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Serologic biomarker discovery
for differentiating Lyme disease
from diseases with similar clinical
symptoms using broad profiling
of antibody binding
Tingting Zhang1, Laurie Baert2, Neal W. Woodbury1

and Laimonas Kelbauskas1,3*

1Biodesign Institute, Arizona State University, Tempe, AZ, United States, 2Department of Immunology,
Mayo Clinic, Scottsdale, AZ, United States, 3Biomorph Technologies, Chandler, AZ, United States
Introduction: Lyme disease (LD) is a tick-borne disease that is a substantial public

health burden with estimated about 0.5 million new cases per year in the US and

increasing incidence. Differentiating Lyme disease, especially in its early stages,

from other febrile illnesses with similar clinical symptoms (look-alike diseases)

represents a significant challenge due to the lack of diagnostic tools. Current

diagnostic tools based on serology were not specifically developed for

differential diagnosis and show limited sensitivity in early LD resulting in high

false negative rates.

Methods: The work presented here focuses on a broad profiling of the humoral

immune response in terms of circulating antibody repertoire in patients

diagnosed with LD and a number of diseases with similar clinical symptoms. A

combination of antibody binding to a library of linear, diverse peptides and

machine learning methods revealed a panel of biomarker proteins from the

proteome of the Borrelia burgdorferi bacterium (LD causing pathogen) that can

be used to differentiate between LD and other diseases.

Results: A subset of the biomarkers was independently validated and

demonstrated to show robust differentiating power. Importantly, the

discovered biomarkers distinguish between LD patients that previously tested

negative with the current test standard (false negatives) and the look-

alike diseases.

Discussion: These findings are important in that the discovered biomarkers can

be utilized for differential diagnosis of LD. Furthermore, because the discovery

approach is agnostic, the results suggest that it can also be used for biomarker

discovery of other diseases.
KEYWORDS
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Introduction

Tick-borne diseases (TBDs) have become a major public health

challenge with a projected incidence rate of >35% of the global

population by 2050 (1). Lyme disease (LD) is the most prevalent

tick-borne zoonotic disease in the USA with an estimated 476,000

new cases each year and increasing incidence (2). Despite recent

advances, the diagnosis of LD, especially in the early stages of the

disease, remains challenging due to the limitations of the current

testing methods. The current standard for LD diagnosis is based on

the detection of antibodies raised by the humoral arm of the human

immune system against specific antigens from the Borrelia

burgdorferi proteome. These tests are only ~30% sensitive in the

early stages of the disease at 96% specificity (3). Adding to the

diagnostic challenge is the fact that LD typically presents with

symptoms such as fever, muscle pain, and fatigue, which are shared

with a number of other common diseases like the flu or seasonal

cold. The “bullseye rash” [erythema migrans (EM)], a typical tell-

tale sign of LD, does not appear in a substantial portion of patients

or presents with differing morphology, further complicating

diagnosis (4–6). Furthermore, there is increasing evidence that an

EM-like rash can be present in patients after exposure to pathogens

other than members of the B. burgdorferi sensu lato complex (7, 8).

As a result, misdiagnosis with another disease can result in poor

treatment outcomes.

A B. burgdorferi infection can involve a range of organs

resulting in dermatological, cardiac, neurological, and

musculoskeletal disorders. Successful differential diagnosis of

Lyme disease against diseases with look-alike symptoms is

required for timely treatment when antibiotics are most effective

(9). Delays in diagnosis in approximately 40% of patients result

from an absence of an EM rash, unnoticed tick bite, human factors,

and confounding symptoms that indicate another disease (10).

Other TBDs, such as Babesia microti and Ehrlichia spp., are

spread by the same tick as B. burgdorferi and result in febrile

illness with similar symptoms (11). One problem with the current

diagnostic is that it was developed to differentiate LD from healthy

controls. However, due to the significant symptom overlap with

other, common diseases, the development of a diagnostic approach

designed to distinguish between LD and a broad range of diseases

would be very beneficial.

Lyme disease can be misdiagnosed as influenza, Epstein–Barr

virus (EBV), and parvovirus B19, which cause similar fever,

myalgias, and fatigue (12, 13). Cross-reactivity of antibodies

raised during EBV and syphilis and against autoimmune markers

on current serologic tests further confounds diagnostic tests

(14–17).

B. burgdorferi presents unique challenges in even the acute

disease presentation that are associated with its innate ability to

modulate host immune system response (18). It is a highly

antigenically heterogenic genospecies with 25 known serotypes of

Outer Surface Protein C (OspC) alone (19). In addition, different

strains carry different combinations of extra-genomic plasmids that

encode immunogenic antigens (20, 21); recombinant antigenic

variation alters the VlsE surface protein, which enhances immune
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evasion (22–24); there is geographic variation in antigens

recognized by serum antibodies (25, 26); and co-infection can

occur with multiple B. burgdorferi strains (27, 28) or with other

tick-borne diseases such as Babesia (28, 29). Within the B.

burgdorferi sensu lato complex, five genospecies including B.

burgdorferi, Borrelia afzelii, and Borrelia garinii (with the latter

two mainly found in Europe) are known to cause LD in humans

(30), while others such as Borrelia mayonii cause an LD-like illness,

and Borrelia miyamotoi, a relapsing fever spirochete, circulates via

the same tick (31, 32). Direct detection methods targeting B.

burgdorferi are limited due to the low bacterial load in the blood

after the initial infection (33). Therefore, serology has been the

method of choice for LD diagnosis based on the presence of

antibodies specific to targets in the B. burgdorferi proteome.

This study was designed to address the question of whether a

broad, agnostic profiling of the humoral immune response can

identify a set of immunogenic proteins from the B. burgdorferi

proteome that gives rise to antibodies with differential reactivity

between LD and a number of other febrile diseases. Because LD is

known to be highly heterogeneous in terms of the adaptive immune

response of the host, as well as timing for disease progression and

symptom severity, we utilized a method for broad and unbiased

profiling of the circulating antibody binding repertoire in sera

obtained from LD patients and from individuals diagnosed with

other diseases that have similar clinical symptoms [look-alike

diseases (LADs)].

To accomplish this, a random and sparse sampling of the entire

combinatorial sequence space of short (6–13 amino acids long)

linear peptides was represented on a peptide array consisting of

126,051 unique, randomly designed peptides that do not represent

any specific antigen or pathogen. After exposing the peptides to

antibodies contained in a serum sample, the binding profile of each

patient’s antibodies to the peptide library is measured using a

fluorescently labeled secondary polyclonal anti-IgG antibody, and

this is read out as fluorescence intensity. A comprehensive

sequence-binding relationship between the peptide array

sequences and the measured IgG binding values is developed by

training a machine learning (ML) algorithm. This model is then

used to predict the total IgG binding in each serum sample to the

proteins that make up the B. burgdorferi proteome or to the

proteomes of other pathogens.

A number of candidate proteins from the B. burgdorferi

proteome with predicted differential Ab reactivity are selected

based on the predicted binding values. After selection, the

candidate proteins were expressed in Escherichia coli, and their

ability to differentiate between LD and look-alike diseases was

evaluated on an orthogonal, bead-based assay.

