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Introduction: The rapid increase in the number of elderly patients with cancer

necessitates treatment strategies based on the effects of aging because of drastic

side effects of cytotoxic anticancer agents. Immune checkpoint inhibitors (ICIs)

are relatively less toxic and can be easily administered to vulnerable and aged

patients suffering from cancer. The diversity of gut microbiota and specific

bacteria affects the efficacy and safety of ICIs. Therefore, this study aimed to

assess the effect of aging on gut microbiota that play crucial roles in determining

antitumor efficacy of drugs.

Methods: Stool samples were collected from 36 aged patients pathologically

diagnosed with solid tumors before the start of drug therapy, and gut microbial
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composition was analyzed using next generation sequencing. The association

between gut microbiota and efficacy and safety of ICIs was analyzed.

Results: The abundance of Veillonella species significantly decreased in

patients aged ≥75 years. Additionally, the gut microbiota in the responder

group was significantly higher than that in the non-responder group regardless

of age. The abundance of Streptococcus species was significantly higher in the

responder group than that in the non-responder group.

Conclusions: These gut microbiota changes with aging, and its characteristics

are important parameters that also affect the efficacy of ICIs.
KEYWORDS
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Introduction

The global population is aging, and the number of elderly

patients with cancer is increasing. Elderly patients have unique

characteristics, such as decreased function of major organs owing to

aging, increased susceptibility to adverse events, multiple

comorbidities, increased number of medications, and cognitive

decline (1). Elderly patients with cancer are often excluded from

clinical trials, resulting in a lack of evidence to prescribe these

medications to them (2, 3). Therefore, elderly patients with cancer

are intolerant to pharmacotherapy, particularly cytotoxic agents.

However, treatment should not be withheld based on calendar age

alone, and the performance status (PS) and Comprehensive

Geriatric Assessment (CGA), which includes physical and

cognitive functions as represented by the G8, should be

considered (4, 5). However, PS and CGA depend on subjective

elements, and no simple and objective evaluation index for the

effects of aging has yet been established. Therefore, clinical trials

and research on the treatment of elderly patients with cancer are

necessary (6). With the introduction of immune checkpoint

inhibitors (ICIs) in 2014, drugs that use the patient’s own

immune system have become key elements for pharmacotherapy.

ICIs are less toxic than conventional cell-killing anticancer drugs,

and may be administered to elderly populations. Age-related

immune aging and changes in the composition of gut microbiota

may affect antitumor immunity; however, the actual situation is not

yet clear.

Immune function, particularly acquired immune response,

declines with aging, which is known as immunosenescence (7–9).

In immunosenescence, T cells are severely affected (10–13). As T

cells age, aging of naïve T cells reduces responsiveness to

neoantigens, which may adversely affect the efficacy of ICIs. In

some studies, no survival benefit with ICIs has been observed in

patients aged ≥75 years (14, 15), and a pooled analysis of clinical
02
trials using pembrolizumab in non-small cell lung cancer has

indicated a significantly high incidence of grade 3 or higher

immune-related adverse events (irAEs) in patients aged ≥75 years

(16). Clinically, these results suggest that immune aging affects

antitumor immunity in patients aged ≥75 years.

Approximately 40 trillion gut microbes are present in our

intestinal tract (17, 18). Gut bacteria are involved in physiological

homeostasis, progression and treatment of various diseases, such as

allergic diseases and inflammatory bowel disease, and cancer

development and therapeutic efficacy (19–21). In malignant

melanoma, patients consuming >20 g fiber per day are more

likely to have better efficacy of ICIs via modification of gut

bacteria (22). For example, in malignant melanoma and lung

cancer, specific gut microbiota have been shown to be predictive

factors for ICIs (23, 24). Akkermansia and Bifidobacterium can

modulate immune response to cancer and enhance the therapeutic

efficacy of ICIs (23, 25). Turicibacter and Acidaminococcus affect the

efficacy of ICIs as observed in a Japanese cohort (26, 27).

