sepsis (1, 3, 4). In this study, our data revealed that DOCK2-

deficient mice had reduced survival rate in LPS-induced sepsis and

were more susceptible to LPS-induced sepsis, including weight loss,

eye exudate formation, and histomorphologic changes of various

organs. These findings are somewhat different from a previous

study by Xu and colleagues (36), which showed that 4-[3′-(2″-
chlorophenyl)-2′-propen-1′-ylidene]-1-phenyl-3,5-pyrazolidinedione
(CPYPP), a small-molecule inhibitor of DOCK2, alleviated the

severity of endotoxemia-induced acute lung injury by inhibiting

LPS-induced macrophage activation. It is known that macrophages,

as a kind of innate immune cells, first trigger the production of

various initial proinflammatory cytokines, which, in turn, activate T

cells or NK cells to release IFN-g in response to LPS, which might

play an immune role in the early stage of disease. Nevertheless, we

verified that DOCK2 plays a vital role in constraining IFN-g–
producing CD4+ T cells and protects against LPS-induced systemic

inflammation and organ injury.

Prior studies have confirmed that biallelic mutations in DOCK2

impair T-cell activation (14), and patients with DOCK2 deficiency

have T-cell mitochondrial dysfunction and lymphopenia (37). It has

also been reported that T cell– and IFN-g–deficient mice showed

apparently reduced serum IL-6 levels and markedly resist E. coli

infection or sepsis, indicating that IFN-g–producing T cells play a
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vital role in bacterial sepsis (6, 7). Here, we explored the role of

DOCK2 on Th1 immune response in mice during LPS-induced

sepsis. Our data showed that DOCK2 deficiency enhanced Th1 cell

immune response and proliferative capacity in LPS-induced sepsis.

In addition, studies have pointed out that IFN-g produced by Th1

cells has an important role in activating macrophages to increase

their microbicidal activity (38). However, we compared

macrophages in DOCK2-deficient and CK2-sufficient mice upon

LPS treatment. There was aminor difference betweenDock2−/−mice

and their cohorts. Hyperresponsive IFN-g–producing CD4+ T cells

in septic Dock2−/− mice seemed independent of macrophages.

For further confirmation, we ascertain the effect of Th1 on

DOCK2-deficient mice in LPS-induced sepsis by blocking IFN-g
and depleting CD4+ T cells in vivo. IFN-g neutralization evidently

prolonged the survival of LPS-treated Dock2−/− mice. Moreover,

CD4+ T-cell depletion could obviously alleviate the mortality

systemic inflammation and multiple-organ damage of LPS-treated

DOCK2-deficient mice. Given the limitations of the LPS-induced

sepsis model, we performed studies in Dock2−/− mice using

clinically relevant live E. coli infection and identified that DOCK2

deficiency also promoted susceptibility and Th1 response to E. coli

sepsis. Collectively, our study highlights DOCK2 potentially a

protective target for sepsis intervention in mice.

Little is known about the mechanisms underlying DOCK2-

mediated suppression of Th1 responses in the septic mouse, and we

performed bulk RNA-seq analysis on activated CD4+ T cells sorted

from Dock2+/+ and Dock2−/− mice treated with LPS. We found that

an obvious enrichment in gene sets associated with cell cycle

progression and cytokine signaling governing peripheral Th1 cell

fate is upregulated in Dock2−/− CD44+CD4+ T cells when compared

to WT CD44+CD4+ T cells. The dedicated role of DOCK2 in

regulation of Th1 response under different condition needs

further studies in future.
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