Previous work from this lab (34–41) has demonstrated the

utility of this approach to identify linear epitopes of a number of

monoclonal antibodies (42), differentiate among different infectious

diseases (43), and reveal substantial person-to-person variability in

humoral immune response in LD patients (36). These studies have

shown that despite the inherent limitation of the linear peptides in

identifying conformational (discontinuous) epitopes, the method is

capable of providing biologically relevant insight into humoral
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immune responses by broadly characterizing antibody binding

profiles in a disease-agnostic manner. Importantly, the

investigation of LD humoral immune response also revealed a

differential humoral response between the seropositive and

seronegative LD cohorts, suggesting that the two patient

subgroups should be considered distinct. The same study also

reported strong similarity in antibody binding profiles between

LD and healthy controls from geographies endemic to LD, but not

other locations, indicating potentially high seroprevalence in areas

with high LD incidence.

In comparison with the previous work, the current study

presented here is based on a substantially expanded LD+ cohort

as well as expanded look-alike disease cohorts to increase the

statistical power and generalizability of the approach in

identifying immunogenic targets in LD. In principle, this type of

approach opens the door to the discovery of novel, potentially more

potent biomarkers for disease diagnosis and provides a disease-

agnostic means for the identification of new therapeutic targets for a

number of infectious and autoimmune diseases for which currently

no cure exists.

Here, the approach described above was used to select candidate

biomarker proteins from the B. burgdorferi proteome that show

predicted differentiation between LD patients and patients with a

range of other febrile diseases that have similar symptoms, resulting

in substantial improvement in the sensitivity of the assay over the

current serologic test standard. This involved antibody profiling on

peptide arrays, predicted binding to the entire B. burgdorferi

proteome, and a subsequent candidate biomarker selection

process, followed by a validation of the selected targets.
Results

Antibody binding profiles measured on
peptide arrays

Antibody binding of a total of 536 human serum samples

representing seropositive (LD+) and seronegative (LD−) Lyme

disease and 13 diseases with symptoms similar to LD (LADs; see

Table 1 for cohort breakdown) were profiled on the peptide arrays.

The “seropositive” designation was assigned to the LD patients who

presented with a rash of >5-cm diameter and tested positive with

the Centers for Disease Control and Prevention (CDC)-

recommended serologic test. Lyme disease patients who presented

with a rash of >5-cm diameter but tested negative with standard

two-tier test (STTT) were categorized as “seronegative” LD.

The sequences of the peptides on the array were designed

randomly with a goal of equally representing 19 (cysteine was

excluded due to synthesis constraints) canonical amino acids on the

array. As a result, the peptide arrays can be understood as an

unbiased and agnostic way to evenly interrogate the binding of the

patient’s antibody repertoire to the entire combinatorial space of

10-mer peptides. Due to the random and agnostic peptide array

design, any differences observed in antibody binding between the

study cohorts can be attributed to a specific humoral immune
Frontiers in Immunology 03
system response and should not be affected by the peptide array

design per se.

The distribution of binding intensities of total serum IgG to

peptide array sequences shows an overall stronger binding for

samples from the patient cohort with LADs compared to the LD+

and LD− disease cohorts (Figure 1). All three cohorts show bimodal

distributions with two distinct peaks in their binding intensity. The

first peak is centered at the low end of the binding intensity range

close to the background binding signal on the array. Thus, the first

peak likely represents the fraction of peptides that bind antibodies

non-specifically and only weakly or not at all. The second peak in all

three cohorts involves stronger binding peptide sequences. Despite

the similar shape of the distributions between the three cohorts, the

distributions show differences. The shift of the second peak with

respect to the first varies markedly with cohort. The look-alike

cohort shows the largest separation between the peaks with

approximately 4× higher intensity of the second peak (0.6 on the

log10 scale). The seronegative LD (LD−) group of patients exhibits

the smallest ratio of ~1.6× in the shift between the two peaks, with

the seropositive (LD+) cohort showing an intermediate shift of ~2×.

The position of the second peak presumably captures the more

specific binding and thus likely contains the disease-specific

response. This suggests that antibodies in the look-alike disease

group show an overall stronger immune response compared to both

LD cohorts. Consistent with this, the LD+ cohort where clear

antibody reactivity has been measured results in overall stronger

binding than the LD− cohort, presumably reflecting the larger

number of reactive antibodies present (Figure 1A).
TABLE 1 Discovery cohort breakdown.

Disease Number of samples

Seropositive LD (LD+) 186

Seronegative LD (LD−) 102

Alcoholic liver disease 9

Antinuclear antibodies 15

Babesia 23

Chlamydia 12

Dengue 3

Epstein–Barr virus 82

Fibromyalgia 1

Influenza 27

Mononucleosis 2

Parvovirus 9

Rheumatoid arthritis 14

Syphilis 19

West Nile virus 17

Total 521
Anti-SSA, anti-Sjogren’s syndrome-related antigen A autoantibodies; LD, Lyme disease.
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The binding intensities between the three cohorts were

qual i ta t ive ly compared using the Uniform Manifo ld

Approximation and Projection (UMAP) method for data

dimensionality reduction and visualization (Figure 1B). The three

disease cohorts show substantial overlap with one another in this

representation (also see Supplementary Figure 1 for pairwise

comparison using UMAP; the look-alike and LD− cohorts show

partial separation in a binary comparison; Supplementary

Figure 1B). This suggests that despite the observed differences in

the binding intensity distributions between the cohorts,

differentiation based on the binding intensities of the individual

peptide is not as clear. Interestingly, the UMAP representation

suggests the presence of at least three subclusters in the data

(Figure 1B), indicating underlying additional complexity with

differences in fractional distributions among the cohorts. For

example, cluster 3 contained only 27 out of 235 (11%) of the

LAD patients, with the rest of the cohort distributed approximately

evenly between clusters 1 and 2. In contrast, 39 out of 93 (42%) LD−

individuals were included in cluster 3, while 17 (18%) and 37 (40%)

were contained in clusters 1 and 2, respectively. The LD+ patients

are distributed approximately equally among the three clusters.