The gut microbiota remains stable during adulthood and then

changes in old age because of age-related physiological decline and

dietary changes (28). The gut microbiota of the elderly show higher

individual variation, diversity, and decreased stability than does

those of the adults (29). Gut microbial composition of the elderly

shows an increase in bacterial population belonging to the phylum

Bacteroidetes and a decrease in Bifidobacterium and Bacteroides,

which produce short-chain fatty acids (30–32).Moreover, the gut

microbiota of healthy subjects aged between 0–104 years change to

an elderly type around the age of 70 years, with an increase in the

abundance of Proteobacteria phylum and a decrease in Firmicutes

phylum (33).

Although the gut microbiota differs between young and elderly

people, age-related changes in the gut microbiota of patients with

cancer are unknown. Diversity of the gut microbiota and specific

bacterial population affect the efficacy and safety of ICIs in patients
frontiersin.org
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with cancer; however, the effects of age-related changes in gut

microbiota on antitumor immunity are largely unexplored.

In this study, we analyzed the gut microbiota of patients with

cancer by age group to analyze age-related changes in the gut

microbiota and their effects on the efficacy and side effects of ICIs.
Materials and methods

Patients

Thirty-six patients with cancer aged 50 to 83 years, who were

pathologically diagnosed with solid tumors and have undergone

systemic drug therapy from February 2019 to January 2021 were

included in the study. Stool samples were collected before the start

of drug therapy. The patients were divided among age groups

between 50–59 (50s; n, 10), 60–69 (60s; n, 7), 70–79 (70s; n, 18),

and 80–89 (80s; n, 1). The cancer types included stomach cancer (15

patients), non-small cell lung cancer (six patients), colorectal cancer

(six patients), microsatellite instability-high (MSI-H) solid cancer

(three patients), esophageal cancer (three patients), renal cancer

(two patients), and pancreatic cancer (one patient) (Table 1).

Of these, 16 patients were treated with ICI alone. ICI treatment

consisted of nivolumab alone in 11 patients, pembrolizumab alone

in three patients, and a combination of nivolumab and ipilimumab

in two patients. Five patients were in their 50s, three in their 60s,

seven in their 70s, and one in his 80s. Table 2 shows baseline

characteristics and clinical outcomes of their efficacy and safety.

Gut microbiota was analyzed by next generation sequencing,

and those of different age groups were compared. For the 16

patients treated with ICI alone, the association between gut

microbiota and efficacy/safety was analyzed. This study was

approved by the Ethics Committee of Showa University School of
Frontiers in Immunology 03
Medicine (approval No. B-2018-022). All patients provided written

informed consent for their participation in this study.
DNA extraction from feces

Feces samples were collected from each patient using a stool

collection kit containing guanidine (TechnoSuruga Laboratory,

Shizuoka, Japan) and stored at -80 °C until analysis. DNA was

extracted from those samples using a QIAamp PowerFecal Pro

DNA Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions.
Metagenome analysis

Metagenome analysis was performed using a next-generation

sequencer (MySeq; Illumina, San Diego, CA, USA) to analyze the
TABLE 1 Baseline characteristic of the patients (n=36).

Patient characteristics Number of cases (%)

Cancer Type

Gastric cancer 15 (41.6)

Non-small cell lung cancer 6 (16.7)

Colorectal cancer 6 (16.7)

Esophageal cancer 3 (8.3)

MSI-H cancer 3 (8.3)

Renal cell carcinoma 2 (5.6)

Pancreatic cancer 1 (2.8)

Age groups (years)

50–59 10 (27.8)

60–69 7 (19.4)

70–79 18 (50.0)

80–89 1 (2.8)
MSI-H, microsatellite instability-high.
TABLE 2 Characteristic of the patients treated with ICIs (n=16).

