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Background: The “gut–skin axis” has been proposed to play an important role in

the development and symptoms of atopic dermatitis. Therefore, we have

constructed an interpretable machine learning framework to quantitatively

screen key gut flora.

Methods: The 16S rRNA dataset, after applying the centered log-ratio

transformation, was analyzed using five different machine learning models:

random forest, light gradient boosting machine, extreme gradient boosting,

support vector machine with radial kernel, and logistic regression. Interpretable

machine learning methods, such as SHAP values, were used to identify significant

features associated with atopic dermatitis.

Results: Random forest performed better than the other “tree” models in the

validation partitions. The SHAP global dependency plot indicated that

Bifidobacterium ranked as the strongest predictive factor across all prediction

horizons, although the SHAP values for some features were still higher in support

vector machine and logistic regression models. The SHAP partial dependency

plot for “tree” models showed that the best segmentation point for

Bifidobacterium was further from the origin compared to other features in the

respective models, quantitatively reflecting differences in gut microbiota.

Conclusion: Machine learning models combined with SHAP could be used to

quantitatively screen key gut flora in atopic dermatitis patients, providing doctors

with an intuitive understanding of 16S rRNA sequencing data to support precision

medicine in care and recovery.
KEYWORDS

machine learning, random forest, light gradient boosting machine, extreme gradient
boosting, SHAP value, partial dependence plot, interpretable machine learning
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Introduction

Atopic dermatitis (AD), alternatively referred to as eczema or

atopic eczema, is one of the most prevalent inflammatory skin

disorders encountered in the pediatric population, with its

incidence increasing globally over the past few decades, affecting

approximately 20% of children (1, 2). This condition is

characterized by severe pruritus, which often leads to skin injury,

significant sleep disruption, and a negative impact on overall quality

of life (2).

Although the precise etiology of AD remains elusive, emerging

evidence suggests that it results from a complex interaction between

dysfunction of the epidermal barrier integrity, immune

dysregulation, and the influence of environmental and infectious

triggers (3–5).

This synergistic interaction elicits T-cell-mediated immune

responses within the skin, including a predominantly T-helper 2

(Th2) cell response, which leads to the release of chemokines,

proinflammatory cytokines, IgE production, and systemic

inflammatory responses, giving rise to pruritic inflammation of

the skin.

Recent studies have highlighted the pivotal role of intestinal

flora development in facilitating optimal intestinal function and

immunological development (6). The concept of the “gut–skin

axis”, which emphasizes the reciprocal influence between gut flora

and the skin, has emerged as a significant factor in the pathogenesis

and manifestation of AD. The mechanisms underlying the gut-skin

axis are multifaceted. First, metabolic pathways involving gut

microbiota metabolites, such as short-chain fatty acids (SCFAs),

play a crucial role. These metabolites enhance epithelial barrier

function and reduce permeability (7, 8), while other metabolites

contribute to the formation of a protective mucus layer (9).

Secondly, gut microbiota plays a crucial role in the activation of

both innate and adaptive immune mechanisms, collectively

safeguarding the host and maintaining intestinal homeostasis.

This includes modulating the differentiation of naive T cells to

prevent excessive production of IgE and IgG4, as well as influencing

interactions with Toll-like receptors (TLRs) and T-helper cell

activity (10–15). Lastly, the “gut–brain–skin axis” further extends

the interplay, linking microbiota modulation to stress-induced

systemic and inflammatory skin disorders (16). The key

neuromodulators involved in this axis are norepinephrine,

serotonin, acetylcholine, and tryptophan (17).

However, a current challenge in this field is the complexity of

16S rRNA sequencing data, which poses difficulties in identifying

key flora and the impact of intestinal flora quantitatively on the

initiation and progression of AD. Addressing this challenge is

crucial for advancing our understanding and treatment of AD.