Because of the differences observed between the seropositive

and seronegative LD groups compared with the look-alike diseases,

the combined LD (LD+/LD−) cohorts were compared with the

look-alike disease cohort in determining p-value distributions and

building classifier models. As observed earlier when analyzing the

binding intensity distributions (Figure 1), the majority of the

peptides showed lower binding intensities in the LD cohorts

compared with the look-alike diseases regardless of whether the

LD cohorts were combined or not (Figures 2A–C). A comparison of

classification performance using the Extreme Gradient Boosting

(XGBoost) algorithm (Figures 2D–F) showed higher Area under the

curve (AUC) values for both LD+ vs. LADs and LD− vs. LADs

(AUC = 0.83, 95% CI: 0.77–0.98, and AUC = 0.85, 95% CI: 0.81–

0.89, respectively) compared to the combined (LD+/LD−) vs. LADs

[AUC = 0.77 (0.72–0.82)]. This result indicates a somewhat better

classification in terms of AUC value when the two LD cohorts are
Frontiers in Immunology 04
considered separately. The classification results imply that the LD+

and LD− cohorts differ not only in terms of known biomarkers

being positive in LD+ but also in terms of antibody reactivity that is

unique to LD−.
Predicted antibody binding to the B.
burgdorferi proteome

Due to the random nature of the peptide sequences in the array

library, one cannot directly use the information about the sequence-

binding relationship to determine what proteins from the B.

burgdorferi proteome may be immunogenic and serve as potential

candidate biomarkers. To select proteins from the B. burgdorferi

proteome for further validation, ML approaches were used to model

the underlying sequence-binding patterns and then project the

patterns onto all B. burgdorferi proteins. The sequences of each

protein from the B. burgdorferi B31 strain proteome (n = 1,219)

were split into 10 AA-long tiles with nine amino acids (AA)

overlapping between adjacent tiles. The proteome tiles were then

one-hot encoded and used as input for the neural network (NN)

models trained on the peptide array binding data of each sample,

resulting in predicted binding intensities of every tile. These were

assembled into a predicted binding map of each protein. Note that

one separate model was trained on the binding data from each

patient, resulting in B. burgdorferi binding predictions generated for

each patient. A comparison of the predicted binding distributions

(Figure 3A) shows similar characteristics to the measured binding

on the peptide array. All three cohorts show distinct bimodal shapes

with the first peak representing weak binders and the second peak

capturing mainly the stronger interactions. With respect to the LD+

and LD− cohorts, the LAD group shows the largest separation

between the two peaks. It is also shifted most toward the higher

intensities (stronger interactions) compared with the other two

cohorts, followed by the LD+ and LD− groups. However, there is

one substantial difference between the measured and predicted

distributions. The second peak (strong interactions) in the
FIGURE 1

Comparison of antibody binding to library peptides between the three cohorts. (A) Intensity distributions of binding to the peptide library on the
microarray. The intensity values have been log-transformed to make them more normal-like. The Y axis represents density of counts. (B) UMAP
representation of the data shown in panel A with look-alike diseases, LD−, and LD+ represented as green, blue, and red circles, respectively. The
dashed ovals represent three clusters within the distribution. UMAP, Uniform Manifold Approximation and Projection; LD, Lyme disease.
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distribution of predicted values to the B. burgdorferi proteome is

higher than the first peak (Figure 3A), in contrast to that observed

in the measured array peptide binding values (Figure 1A). This

suggests that the sequences from the B. burgdorferi proteome

overall contain more peptides (tiles) that resemble antigenic

targets of antibodies in each patient. Interestingly, a UMAP

representation of the predictions (Figure 3B) revealed a
Frontiers in Immunology 05
distribution with fewer distinct subclusters as compared to the

measured intensities (Figure 1B) even though the shape and overall

overlap between the distributions of the three cohorts are similar. In

addition, the LAD and LD− cohorts (green and blue dots in

Figure 1B) appear to be separated more than observed in the

measured data (Figure 1B), at least visually. Nevertheless, the

overall similarity between the measured and predicted
FIGURE 2

Separating LD+ and LD− cohorts provides better classification performance compared to the combined LD+/LD− cohort from the look-alike
diseases. p-Value distributions (volcano plots; (A–C)) and classification performance in terms of receiver operating characteristic (ROC) curves (D–F)
of the following contrasts between the cohorts: combined LD+/LD− vs. look-alike diseases (A, D), LD+ vs. look-alike diseases (B, E), and LD− vs.
look-alike diseases (C, F). In all three cases, an XGBoost classifier was trained on 90% randomly chosen peptides in the entire library (n = 126,051
peptides). The remaining 10% of the data were used for cross-validation, which was performed 10 times. The AUC values and their 95% confidence
intervals are shown in the graphs. LD, Lyme disease; XGBoost, Extreme Gradient Boosting.
FIGURE 3

Mapping peptide array binding data onto the Borrelia burgdorferi proteome. (A) Predicted binding intensity distributions. (B) UMAP representation of
the predicted Ab binding intensities to the tiled B. burgdorferi proteome with look-alike diseases, LD−, and LD+ represented as green, blue, and red
circles, respectively. The distributions and the UMAP representation of the predictions show close similarity to the measured data. LD, Lyme disease;
XGBoost, Extreme Gradient Boosting; UMAP, Uniform Manifold Approximation and Projection.
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distributions indicates reliable model performance with regard to

projecting patterns in the learned data onto a biologically

relevant context.
Statistical significance and classification
performance using binding prediction to
the B. burgdorferi proteome

The model predictions of antibody binding to the B. burgdorferi

proteome were analyzed in terms of p-value distributions

(Figures 4A–C). Similar distribution characteristics were observed

to those of the data measured on the peptide arrays (Figure 2), with

the majority of the proteome tiles showing lower predicted binding

intensities to antibodies in sera of the LD+ and LD− cohorts

compared to the LAD group of patients. Two arbitrary threshold

ratio values of 0.8 and 1.2 were used to better highlight trends in the

differential binding profiles. There are relatively few tiles that show

stronger binding in the LD cohort than in the LAD cohort,

consistent with the binding distributions for the cohorts

(Figure 3A). Classifier models were trained on the predicted B.

burgdorferi binding values (Figures 4D–F). Lower classification

performance was observed compared to models trained on the

measured peptide array data (Figures 2D–F). All three classifiers

showed similar AUC values, suggesting, in contrast to the results
Frontiers in Immunology 06
obtained with the peptide array data, comparable differentiation

between the two LD and the LAD cohorts. Unlike the models

trained on the measured peptide array data, the classification of the

combined LD+/LD− vs. LAD cohorts was similar to the

classification using the separate cohorts.
Candidate protein biomarker selection
from the B. burgdorferi proteome

Note that the analysis of predicted total IgG binding to the B.

burgdorferi proteome, as described above, was performed at the

level of separate sequence tiles and not complete proteins. This

resulted in generally low effect sizes and mediocre classification

performance, suggesting that there are no strong candidate

biomarkers at the individual sequence tile level.

It is not very surprising that short sequence pieces of potential

antigens do not provide strong differentiation. Past work has shown

that the immune response to Lyme disease is very heterogeneous

(36, 44), and thus, even if patients have antibodies against common

proteins, they may well not bind to the same epitopes in those

proteins. An alternative is to consider the aggregate predicted

binding to each protein in the proteome and in this way select

candidate protein biomarkers from the B. burgdorferi proteome

with high predicted differentiating power between the combined LD
FIGURE 4

Statistical significance of predicted antibody binding intensities to tiles of the Borrelia burgdorferi proteome (A–C) and classification performance
between the corresponding cohorts (D–F). The horizontal axis in (A–C) represents the ratio of intensity means between the corresponding LD
cohort and the LAD. The p-values were calculated using a t-test and are not adjusted for multiple hypothesis comparison to better highlight
differences among the comparisons. The blue dots in (A–C) depict tiles with predicted binding intensities below a threshold intensity ratio of 0.8
between the LD and LAD cohorts. LD, Lyme disease; LAD, look-alike disease.
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+ and LD− cohorts and the LAD group of patients. Two different

complementary methods were used for candidate protein selection.