Patient characteristics Number of cases (%)

Cancer Type

Gastric cancer 7 (43.6)

MSI-H cancer 3 (18.8)

Non-small cell lung cancer 2 (12.5)

Esophageal cancer 2 (12.5)

Renal cell carcinoma 2 (12.5)

Regimen

Nivolumab 11 (68.8)

Pembrolizumab 3 (18.8)

Nivolumab + Ipilimumab 2 (12.5)

Age groups (years)

50–59 5 (31.2)

60–69 3 (18.8)

70–79 7 (43.6)

80–89 1 (6.3)

Progression-free survival

< 120 days 8 (50.0)

≥ 120 days 8 (50.0)

Disease control rate

SD-CR (non-PD group) 9 (56.2)

PD (PD group) 7 (43.8)

irAEs

Non-incident 7 (43.8)

Incident 9 (56.2)
MSI-H, microsatellite instability-high; SD, stable disease; CR, complete response; PD,
progressive disease; irAEs, immune-related adverse events.
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16S V3 and V4 regions of ribosomal RNA genes. Sequencing data in

FASTQ format were imported into QIIME2 v.2021.4 (https://

docs.qiime2.org/2021.4/), quality-controlled with QIIME2

DADA2 plug-in, and explored for downstream analysis using

FeatureTable artifact. A rooted phylogenetic tree for alpha

diversity analysis was generated using q2-phylogeny plugin. Reads

from each sample were rarefied to a depth of 5,000–10,000 to

minimize the effect of sequencing depth on alpha and beta diversity

measures. Based on the obtained 16S rRNA sequence data,

taxonomic and compositional analyses were performed using the

plugins q2-feature-classifier, q2-taxa, and the R package QIIME2R

(https://github.com/jbisanz/qiime2R).
Statistical analysis

We analyzed genus-level differences in gut microbiota between

two groups defined by age or clinical outcomes. Differential

abundance analyses were performed using relative abundance

data generated with QIIME2, and statistical significance between

groups was evaluated using the Mann–Whitney U test in R v.4.0.5

(https://www.r-project.org/) running under RStudio v.1.4.1106

(https://download1.rstudio.org/desktop/windows/RStudio-

1.4.1106.exe). P-values less than 0.05 were considered statistically

significant. QIIME2 was used to generate a-diversity and b-
diversity indices, as well as genus-level relative abundance data

for differential abundance testing. PICRUSt2 was used to generate a

MetaCyc metabolic pathway to predict the functions of 16S rRNA

sequences in each sample. For functional profiling, predicted

MetaCyc pathways generated by PICRUSt2 were also compared

between groups using the Mann–Whitney U-test. A volcano plot

was generated to visualize pathways with significant differences in

predicted functional activity (p < 0.05, |log2 fold change| > 1).

In the analysis of the association between gut microbiota and

efficacy/safety for the 16 patients treated with ICI alone, efficacy was

evaluated based on progression-free survival (PFS) and best overall

response (BOR). The PFS was classified into 2 groups with a cutoff of

120 days: PFS ≥ 120 days group and PFS < 120 days group. The BOR

was classified into 2 groups based on disease control rate (DCR): non-

PD group (SD-CR) and PD group. Safety was evaluated based on

irAEs, and classified into 2 groups according to presence/absence of

irAEs: incident group and non-incident group.
Results

Gut microbiota of patients grouped by the
age of 75

The gut microbiota at the genus level in patients aged <75 years

(Age<75) and ≥75 years (Age≥75) groups were plotted (Figure 1a).

The results of the a-diversity and b-diversity were used to compare

the diversity of each flora, and no differences in diversity were

observed between groups (Figures 1b, c).
Frontiers in Immunology 04
Bacterial abundance in the flora grouped
by age 75

Analysis of bacterial abundances at the genus level for gut

microbiota showed that in the Age<75 group, Lactobacillus

(5.160%), Bacteroides (4.745%), Prevotella (2.188%), Veillonella

(1.618%), Sutterella (1.546%), and Enterococcus (1.121%) were

frequently detected (Figure 2a). In the Age≥75 group,

Ruminococcus (2.391%), Streptococcus (2.014%), and Blautia

(2.000%) were frequently detected (Figure 2a). In the Age<75

group, Veillonella (p=0.002) and Haemophilus (p=0.004) were

detected more frequently than in the Age≥75 group (Figure 2).