Over the past few years, there has been a significant increase in

the utilization of machine learning (ML) techniques in biomedical

diagnosis and the identification of critical features. These

techniques provide powerful tools capable of discerning intricate

patterns and correlations within extensive datasets (18). ML

algorithms have shown considerable utility across a range of

clinical applications, including predicting disease outbreaks and
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personalizing treatment strategies (19, 20). Lundberg et al. (21)

introduced an algorithm called “Shapley additive explanations

(SHAP)”, a post-hoc interpretable algorithm that uses additive

attribution to compute SHAP values, thereby enhancing the

interpretability of previously opaque ML algorithms (22).

The main contributions of our study can be summarized as

follows. We assessed the prediction performance of five different

supervised ML algorithms including random forest (RF), Light

Gradient Boosting Machine (LGBM), eXtreme Gradient Boosting

(XGB), Support Vector Machine with the radial kernel (SVM), and

logistic regression (LR) applied to analyze 16S rRNA sequencing data.

To enhance classification accuracy and reduce overfitting, we adjusted

the hyperparameters governing the sample weight distribution.

Subsequently, we integrated ML algorithms with SHAP to develop

an ML framework that enhances interpretability and identifies crucial

features influencing the diagnosis of AD. This approach facilitates

statistical and data-structure-related insights, contributing to an

intuitive understanding of 16S rRNA sequencing data.
Materials and methods

Data collection

The dataset we analyzed and used to construct machine learning

models was downloaded from the NCBI BioSample Database

(https://www.ncbi.nlm.nih.gov/) with the accession number

PRJNA501811. This BioProject is from a study conducted by

Zhang et al. (23). The dataset contains 112 fecal samples, 43 from

children with atopic dermatitis, and 69 from the healthy control

group. To characterize the composition of the gut microbiome, the

V4 hypervariable region of the 16S ribosomal RNA (rRNA) genes

was amplified following DNA extraction from stool specimens.

Sequences were quality filtered, clustered into amplicon

sequence variants (ASV) using the Unoise2 pipeline in

USEARCH (https://drive5.com/usearch/) and taxonomically

classified against the Silva-123 database (http://www.arb-silva.de/).

To verify if the dataset reached a sufficient sequencing depth, alpha

rarefaction analysis was performed using USEARCH, and

classification was carried out up to the genus level.
Taxonomic analysis

We analyzed the a-diversity (ACE and chao1 index) and b-
diversity between the AD and HC groups. As for the b-diversity,
both principal co-ordinates analysis (PCoA) based on the Bray–

Curtis distance matrix and ADONIS test were employed to

determine the significance of the difference.

To identify differentially abundant taxonomic features, linear

discriminant analysis effect size (LEfSe) was applied via the

“microeco” R package and “trans_diff$new()” function (24). The

LEfSe bar graph plotted the significant difference in taxonomical

features with a linear discriminant analysis (LDA) score of more

than 2.0.
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://drive5.com/usearch/
http://www.arb-silva.de/
https://doi.org/10.3389/fimmu.2025.1528046
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1528046
Centered log-ratio

The centered log-ratio (CLR) transformation was initially

applied to the abundance data pertaining to the designated

bacterial genera. Given an observational vector comprising D

“count” entities—such as sequencing reads or ASVs—in a given

sample, denoted as X = [X1, X2,…, XD], the CLR transformation for

that sample can be estimated by the following formula:

CLRðXiÞ ¼ ½ ln X1i

g(Xi)

� �
,⋯, ln

XDi

g(Xi)

� �
�

Where Xi is the list of features in a sample, g(Xi) represents the

geometric mean of the “count” vector Xi, X1i is the first feature in a

sample, and XDi
is the last feature in a sample of D values.

The CLR transformation of the initial dataset requires replacing

zero-count values to ensure accurate calculation, as the presence of

zero-count values in the denominator of the CLR formula would

make the computation infeasible. One approach to addressing this

issue is to replace “0” counts with a value smaller than the detection

limit (a count of 1). We followed the methodology proposed by

Martıń-Fernandez et al. (25), where we replaced each “0” count with

0.65 in our dataset, as our detection limit corresponds to a count

of 1.
Supervised ML modeling

Five kinds of different supervised ML algorithms were trained

with the features of bacterial taxa using Scikit-learn: RF, LGBM,

XGB, SVM, and LR.