The first method was based on ranking the proteins by the lowest p-

value determined from the predicted binding values of the tiles that

make up its sequence. The p-values were calculated using the outlier

sum statistics (45) (see Materials and Methods) selecting the

proteins with a false discovery rate (FDR) of <0.05. The outlier

sum statistics method was chosen to account for the long tails in the

binding intensity distributions observed on the peptide array assays.

It has been demonstrated that outlier sum statistics outperforms the

t-test method for calculating the statistical significance of

distributions with outliers (45). This method of selection resulted

in a total of 19 protein candidates being selected from a total of

1,281 proteins (Supplementary Data Sheet 1) contained in the B.

burgdorferi proteome (Table 2) (Equations 1–4). The last two

proteins in Table 2 were included because the FDR values were

above the 0.05 cutoff by only a small margin.

The second method for candidate protein selection utilizes the

XGBoost classifier trained on the predicted binding intensities

comparing the combined LD cohorts vs. the LAD cohort

(Figure 4A). The XGBoost algorithm is based on a decision tree

structure and intrinsically performs feature selection during

training. As a result, a trained classifier is based on a subset of the
Frontiers in Immunology 07
features (protein tiles, in this case) that contribute to the

classification of the two cohorts. To identify protein candidates,

first, only the tiles that were selected by the algorithm in all the

cross-validation rounds (n = 10) were kept. Second, the B.

burgdorferi proteins were then ranked by the number of different

tiles they contained that met this criterion (Supplementary Data

Sheet 2). Proteins that contained at least three tiles from the list

above were selected as candidate biomarkers, resulting in a total of

34 proteins (Table 3). The arbitrary threshold for the number of

tiles per protein was set to 3 to both limit the number of candidate

proteins and increase the likelihood of a protein showing true

differentiating power.

Interestingly, neither of the lists contains any of the serologic

biomarkers used in the current LD testing standard. This indicates

that the differential humoral immune response between the LD and

LAD cohorts may have a different set of target antigens than when

comparing LD with healthy controls (36). The two lists show no

overlap and represent two unique sets of proteins. The list produced

by method 2 does contain several proteins [including the two top-

ranked proteins in Table 3: the outer membrane protein (O51735)

and an uncharacterized protein (O51465)] that are either known to

be located on the membrane of the bacterium or are predicted

extracellular (secreted) proteins. The cellular location makes these
TABLE 2 Selected candidate biomarker proteins from the Borrelia burgdorferi proteome using the outlier sum statistics method.

UniProt ID p-Value FDR Protein

O51353 2.92E−06 3.69E−03 50S ribosomal protein L1

O51555 9.42E−06 5.60E−03 Trigger factor

O51247 1.33E−05 5.60E−03 50S ribosomal protein L31 type B

P52323 2.13E−05 6.34E−03 RNA polymerase sigma factor RpoD

O51757 2.51E−05 6.34E−03 UDP-N-acetylmuramate–L-alanine ligase

O51112 3.92E−05 8.27E−03 Uncharacterized protein BB_0085

O50893 1.45E−04 2.42E−02 HTH_OrfB_IS605 domain-containing protein

O51178 1.68E−04 2.42E−02 Uncharacterized protein

O51143 1.94E−04 2.42E−02 Pts system, maltose and glucose-specific IIABC component

O51632 1.77E−04 2.42E−02 Uncharacterized protein BB_0689

O51604 2.10E−04 2.42E−02 GTPase Era

O51141 2.61E−04 2.53E−02 Single-stranded DNA-binding protein

O51560 2.42E−04 2.53E−02 30S ribosomal protein S4

O51401 2.80E−04 2.53E−02 Fructose-bisphosphate aldolase

O51286 3.10E−04 2.55E−02 Ribosomal RNA small subunit methyltransferase H

O50821 3.23E−04 2.55E−02 Adenine deaminase

O51324 5.45E−04 4.05E−02 Uncharacterized protein

O50667 7.31E−04 5.14E−02 Type I restriction enzyme r protein n terminus (Hsdr_n)

P53362 8.00E−04 5.32E−02 tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG
p-Values are not adjusted for multiple comparisons. FDR is p-value corrected for multiple comparisons using the Benjamini–Hochberg method.
FDR, false discovery rate.
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proteins accessible to antibody binding and provides further support

for biological inference of the protein selection method. The finding

that neither of the two lists contains any of the known LD

biomarkers, e.g., the VlsE protein, is likely due to the difference in

cohorts being compared. The standard serologic biomarker panel was

developed to differentiate between LD and healthy controls, whereas

here, LD was compared with LADs. Furthermore, the finding that the

LD+ and LD− groups of patients were characterized by distinct

antibody reactivity profiles, as demonstrated previously (36) and in

this study (Figure 2), means that combining the two cohorts as

conducted has the potential to result in a set of biomarkers that better

differentiates the combined LD cohort from LADs.
Candidate biomarker verification using
bead-based multiplex binding assays

A total of 53 candidate proteins from the B. burgdorferi proteome

were selected for further consideration. However, only 44 of these

were successfully synthesized; the nine remaining proteins were

excluded from synthesis due to substantial transmembrane regions.

In addition, the VlsE protein, a biomarker that is currently being used

for standard serology testing for LD, was included as a positive

control for the LD+ samples. For validation assays, the proteins

were attached to carboxylated paramagnetic beads using N-

hydroxysulfosuccinimide sodium salt (NHS) chemistry (Materials

and Methods). The beads were incubated with serum samples, and

the antibody binding was measured as fluorescence intensity using a

secondary polyclonal anti-IgG antibody labeled with phycoerythrin.

A total of 185 LD+, 102 LD−, and 236 LAD samples were used for

validation with the bead-based assays (Supplementary Table 1). All

samples were assayed in duplicate, and the mean values of the

duplicates were used for further analysis. For data analysis, the

binding values were converted to a log10 scale (Supplementary

Figure 3A). The background binding signal was determined as the

fluorescence intensity of the protein with the lowest coefficient of

variation (CV) across all three cohorts. Low variation in the binding

intensity of such a protein indicates that its binding is not disease-

specific and can be used as a reference. While “blank” beads, i.e.,

beads not conjugated to any of the proteins, were also included in the

assay as negative controls, it was observed that they showed some

differential binding between the cohorts. It is possible that some of the

antibodies in the three groups of patients exhibit preferential binding

to the carboxyl moiety on the negative control beads. Further

analyses, including classifier training, were performed with log-
TABLE 3 Candidate biomarker proteins selected utilizing the classifier-
based method.