Only Veillonella was detected more abundantly in the Age<75

group than in the Age≥75 group.

Functional analysis of genes showed that PWY-3781 associated

with aerobic respiration was more common in the flora of Age≥75

group than that in the Age<75 group (p=0.01) (Figure 2c).
Gut microbiota grouped by DCR, PFS, and
irAE

Gutmicrobiota at the genus level in the non-PD and PD groups for

DCR, in the ≥120 days and <120 days groups for PFS, and in the

groups with and without irAE are shown in the bar plot (Figures 3a–c).

To compare the diversity of each flora, a-diversity and b-
diversity were assessed. The results showed no differences in

diversity between the two groups of each classification, including

DCR, PFS, and irAE. (Figures 4a–f).

Genus-level analysis of the differences in gut microbiota

between the non-PD and PD groups showed that the non-PD

group frequently contained Streptococcus (7.485%), Bacteroides

(3.334%), Megamonas (2.435%), Sutterella (2.250%), Enterococcus

(1.886%), Lactobacillus (1.806%), and Veillonella (1.015%)

(Figure 5a). Fusobacterium (3.081%), Odoribacter (2.535%),

Ruminococcus (1.521%), and Phascolarctobacterium (1.238%)

were frequently detected in the PD group (Figure 5a).

Genus-level analysis of the differences in gut microbiota

between the groups with PFS ≥120 days and PFS <120 days

showed that Streptococcus (6.201%), Bacteroides (3.342%),

Megamonas (2.739%), Lactobacillus (2.460%), Butyricimonas

(1.102%), and Veillonella (0.938%) were frequently detected in the

≥120 days group (Figure 5b). Fusobacterium (2.511%), Odoribacter

(2.155%), Sutterella (1.852%), and Phascolarctobacterium (1.703%)

were frequently detected in the <120 days group (Figure 5b).

Genus-level analysis of the differences in gut microbiota

between the groups with and without irAE showed that

Megamonas (2.378%), Enterococcus (2.313%), Ruminococcus

(2.229%), Klebsiella (1.627%), Lactobacillus (1.606%), Blautia

(1.290%), and Phascolarctobacterium (1.104%) were frequently

detected in the incident group (Figure 5c). Streptococcus (4.287%),

Odoribacter (2.535%), Bacteroides (1.668%), Veillonella (1.624%),

Parabacteroides (1.035%), and Citrobacter (0.797%) were frequently

detected in the non-incident group (Figure 5c).
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Based on the results of the Mann–Whitney U test, only

Adlercreutzia was significantly more abundant in the non-

incident group of irAE compared to the incident group (p=0.03)

(Figures 6a–c).
Frontiers in Immunology 05
Discussion

Given the increasing number of reports on the efficacy and

safety analysis of clinical ICIs using age 75 as a cutoff, we analyzed
FIGURE 1

Percentage composition of microbiota in the Age <75 and Age ≥75 groups. (a) Relative abundance of bacteria at the genus level in the Age <75 (A)
and Age ≥75 (B) groups. Bacteria found in more than 0.1% cases were summed up to 100%. (b) Box plot of Simpson’s index and Shannon index in
the Age <75 (A) and Age≥75 (B) groups. (c) Principal coordinate analysis (PCoA) based on the Bray–Curtis dissimilarity displaying variations in
bacterial abundance in the Age <75 (A) and Age ≥75 (B) groups. Statistical differences were calculated by analyzing similarity algorithm.
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based on the hypothesis that differences in gut microbiota would be

observed between the age groups ≥75 years and < 75 years of

patients with cancer, and that these differences might be related to

the efficacy and safety of ICIs. The gut microbiota of patients aged ≥

75 years differed from those of patients aged < 75 years. Veillonella

was relatively more abundant in those aged < 75 years, in the SD-PR

group, and in PFS ≥120 days group, indicating that Veillonella is an
Frontiers in Immunology 06
intestinal microbe, and its abundance changes with age. These

changes may influence the effectiveness of ICI treatment.