The entire dataset was randomly divided into a training set

(70%) and a testing set (30%), followed by hyperparameter

optimization to enhance the performance of these algorithms.

This process involved utilizing the GridSearchCV package

(h t t p s : / / s c i k i t - l e a rn . o r g / s t a b l e /modu l e s / g ene r a t ed /

sklearn.model_selection.GridSearchCV.html) from Python 3

within the training set to tune the parameters through a 10-fold

crossvalidation process. Importantly, during the hyperparameter

tuning phase, the proposed models solely relied exclusively on the

training set to obtain the optimized hyperparameters, ensuring that

no information from the testing set was utilized. The specific

optimized hyperparameters for each ML model are listed in

Supplementary Table S1.
Model evaluation

We obtained accuracy, precision, sensitivity, specificity, F1

score, and the receiver operating characteristic curve with area

under the curve (AUC) by calculating the confusion matrix in

Python 3. These metrics assess the ML models from several aspects.
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SHAP interpretability framework

ML was regarded as a black-box model since the impact of each

feature was hard to assess on its prediction, especially in sequence

analysis. In our study, the SHAP algorithm (21) treats each feature

as a “contributor” to the outcome prediction and explains its

significance in the particular prediction made by the ML model.

The sum of the cumulative Shapley value for the specific prediction

and the average prediction value provides the contribution of each

feature for the individual. The contribution of each feature from the

16S rRNA data is given by the sum of the cumulative SHAP value

for the particular prediction and the average prediction value.

In this manner, the SHAP value of each feature indicated how it

influenced the prediction. Positive SHAP values (> 0) represent a

positive effect on the predicted outcome, while negative SHAP

values (< 0) manifest an adverse impact, showing a protective

effect in our study. Global explanations calculate and rank the

average SHAP values of each feature to visualize the importance of

different features, while local explanations for “tree” models (XGB,

LGBM, and RF) assess how SHAP values vary with abundance

transformed by CLR and determine the best segmentation point by

fitting the curve to analyze the features quantificationally.
Statistical analysis

The statistical analysis in this study was performed using R

software (version 4.2.0) and Python 3. Continuous variables were

reported as mean ± standard deviation for normally distributed data

and as median (interquartile range) for skewed variables. Two-

sample t-tests or Wilcoxon’s rank sum tests were utilized to draw

statistical inferences. Prior to building the ML models, random

sampling was employed to split the dataset into training (70%) and

test (30%) sets, respectively. The level of significance was set at

p< 0.05.
Result

Overview of the 16S rRNA gene
sequencing data

According to phylogenetic taxonomic levels, we performed 16S

rRNA gene sequencing of all stool samples (n = 112) with AD

groups (n = 43) and health control (HC) group (n = 69), and a total

of 9,155,243 sequences were sorted into 2,811 ASVs.

The Shannon rarefaction curve was employed to verify whether

the dataset reached sufficient sequencing depth. As shown in

Supplementary Figure S1, with the increasing sequencing volume,

the number of species did not increase significantly, indicating that

the sample size was sufficient for our study and that the sequencing

depth met the demands of the subsequent data analysis.
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Richness and diversity of gut microbiota in
ADs

AD samples (n = 43) demonstrated increased gut microbiota

richness and diversity compared with health control (HC) samples

(n = 69), as measured by the Ace index (p = 0.019) and chao1 index

(p = 0.028) (Figures 1A, B), respectively. Beta diversity was applied

to assess the structural composition similarity of gut flora. As shown

in Figure 1C, PCoA analysis based on the Bray–Curtis distance

revealed that Co-ordinate 1 accounted for 12.7% and Co-ordinate 2

occupied 5.7%. ADONIS demonstrated significant differences

between the AD and HC groups (R2 = 0.02, p = 0.009) (Figure 1C).