UniProt ID Tile count Protein

O51465 5 Uncharacterized protein

O51735 5 Outer membrane protein

O51067 4 Uncharacterized protein BB_0038

O51157 4 Transcription elongation factor GreA

O51291 4 NAD kinase

O51578 4 RecBCD enzyme subunit RecB

P42555 4 Chaperone protein HtpG

O51319 4 DNA helicase

O51409 4 Transporter, small conductance
mechanosensitive ion channel (MscS) family

O51504 4 Uncharacterized protein

O51195 3 Uncharacterized protein BB_0173

O51229 3 DNA mismatch repair protein MutL

O51316 3 Aspartyl/glutamyl-tRNA(Asn/Gln)
amidotransferase subunit B

O51349 3 DNA-directed RNA polymerase
subunit beta

O51540 3 Arginine–tRNA ligase

O51560 3 30S ribosomal protein S4

O51680 3 Valine–tRNA ligase

P50062 3 Elongation factor Tu

P70838 3 Uncharacterized protein BBD11

Q44737 3 Chemotaxis protein CheA

G5IXI8 3 Uncharacterized protein

H7C7M1 3 ErpM protein

O51310 3 Oligopeptide transport system permease
protein OppC

O51326 3 Uncharacterized protein

O51381 3 Sensory transduction histidine
kinase, putative

O51485 3 Uncharacterized protein

O51570 3 N-acetylmuramoyl-L-alanine
amidase, putative

O51574 3 Pts system, fructose-specific
IIABC component

O51655 3 zf-RING_7 domain-containing protein

O51687 3 Oligopeptide ABC transporter,
permease protein

O51770 3 Exonuclease SbcC

O51774 3 ATP-dependent Clp protease, subunit C

(Continued)
TABLE 3 Continued

UniProt ID Tile count Protein

O51784 3 Lipoprotein, putative

Q9RZW8 3 Adenine-specific DNA methyltransferase
Tile count indicates the number of tiles from the corresponding protein that were selected by
the classifier in each cross-validation round (n = 10).
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transformed intensity values that were used directly without further

normalization. For classifier training, the LD+ and LD− cohorts were

separated and contrasted against the LAD cohort individually. This

was conducted based on the earlier findings in this study that

suggested a different humoral immune response profile in the two

groups of patients (Figures 1-4). One of the goals of the biomarker

validation study was to determine if it would be possible to reduce the

number of candidate proteins to a smaller subset to reduce the

complexity of a potential diagnostic assay. To this end, classifier

training was performed using all biomarkers and selected subsets.

Feature selection was performed using two different methods: a) first,

an XGBoost classifier was trained on data from all proteins. Because

the algorithm performs feature selection during training, the proteins

with the highest differentiation power (see Supplementary Figure 3B

for a cohort-level comparison of two highest ranking by importance

proteins) were used for training another XGBoost classifier on the

reduced set of features. b) Proteins were selected based on the p-

values of a t-test whereby a number of proteins ranked by increasing

p-value (decreasing statistical significance) were chosen for classifier

training. Figures 5A–C show the receiver operating characteristic

(ROC) curves of classifiers trained using the XGBoost algorithm and

a subset of biomarkers that resulted in the best classification accuracy

(highest AUC value) in the entire range of the number of proteins

selected for training. The classifiers were trained to distinguish

between three different contrasts: a combined LD+/LD− cohort and

LAD, LD+ vs. LAD, and LD− vs. LAD patients. Classification

accuracy in terms of AUC value was determined as a function of

the number of proteins included in the training dataset. A

comparison of the best classification performance achieved for each
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contrast when varying number of proteins in the panel was slightly

lower for the combined LD vs. LADs with AUC = 0.84 (95 CI: 0.81–

0.88) (Figure 5A) than the two other contrasts with AUC values of

0.88 (95 CI: 0.84–0.94) (Figure 5B) and 0.87 (95 CI: 0.82–0.93)

(Figure 5C) for LD+ vs. LAD and LD− vs. LAD contrast, respectively.

Classification performance as a function of the number of features

(proteins) used in training (Figures 5C–E) varies only slightly for the

combined LD vs. LADs and LD+ vs. LADs. In comparison, the AUC

values for the LD− vs. LAD differentiation showed a slight but notable

upward trend with the increasing number of features (Figure 5D).

This suggests that the differentiating information is distributed more

broadly in the LD−/LAD than in the LD+/LAD contrast. A

comparison of the AUC values obtained with the full set of

proteins (n = 45) indicates that all three contrasts show a reduction

in classification accuracy when the full set of proteins is used.

Interestingly, the LD+ vs. LAD contrast shows improved

performance with AUC = 0.88 (95 CI: 0.84–0.94) when using 11

proteins that rank highest by importance/differentiating power as

determined by the classifier trained on the full set of proteins

(Figure 5A). While the LD− vs. LAD classification gave a

comparable performance to the LD+ vs. LAD classification when

all features were used, there is one substantial difference between

them. Interestingly, when comparing the biomarkers ranked by

predictive power to distinguish between LD+/LADs and LD

−/LADs, it is clear that panel composition differs substantially

between the two comparisons (Table 4). Here, the gain parameter

represents the fraction of overall classification performance that a

particular protein biomarker contributes to the total classifier models

shown in Figures 5B, C. The higher values represent stronger
FIGURE 5

Classification performance of models trained on the bead-based assay data. Combined LD+/LD− (A), LD+ (B) and LD− (C) cohorts were each
compared against the sera from the patients in the LAD cohort using subsets of proteins that resulted in highest accuracy. The number of proteins
used for training was varied for all three contrasts (D–F) by selecting a subset of biomarker candidates either based on predictive power calculated
by a classifier trained on a full set of proteins (blue curve) or by ranking the proteins based on the p-value (orange curve). LD, Lyme disease.
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differentiating power with the gain values of all biomarkers used

adding up to 1. As expected, VlsE (UniProt ID G5IXI6) exhibits by

far the most differentiating power (0.37) in separating LD+ from LAD

patients. Consequently, the removal of VlsE from the training dataset

resulted in a marked drop in the AUC value to 0.71 (data not shown).

However, it is also clear that VlsE alone was not sufficient to achieve

the demonstrated classification performance (Figure 5B) and that

additional biomarkers made smaller but substantial contributions to

the classification performance. In contrast, VlsE had a distinguishing

power of only 0.05 in the LD−/LAD contrast with three other

proteins scoring higher. This is consistent with the LD− cohort

being negative on standard panels containing VlsE. Overall, the

data in Table 4 suggest differences in biomarker panels between the

two contrasts, with VlsE being the only protein shared among the 10

highest-ranking biomarkers.

Both feature selection methods (t-test and XGBoost) resulted in

comparable classification outcomes, with the t-test-based selection

method resulting in lower performance compared to the classifier-

based method (Figures 5C–E). The classification performance as a

function of the number of selected proteins demonstrates that one

can substantially reduce the number of antigens in the panel without

markedly affecting classification performance. For example, the data

in Figure 5D show that one can achieve comparable performance for

differentiating between the combined LD and LAD patients with as

few as five proteins, whereas only slightly reduced performance can

be reached with five and six proteins for LD+ vs. LADs (Figure 5E)

and LD− vs. LADs (Figure 5F), respectively.