One limitation of this study is that it is an observational study

with limited sample size, and we have not been able to study the

mechanism of the relationship between aging and ICIs efficacy by

actually re-administering Veillonella-like gut microbiota to mice. We

also did not examine potential aging-related factors such as
FIGURE 2

Differences in composition of gut microbiota in the Age <75 and Age ≥75 groups. (a) Relative abundance of bacteria in the Age <75 (A) and Age ≥75
(B) groups. The six top bacteria at the genus level. (b) Statistical significance of differences in bacterial abundance between the Age <75 (A) and Age
≥75 (B) groups using the Mann–Whitney U test. The red line indicates a p-value of 0.05. The six top bacteria at the genus level. (c) Volcano plots
showing bacterial metabolic pathways that differ between the Age <75 and Age ≥75 groups.
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FIGURE 3

Percentage composition of microbiota in the treatment effects and adverse events groups. (a) Relative abundance of bacteria at the genus level in
the non-PD (A) and PD (B) groups. Bacteria found in more than 0.1% cases were summed up to 100%. (b) Relative abundance of bacteria at the
genus level in the PFS ≥120 days (A) and PFS <120 days (B) groups. Bacteria found in more than 0.1% cases were summed up to 100%. (c) Relative
abundance of bacteria at the genus level in the incident (A) and non-incident (B) groups. Bacteria found in more than 0.1% cases were summed up
to 100%. PD, Progressive Disease; PFS, progression-free survival.
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comorbidities, medication history, or lifestyle changes including diet

and exercise. Moreover, host factors potentially linked to Veillonella

or Streptococcus, such as physical activity level, muscle mass, and

immune parameters (e.g., T cell profiles and cytokine levels) were not

assessed. Further studies with larger cohorts and more

comprehensive data collection, including factors suggested by the

current findings, will be necessary to clarify the relationship between

gut microbiota, aging, and ICIs efficacy.

Veillonella is known to be abundant in marathon runners,

where lactic acid produced by muscles after exercise passes

through the bloodstream into the intestinal tract and produces

short-chain fatty acids, including propionic acid (34). Aging may

reduce Veillonella because muscle strength declines with age, and

lactate production from muscles declines as aged individuals do not

exercise; therefore, relatively less Veillonella is required for lactate

metabolism. Veillonella is found not only in the intestine but also in

the oral cavity. The relationship between oral and intestinal bacteria
Frontiers in Immunology 08
has also received recent attention (35). Reportedly, the abundance

of Veillonella in the oral cavity is associated with a poor prognosis of

small-cell lung cancer and fast tumor progression (36, 37).

Streptococcus was relatively more abundant in the ≥75 years

group than in the <75 years group, in non-PD group in DCR and in

PFS ≥ 120days group in PFS with the relative change in abundance

ranking higher. Streptococcus was also relatively more abundant in

the non-incident group of irAE than in the incident group.