In the LEfSe results, significant differences in microbial proportion

were observed between the AD and HC groups. Eight genera were

overrepresented in HCs, and three genera were overrepresented in ADs

at the genus level (Figure 1D). Bifidobacterium showed the most

significant differences, with the LDA score greater than 4. These

findings suggest that there is gut microbial dysbiosis in AD patients,

and different states have their own unique characteristics.
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Model evaluation

A gut microbiota-based signature transformed by CLR can be

used for predicting atopic dermatitis. Based on the comprehensive

16S rRNA analysis above, we next assessed the performance of gut

microbiota as biomarkers using MLmodels, including XGB, LGBM,

RF, SVM, and LR. In this study, model performance evaluation was

calculated including accuracy, recall, precision, sensitivity,

specificity, F1 score, and AUROC. As shown in Table 1, the

algorithms based on “tree” models performed better than SVM

and LR, demonstrating the high performance of the models. The RF

performed better than the other “tree” models in the test set. The

LGBM also performed well except for precision (85.70%) and

specificity (81.30%), which were lower than RF’s 100.00% and

100.00%, respectively. The accuracy and specificity of the XGB

model were higher than those of the LGBM model, meanwhile, the

sensitivity and recall were lower than those of the other two models

based on the decision tree classifier. These findings indicated that

according to different statuses, we can choose different models.
FIGURE 1

Comparison of alpha and beta diversity between AD and HC groups. Each point in the figure represents a sample. (A) ACE index; (B) Chao1 index;
(C) principal co-ordinates analysis, where shorter distances between samples indicate greater similarity in species composition; (D) cladogram of
linear discriminant analysis (LDA) effect size (LEfSe) analysis of microbial abundance. *P<0.05.
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SHAP interpretability framework

In consideration of the “black box” dilemma, the SHAP

algorithm was conducted to visually exhibit each feature’s

importance to the AD predicted by the ML models. The SHAP

global dependency plot ranks the SHAP value of the features, as

shown in Figure 2, including the top 30 significant features most

correlated with the outcome in descending order. The vast majority

of bacterial genera belong to four dominant phyla, and

Bifidobacterium ranked as the strongest predictive factor for all

prediction horizons, playing a decisive role in all models, though the

SHAP values of some features were still higher in the SVM and

LR models.

However, the SHAP global dependency plot showed limitations

in depicting the association between each feature and its SHAP

value visually. Consequently, to gain a deeper understanding, we

drew the SHAP partial dependency plot for “tree” models, as

depicted in Figure 3. The performance of the SVM and LR fell

flat, so we did not take the two models into account. In the plot,

each point represents an abundance and its SHAP value, with the
Frontiers in Immunology 05
abscissa indicating the magnitude of the transformed feature value

and the ordinate showing corresponding SHAP values.

We noted that different models provided multiple

interpretations of 16S rRNA data. A specific predictive behavior

was exhibited in the XGB model, which predicted a designated

threshold to detect the positive and negative relationships of the

predictors with the outcome result, and the greater the distance, the

stronger the effect. The LGBMmodel showed a clear dose–response

relationship and the RF indicated more smoothly. The best

segmentation point falls on 6.65(XGB), 6.73(LGBM), and 6.41

(RF), as for Bifidobacterium, the intersection points between the

asymptote and line where y = 0, which are greater than other

features in respective models, quantitatively reflecting the CLR-

abundance of gut microbiota in AD and HC group.

Discussion

This study aimed to explore and discuss the significantly

dysregulated microbiota in the AD group compared to the HC

group, using ML algorithms combined with SHAP techniques to
FIGURE 2

ML-SHAP global dependency plot analysis showing the distribution of feature importance in AD occurrence risk.
TABLE 1 Model performance of the proposed ML models on the testing set.