In summary, the validation assay data analysis suggests that one

can accurately differentiate between the two LD cohorts and the

look-alike diseases using a subset of protein biomarkers predicted to

have differentiating power using the peptide array data. The most

important finding is the fact that the LD− patients who tested

previously negative in the standard serology test can be reliably

differentiated from the LAD patients.
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Discussion

This study was designed to address the two following questions.

First, in a general sense, can a broad, agnostic profiling of the

humoral immune response using short, linear peptide libraries with

randomly generated sequences that equally but sparsely sample an

entire combinatorial space of peptides with the same length be

utilized to extract biologically relevant information concerning

immunogenic targets that the humoral immune system is

responding to? The second, more specific question is focused on

whether LD can be reliably differentiated from other diseases with

similar clinical manifestations. Given the agnostic nature of the

method and its unbiased approach to profiling circulating antibody

binding, answering these questions would enable the evaluation of

the method’s ability to identify novel diagnostic biomarkers. Such a

method has the potential to be used for answering similar questions

for a broad range of diseases.

The humoral immune response profiling in the three cohorts

reveals a heterogeneous picture in terms of antibody binding patterns.

A comparison of the binding intensity distributions shows that,

overall, the lowest antibody reactivity is in the LD− group of

patients as judged by the location of the second peak and the width

of the distributions (Figure 1A). The substantially stronger response

observed in the LD+ cohort may be due to a later timepoint in the

acute LD stage when the samples were collected from these patients.

The longer duration of immune system exposure to the pathogen in

these patients may allow for a more robust adaptive immune

response to be mounted against the bacterium, resulting in a

stronger and more focused antibody response. It is also possible

that the antibody response in LD− patients is a result of the

immunosuppressive mechanisms intrinsic to B. burgdorferi that

subdue or abrogate an early response and result in more time for

the bacterium to establish an infection. In comparison, the LAD

binding distribution characteristics suggest a substantially stronger

response, despite the fact that this cohort encompasses a number of

different diseases. This difference is consistent with the notion of the

immunosuppressive role of the bacterium when interacting with the

host immune system. Despite the observed differences in the binding

intensity distributions, the array peptide binding patterns of the three

cohorts are similar, as evidenced by the UMAP representation of the

binding data (Figure 1B). This finding underscores the difficulty in

distinguishing LD from other diseases due to large patient-to-patient

variability in humoral immune response and possibly partial cross-

reactivity between antibodies raised against the different pathogens.

Cross-reactive antibodies have been identified to overlap with LD-

specific responses in Epstein–Barr virus, Treponema pallidum

infections (14–16), and rheumatoid arthritis (46–48). Previous

publications from this lab and others have reported high levels of

patient-to-patient variability in LD in terms of antibody reactivities

(36, 44). The results presented above are based on serum samples

collected from several biobanks potentially increasing the patient-to-

patient variation further due to differences in sample collection and

storage protocols, testing, and different geographic locations. The use

of ML models trained on the peptide array binding data enabled the

learned sequence-binding relationship to be “transferred” onto a
TABLE 4 Comparison of first 10 biomarkers ranked by predictive power
(gain) between LD+/LAD and LD−/LAD contrasts.

Protein
number

LD+ vs. LADs LD− vs. LADs

UniProt ID Gain UniProt ID Gain

1 G5IXI6(VIsE) 0.370383 O51324 0.081201

2 O51784 0.045986 P50062 0.066731

3 H7C7M1 0.029262 O51286 0.057566

4 P53362 0.029069 G5IXI6(VIsE) 0.05673

5 O51291 0.026474 O51555 0.054708

6 O51353 0.026081 H7C7M1 0.04691

7 P52323 0.024759 O50667 0.045187

8 O51632 0.021474 O51229 0.0423

9 O51326 0.020214 P53362 0.041274

10 O51655 0.018787 O51570 0.031742
LD, Lyme disease; LAD, look-alike disease.
The values in bold represent the VlsE protein, the main biomarker currently used in the
standard LD serology.
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biologically relevant level by predicting antibody binding to a tiled B.

burgdorferi proteome. The predicted binding intensities exhibited

similar distribution characteristics as the peptide array intensities

(Figure 3), suggesting that binding pattern information as measured

on the peptide array is properly captured on the proteome. Despite

the somewhat reduced distinction among the hypothetical clusters of

individuals observed in the binding data measured on the peptide

arrays, the overall intensity distribution characteristics in terms of

shape (Figures 1A, 3A) and UMAP representation (Figures 1B, 3B)

between the measured and predicted data show close similarity. The

binding predictions generated by NN models trained on each

individual’s data showed high accuracy (Supplementary Figure 2),

supporting the validity of the chosen predictive ML models. These

data further suggest that compared to the LD+ cohort, the LD−

cohort shows a distinct, although weaker, humoral response with

possibly more pronounced person-to-person variability to the

pathogen. The decreased overall binding is consistent with either

being in the early stages of the infection or the inability to mount a

response because of the immunosuppressive mechanisms engaged by

the bacterium.

The observed similar classification performance between the

measured and predicted binding values of models combining the

LD+ and LD− cohorts (Figures 2D, 4D) as opposed to the classifiers

contrasting the two cohorts against the LAD patients separately

(Figures 2E, F, 4E, F, respectively) indicates that the differentiating

power of the two classifiers is comparable. This result can likely be

explained by the increased sample size in the combined LD cohort

that leads to better classification model generalization and

consistency that are less dependent on the source of the training

data (measured vs. predicted). The finding further suggests the

importance of having adequately sized patient cohorts in LD studies

where patient-to-patient variability is notable and needs to be taken

into account.

Importantly, the difference in the biomarker panels in terms of

contributions to classification performance (Table 4) implies that the

pathogen-specific antibody reactivity profile in LD− patients is

different from that in the LD+ group. The only overlap between

the two panels is the VlsE protein, yet its relative contributions to the

overall differentiating power is approximately an order of magnitude

less in the LD− cohort analysis. There is no other overlap among the

nine remaining biomarkers. Also, the predictive power in the LD

−/LAD contrast appears distributed more evenly among the panel

biomarkers, suggesting a more dispersed humoral response in the LD

− cohort compared to the LD+ cohort. The difference in the antibody

reactivity profiles is also consistent with the negative standard

serologic testing outcome for the LD− patients and may explain

why no antibody reactivity to the biomarkers used in the standard

serologic LD test is present. Nevertheless, despite the lack of antibody

response to the current standard of testing, the findings of this study

demonstrate that in these patients, there is an ongoing, B. burgdorferi-

specific humoral immune response toward a set of immunogenic

targets that are different from those typically found in seropositive LD

patients using the current testing standard.