Streptococcus is an age-associated intestinal bacterium that affects

the efficacy and safety of treatment. This suggests that Streptococcus

is associated with therapeutic efficacy. Streptococcus increases the

response of anti-Programmed cell Death 1 (PD-1)/PD- ligand 1

(L1) by inducing the wetting of CD8+ T cells in cancer tissues (38,

39). In our study, Streptococcus was detected more in the non-PD

group, probably because Streptococcus enhanced the therapeutic

effect of ICIs by activating cancer immunity of the host. The efficacy

of ICIs may decrease because immune response usually decreases in
FIGURE 4

Diversity of microbiota in treatment effects and adverse events groups. (a) Box plot of Simpson’s index and Shannon index in the non-PD (A) and PD
(B) groups. (b) Box plot of Simpson’s index and Shannon index in the PFS ≥120 days (A) and PFS <120 days (B) groups. (c) Box plot of Simpson’s
index and Shannon index in the incident (A) and non-incident (B) groups. (d) PCoA based on the Bray–Curtis dissimilarity displaying bacterial
variations in the non-PD (A) and PD (B) groups. Statistical differences were calculated by analyzing similarity algorithm. (e) PCoA based on the Bray–
Curtis dissimilarity displaying bacterial variations in the PFS ≥120 days (A) and PFS <120 days (B) groups. Statistical differences were calculated by
analyzing similarity algorithm. (f) PCoA based on the Bray–Curtis dissimilarity displaying bacterial variations in the incident (A) and non-incident (B)
groups. Statistical differences were calculated by analyzing similarity algorithm. PD, progressive disease; PFS, progression-free survival; PCoA,
principal coordinate analysis.
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FIGURE 5

Differences in gut microbial compositions between the treatment effects and adverse events groups. (a) Relative abundance of bacteria between the
non-PD (A) and PD (B) groups. The seven top bacteria at the genus level. (b) Relative abundance of bacteria in the PFS ≥120 days (A) and PFS <120
days (B) groups. The seven top bacteria at the genus level. (c) Relative abundance of bacteria in the incident (A) and non-incident (B) groups. The
seven top bacteria at the genus level. PD, progressive disease; PFS, progression-free survival.
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the group of patients over 75 years of age (7–15). Therefore, in aged

individuals, Streptococcus may activate immune cells, thereby

improving the therapeutic effect of ICIs.

Although it has been reported that the diversity of the gut

microbiota decreases in the elderly (29), no difference in diversity,

which may affect the efficacy of cancer immunotherapy, was found

between those younger than 75 years and those older than 75 years

in the present study. It is possible either that the gut microbiota and

its diversity differ between cancer patients and healthy individuals

(40, 41) for this reason, or that the 75-year age boundary is not

related to the diversity of the gut microbiota. Analysis of gene

function revealed that gene expression related to aerobic respiration
Frontiers in Immunology 10
was higher in the Age <75 group, indicating that the gut microbiota

of this group was more diverse than that of the Age ≥75 group,

probably owing to the presence of relatively more aerobic bacteria

in the gut microbiota. Since aerobic bacteria usually require oxygen

for growth and are nondominant bacteria in the intestinal

environment, oxygen content of the intestinal environment of the

Age <75 group may differ from that of the Age ≥75 group.

No difference was observed in the changes of gut microbial

diversity between the Age <75 and Age ≥75 groups; however, a

decrease in the abundance of Veillonella was observed in the elderly.

In addition, the analysis of DCR detected a difference in the

abundance of Streptococcus between the non-PD and PD groups,
FIGURE 6

Statistically significant differences in the treatment effects and adverse events groups using the Mann–Whitney U test. The red line indicates a p-
value of 0.05. (a) The six top bacteria in the non-PD (A) and PD (B) groups at the genus level. (b) The six top bacteria in the PFS ≥120 days (A) and
PFS <120 days (B) groups at genus level. (c) The six top bacteria in the incident (A) and non-incident (B) groups at the genus level. PD, progressive
disease; PFS, progression-free survival.
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and Streptococcus was relatively more abundant in the Age ≥75

group. Reports on age-related changes in the gut microbiota of

patients with cancer are scanty. This study allowed us to identify

changes in the gut microbiota with age in patients with cancer, and

its subsequent effect on the efficacy of ICIs. In addition to

assessment methods such as PS and CGA, examination of the gut

microbiota, especially Veillonella and Streptococcus, may be useful

as a simple and objective indicator of aging when considering the

indications and limitations of anticancer therapy in the elderly.
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