Classifier Accuracy Precision Sensitivity Specificity F1 score AUROC

RF 94.10% 100.00% 91.30% 100.00% 95.45% 0.9817

LGBM 91.20% 85.70% 100.00% 81.30% 92.30% 0.9817

XGB 91.20% 95.20% 90.90% 91.70% 93.00% 0.9780

SVM 85.30% 90.50% 86.40% 83.30% 88.40% 0.8370

LR 82.40% 85.70% 85.70% 76.90% 85.70% 0.9194
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visualize features and their respective weights. Through 16S rRNA

analysis, we found significant differences in both a- and b-diversity
between the AD and NC groups. Five types of machine learning

algorithms, combined with the SHAP algorithm, were used to

identify significantly dysregulated microbial taxa.

Statistical methods used in bioinformatics and model

construction consistently indicated that Bifidobacterium, an

intestinal probiotic, was the strongest predictive factor. Previous

studies have shown that Bifidobacterium is enriched in healthy

infants (26, 27) and markedly reduced in the gut of infants with AD

(28), as well as in those with other atopic infantile diseases (27).

The pathogenesis of AD involves multiple mechanisms,

including a reduction in regulatory T cells (Tregs), which can

impair immune responses and lead to an imbalance in the

activation of TH1/TH2 cytokines (29). Recent evidence has

increasingly highlighted the vital role of intestinal microbiota in

regulating the immune system (6). Alterations in the microbiome

can impact both host immunity and its response to antigens,

thereby contributing to the development of allergies .

Bifidobacterium has been proven to induce a regulatory dendritic

cell (DC) phenotype that enhances the induction of Tregs (30, 31).

Patients lacking Bifidobacterium tend to exhibit a more

proinflammatory Th2/Th17 profile, whereas those with abundant

Bifidobacterium display a more anti-inflammatory profile (32).

Furthermore, early colonization by Bifidobacterium modulates B-

cell responses, with infants colonized early showing higher levels of
Frontiers in Immunology 06
memory B cells at 4 and 18 months (33), and increased salivary

secretory IgA at 6 months (34). These findings suggest that the

presence of Bifidobacterium promotes B-cell activation, maturation,

and ultimately antibody production, thereby limiting immune

activation and sensitization.

The synthesis and secretion of microbial metabolites constitute

a pivotal mechanism through which the gut microbiota exerts its

modulatory effects on immune function, thereby exerting a

significant impact on overall health outcomes. SCFAs, one of the

microbial metabolites, mainly produced by Bifidobacterium (35),

are by-products of bacterial fermentation and abundant microbial

metabolites present in the colon. Low fecal concentrations of these

SCFAs (such as propionate, butyrate, and acetate) have been

associated with the occurrence and development of allergic

diseases (e.g., atopic dermatitis, food allergy, asthma, allergic

rhinitis) (36, 37). In addition, SCFAs might potentially interact

with mesenchymal stem cells (MSCs) through G protein-coupled

receptors (GPCRs), modifying their differentiation potential

through the inhibition of histone deacetylase (HDAC) activity,

thereby inducing distinct infant immune responses (38).

Furthermore, evidence suggests that SCFAs enhance intestinal

epithelial integrity and regulate various immune cell populations,

including dendritic cell maturation, Treg differentiation, and

antibody production (39).

Previous studies have shown that the proportion of

Peptoclostridium is more likely to relate to intestinal health and
FIGURE 3

ML-SHAP partial dependence plot analysis showing the distribution of feature importance for AD occurrence risk.
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recovery from imbalances (40). Anaerofilum (41, 42) and the genus

Lachnoclostridium (43, 44) were associated with an increased risk of

immune diseases, consistent with the trend in Figure 3: the higher

the abundance, the higher the likelihood of having atopic

dermatitis. In addition, there is a correlation between the

Ruminococcaceae_NK4A214_group and SCFAs (45).