Interestingly, it was found that the classifiers trained on the

predicted binding values of B. burgdorferi protein tiled sequences
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(linear 10 AA long peptides with 9 AA overlap) to distinguish

between LD+ or LD− and LADs (Figures 4E, D) showed

substantially lower differentiating accuracy than the classifiers

trained on binding data obtained with full recombinant proteins

in the bead-based assays (Figures 5B, C). Note that the proteins for

the assays were selected based on the binding to the tiled proteins

from the B. burgdorferi proteome. This suggests that the “hit” tiles

identified in the analysis truly belong to proteins that are targeted by

the humoral immune response. These tiles serve as linear proxies of

binding to fully assembled proteins that, once expressed, show

substantially stronger differential binding than the linear tiles due to

the presence of full structural epitopes. One possible explanation is

that a fraction of the linear protein tiles “hits”may contain short (3–

6 amino acid long) motifs or their mimotopes (sequences that differ

in amino acid arrangement but show similar physicochemical

properties to the actual motif) that represent different linear

portions of the same structural epitope(s) of a protein. If true,

antibody binding to the fully assembled structural epitope on the

protein would be substantially stronger and show a larger

differential signal than the separate linear motifs of the peptides.

The substantial increase in classification accuracy with full proteins

therefore implies that at least some of the protein structure-specific

binding is captured with the linear peptide arrays.

The fact that the peptide libraries are based on short peptides

without any particular structural information is a major limitation

given that the majority of peptide epitopes are structural and

discontinuous. Nevertheless, earlier work from this group has

demonstrated the utility of the approach to distinguish with high

accuracy between a number of different diseases based simply on

the binding patterns of antibodies contained in the blood (43). This

study provides further support for the notion that some of the

structural epitope information may be contained in the linear array

binding data through the representation of the linear fragments that

make up some of the structural epitopes. As a result, one may be

able to utilize the binding to linear peptide data to identify

immunogens containing either linear or a combination of linear

and structural epitopes targeted by the immune system in response

to pathogen infection.

In conclusion, the findings of this study highlight several

challenges one is faced with when distinguishing LD from other

diseases with similar clinical manifestations, especially in the early

stages of LD. Strong patient-to-patient variability in the humoral

immune response to B. burgdorferi combined with previously

demonstrated cross-reactivity of antibodies raised in response to

other pathogens both act as confounding factors in distinguishing

LD from other LADs. Nevertheless, it was possible to identify and

validate a panel of biomarkers that robustly differentiates between

seropositive or seronegative LD and LADs. Furthermore, the results

suggest a different humoral immune response profile in the LD+

and LD− patients through the finding of separate panels of

biomarkers that are specific to each condition. Perhaps most

importantly, the ability to distinguish between seronegative LD

patients and LADs is especially valuable, as these patients would

have been deemed non-LD and either misdiagnosed with another

disease or subjected to further unnecessary testing. The study
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findings also corroborate the notion that combining data of

polyclonal antibody binding to a library of linear peptides with

machine learning models provides biologically relevant information

about the humoral immune response underlying an acute infection

with the B. burgdorferi bacterium. Due to the agnostic nature of the

approach, it is also likely that the method can be utilized for

profiling the humoral response and biomarker discovery for a

number of other diseases with a strong humoral immune

system involvement.
Materials and methods

Samples

Seropositive LD (LD+) patient serum samples were obtained

from the Lyme Disease Biobank Foundation, Portland, OR (3),

CDC, and several commercial biobanks (Boca Biolistics, Pompano

Beach, FL; Discovery Life Sciences, Huntsville, AL; and SeraCare,

Milford, MA). Samples were collected from patients with signs and

symptoms of LD. Samples were tested using the STTT and

categorized as seropositive Lyme disease having either an EM

rash greater than 5 cm in diameter or PCR confirmation

combined with positive STTT serology. The seronegative Lyme

disease samples were obtained from patients having an EM rash

greater than 5 cm in diameter, but without positive STTT serology,

and were obtained from the Lyme Disease Biobank Foundation.

These patients were diagnosed with Lyme disease by a physician

based on the patients’ clinical symptoms. Participants were enrolled

in East Hampton, NY, Central Wisconsin, and Martha’s Vineyard,

MA. Each of the three cohorts contained equivalent numbers of

patients from each collection site. Cohorts and collection sites were

balanced across each assay batch of microarrays. The patient

samples for the diseases with similar etiology to LD (look-alike

diseases) were obtained from several commercial sources (Boca

Biolistics, Pompano Beach, FL; Discovery Life Sciences, Huntsville,

AL; Creative Testing Solutions, Tempe, AZ; and SeraCare, Milford,

MA). Note that these samples were obtained from commercial

biobanks, with no data about their previous exposure to LD

provided. Given that the samples were collected outside of the LD

endemic areas, it is unlikely that these patients have been exposed to

B. burgdorferi infection.
Peptide microarray assays

Peptide microarrays containing diverse peptides were synthesized

in a commercial production facility (Cowper Sciences, Chandler, AZ),

following a previously described library design and photo-

lithography-based manufacturing process (34, 36, 37). Briefly, the

microarrays used contained 126,051 diverse peptides plus a set of

6,203 control peptides of varying lengths ranging from 6 to 13– amino

acids. The standard serum Ab profiling assay protocol described by

Arvey et al. (34) was used and modified for a modular research use

assay system as described by Kelbauskas et al. (36). Samples were
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thawed from single-use aliquots and diluted to 1:625 in assay buffer

(Phosphate-buffered saline/Tween (PBST) with 0.05% Tween 20,

0.1% ProClin 950, and 1% mannitol). Diluted samples (90 mL) were
applied to arrays and incubated for 1 h at 37°C with mixing

(TeleShake 95 platform mixer). The cassette was then washed three

times in PBST-P using a 96-well microtiter plate washer (BioTek

Instruments, Inc., Winooski, VT). Peptide-bound serum antibodies

were detected using either 4.0 nM goat anti-human IgG (H+L)

conjugated to AlexaFluor 555 (Invitrogen–Thermo Fisher Scientific,

Inc., Carlsbad, CA) or 4.0 nM goat anti-human IgM (H+L) (Novus

Biologicals, Centennial, CO), conjugated to DyLight 550 in secondary

incubation buffer (0.5% casein in PBST-P) for 1 h with mixing at 37°

C. After the final incubation, slides were washed three times with

PBST-P followed by distilled water to remove residual salts. Slides

were then sprayed with isopropanol and dried by centrifugation.
Peptide microarray data extraction

Dried slides were imaged using an ImageXpress imaging system

to detect fluorescently labeled secondary antibodies. The imager

used an LED light engine (SemRock) centered at 532-nm

wavelength to excite fluorophore-conjugated secondary Ab.

Mapix (version 7.2.1; Innopsys, Carbonne, France) was used to

place a grid alignment file over the obtained images and extract the

median foreground pixel intensities using the central 60% of

each feature.
Data quality checks

Images were inspected to identify arrays with artifacts and

image anomalies. The samples associated with such arrays were

re-assayed on arrays from the same production batch as the

original assay.
Modeling of peptide binding using machine
learning

Predictive models were built using machine learning methods

based on feed-forward, backpropagating fully connected neural

networks, similar to those described previously (36, 42). The

peptide sequence was one-hot encoded by transforming each

peptide into a vector of length 190. The vector length was derived

from a maximum peptide length of 10 residue positions with 19

possible amino acids for each position. Feed-forward neural

networks were built individually for each donor using R (version

4.2.2, R Foundation for Statistical Computing, Vienna, Austria) as

the programming language and utilizing TensorFlow (version

2.11.0) and Keras (version 2.11.1) as the interface packages. The

NN models were constructed using three hidden layers with 100

nodes each with a 10% dropout and no layer bias. Rectified linear

unit (RelU) activation was used for each layer. Each NN model was

trained 10 times using a random 90:10 split of the dataset each time.
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The data points were weighted by the frequency of peptides

appearing in an intensity interval. To this end, the entire intensity

range was subdivided into 100 equal bins, and the number of

peptides falling into each bin was calculated. The weight for each

peptide was computed using the following formula:

wi =
1
ffiffiffiffi

ni
p (1)

where wi is the weight of the ith peptide and ni is the number of

peptides in the bin that the ith peptide falls into.