As for model evaluation, the “tree” models had greater

performance. Bifidobacterium ranked as the strongest predictive

factor for all prediction horizons and exclusively demonstrated the

decisive role in all models. Perhaps due to interference from other

features, SVM and LR had lower efficiency in forecasting. In

contrast, the “tree” models, which may eliminate interference,

manifested as a decrease in the weight of other features. RF

showed the best performance, which was similar to the findings

of other studies (46, 47). LGBM and XGB, both of which learned

from the mistakes of previous models using boosting techniques,

also showed good performance in other fields (48, 49).

It is always a challenge to correctly interpret the great predicted

performances and understand why they perform well, especially in

ML’s black-box tree integration model. Therefore, we applied the

SHAP algorithm to evaluate the importance of features in all

possible combinations of the permutations and visualize them in

every prediction model, helping us provide valuable insights into

the most influential features (50). To visually represent the

relationship, SHAP partial dependency plots were constructed,

which can exhibit how the “tree” models presorted the features

according to the numerical value, followed by the fitted curve. We

can quantitatively observe the relationship between abundance (or

the position of abundance proportion distribution) and

SHAP value.

The SHAP value in all “tree models indicates that as the

proportion increases, the influence shifts from promoting to

preventing, or vice versa, at a certain point. This suggests that

there may be a threshold for gut microbial dysbiosis associated with

AD, with different features having different thresholds. Since the

CLR used a zero-average matrix data approach, the segmentation

point, located at the intersection between the fitted curve and the y-

axis, can be defined as a quantitative reference point for the

relationship between different features and the outcome. As for

Bifidobacterium, its critical value is higher than that of other genera,

indicating that in the HC group, its anti-eczema effect can only be

exerted when Bifidobacterium becomes dominant and its relative

abundance exceeds the threshold. In contrast, in the AD group, the

homeostasis of the intestinal flora appears to be disrupted. On

the contrary, Ruminococcaceae_NK4A214_group, a member of the

Ruminococcaceae family, showed an opposite trend to

Bifidobacterium, with increased abundance reported in children

who have or are likely to develop AD (28). According to the CLR

formula, CLR values can be converted back to abundance values

using the equation: Abundance = e^CLR value*g(Xi), where g(Xi)

is the geometric mean of the feature in a sample. The

reference values corresponding to the segmentation points—6.65

(XGB), 6.73(LGBM), and 6.41(RF)—are 777.78, 607.89, and 837.15,

respectively. This indicates that in order to exert bifidobacterium’s
Frontiers in Immunology 07
protective effect, its abundance must be restored to approximately

600 to 800 times the geometric mean. In contrast, the reference

values for the other mentioned genera ranged from 1.2 to 1.8 times

the geometric mean, which may serve as a reference for assessing

the restoration of intestinal flora homeostasis.

In summary, the SHAP algorithm can visually explain which

specific characteristics related to gut microbial dysbiosis are

associated with a higher (or lower) risk of AD. While machine

learning algorithms have the potential to assist medical researchers

in clinical and mechanistic studies, their ambiguous processes and

high predictive performance create a “black box” dilemma. To

address this, noninvasive gut microbiota data were analyzed, and

ML algorithms combined with SHAP were used to visualize the

influence of each relevant feature on the model output. This

approach, supplemented by medical knowledge, offers new

perspectives and profound insights for the subsequent exploration

of mechanisms and practical therapeutic targets.

This study also has several limitations. The hospital-based

sample size was not large enough to cover all aspects of the

pathogenic mechanism in gut microbiota, and other confounders

have not yet been considered, which may limit the generalizability

of our findings. Future research will expand the study to include

different hospitals and regions, as well as other confounders, to

verify the reliability of our results.
Conclusions

The results of our study indicate that the machine learning

models combined with SHAP feature attribution analysis could be

used to screen key gut flora, such as Bifidobacterium, and quantify

their relationships. Prospective trials are needed to validate these

findings and further refine the understanding of association and

causality. For researchers and clinicians, interpretable machine

learning algorithms are valuable tools for extracting insights and

making accurate predictions from 16S rRNA sequencing data to

support precision medicine in patient care and recovery.
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