The accuracy of the model to predict Ab binding to the array was

evaluated by predicting the binding to the held-out 10% of the data and

reported as Pearson’s correlation between the measured and predicted

binding intensities. Binding to B. burgdorferi epitopes was

accomplished by applying the NN models to the B. burgdorferi B31

reference proteome (UniProt Accession # UP000001807) that had been

represented as 10-mers with a sliding window of one amino acid offsets.
Classification

Random forest decision trees with XGBoost were used to train

classifiers for distinguishing patients from the different cohorts

used. Each classifier model was trained 10 times on randomly

selected 90% of the patients from the corresponding cohorts, and

its performance was assessed on the remaining 10% of patients. All

training steps and mean receiver operating characteristic curve

calculations were performed in R.
Outlier sum statistics

The outlier sum statistics was implemented following the

method published by Tibshirani et al. (45). The predicted binding

intensity values were first z-score normalized using the following:

Iz−normi,j =
Ii,j −mean(Ii)

SD(Ii)
(2)

where Ii,j is the predicted binding intensity value of the jth tile in

the ith sample, and mean and SD are the mean and standard

deviation values of Ii, respectively. In this way, binding intensity

values were all normalized to their corresponding mean and standard

deviation values. Next, the Z-scores of the binding intensity values of

the LD+ and LD− samples (“cases”) were calculated using the means

and SD values of the LAD samples (“controls”):

Idiffi,j =
Iz−normi,j −mean(Iz−normj   (c) )

SD(Iz−normj   (c) )
(3)

where Ij(c) denotes the predicted binding intensities of the jth

tile in the control samples. Afterward, a sliding window smoothing

with a window size of 5 was applied to the data. Next, for each

protein from the B. burgdorferi proteome, the tile with the

maximum Idiffi,j value for each patient in the case cohort was

determined. As a result, each protein is represented as its

maximum binding value normalized against the control samples
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as a reference. These maximum binding values were then used to

compute the outlier sum (OS) statistics for each protein:

OSp =o
N

i=1

Ipi ,   I
p
i > q0:75(I

p
  ) + IQR(Ip  )

  0,   otherwise
(4)

where N is the number of samples in the case cohort, Ipi
represents the maximum binding value for protein p in sample i,

Ip  is the maximum binding value of protein p of the samples in the

case cohort, and q0.75 and IQR are the third quartile and

interquartile range of Ipi , respectively. The p-values for each OSp
were calculated using the t-test, and a null distribution was obtained

by randomizing the cohort assignments of the samples 1,000 times.

The false discovery rate was calculated using the Benjamini–

Hochberg adjustment for multiple comparisons.
Bead-based assays and data analysis

The functionalization of Luminex MagPlex (Diasorin, Madison,

WI) microspheres (beads) was performed by reacting the carboxylic

residues of the microspheres and amine groups of proteins using 1-(3-

(dimethylamino)propyl)-3-ethyl-carbodiimide hydrochloride

(EDAC)/NHS chemistry. Briefly, 236 mL of each address of stock

Luminex MagPlex microspheres (1.27 × 107 beads/mL) was

resuspended into 764 mL deionized water (DW; 18.2 MW·cm),

followed by washing with 1 mL of DW. A total of 46 different

regions of microspheres each representing a different spectral region

for multiplex detection were used for the binding assays. The

carboxylic residues of the microspheres were activated by

incubating with 90 mL of 50 mg/mL of NHS (Sigma-Aldrich, St.

Louis, MO) and 90 mL of 50 mg/mL of EDAC (Sigma-Aldrich) in 1

mL of 0.1 M sodium phosphate (Sigma-Aldrich) buffer for 20 min at

room temperature (RT) under gentle rotation. For each bead region,

the reaction using 106 microspheres and 5 mg of protein was carried

out in 900 mL of 50 mM of MES (pH 5.0) buffer (Avocado Research

Chemicals Ltd., Heysham, Lancashire, UK) for 2 h with gentle

rotation at RT. After removing the supernatant, the functionalized

microspheres were resuspended into 1 mL of PBS-TBN [PBS buffer

(Life Technologies, Burlington, ON, Canada) with 0.02% Tween-20

(Sigma-Aldrich), 0.1% bovine serum albumin (BSA; Sigma-Aldrich),

0.02% sodium azide (Sigma-Aldrich), 150 mM sodium chloride (Life

Technologies), and 50 mM sodium phosphate monobasic, pH 7.4].

The surface was then blocked with 1% BSA by rotating for 30 min at

RT. The beads were washed three times with PBST. Next, all 46

regions of the functionalized microspheres were combined and mixed

with 54 mL of PBST-BSA [PBS buffer with 0.1% Tween-20 (Sigma-

Aldrich) and 1% BSA] buffer for further use. Microspheres

functionalized with the VlsE protein served as positive control for

the LD+ cohort, and “blank” beads that went through the same

preparation steps, but were not functionalized with a protein, served

as negative control. All washing and supernatant removal steps were

performed using a MagJET separation rack (Thermo Fisher Scientific,

Carlsbad, CA) to separate the microspheres from the solution.

For assays, 50 mL of functionalized microspheres at a

concentration of 40 beads/mL (a total of 2,000 beads) was first
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1528524
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1528524
dispensed into each well of 96-well a non-binding 96-well plate with a

flat bottom (Corning, Corning, NY) using a Bravo automated liquid

dispensing system (Agilent, Santa Clara, CA). This step was followed

by incubation with 50 mL of serum sample (diluted at 1:500 in PBST)

for 1 h at 37°C with shaking at 500 rpm. After washing three times

with a magnetic microplate washer (Biotek 405 TS, Agilent), 100 mL
of goat anti-human IgG secondary antibody (Jackson

ImmunoResearch, West Grove, PA) diluted to 1:125 was added to

each well and incubated for 30 min at RT with shaking at 500 rpm.

After incubation, the beads were washed three times and resuspended

in 100 mL PBST buffer. Binding signal intensities were then measured

using a Luminex™ xMAP™ IntelliFlex (Diasorin) system.

The binding intensity values for each sample measured in the

bead-based assays were normalized by computing the ratio between

the intensity values and the intensity of a reference protein. The

reference protein (O51141) was selected as a protein having the

lowest CV when measured across all cohorts. The assumption was

made that such a protein is least affected by the cohort-specific

differences in antibody repertoires and thus can be used as a

reference to compare binding intensities across patients.
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