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sepsis-induced acute
respiratory distress syndrome
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Medicine, Daping Hospital, Army Medical University (Third Military Medical University),
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Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University),
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Background: Studies have shown that sialylation of C1 esterase inhibitors is crucial

for their interaction with histones, and histone-C1 esterase inhibitor complexes are

detected in acute respiratory distress syndrome (ARDS), suggesting a potential role

of sialylation in ARDS. However, the specific function of sialylation in ARDS remains

unclear. Therefore, this study aimed to investigate the mechanism of sialylation-

related genes (SRGs) in sepsis-induced ARDS.

Methods: The ARDS related datasets (GSE32707, GSE66890, and GSE151263)

were included in this study. Candidate genes were identified by implementing

differential expression analysis and weighted gene co-expression network

analysis (WGCNA). Subsequently, further selection by machine learning and

expression assessment confirmed the key genes related to sialylation in sepsis-

induced ARDS. Following this, the predictive ability of key genes as a whole for

sepsis-induced ARDS was evaluated by creating a nomogrammodel. Afterwards,

enrichment analysis, construction of regulatory networks, and drug prediction

analysis were implemented to further understand the molecular mechanisms of

action of key genes. Furthermore, single-cell RNA sequencing (scRNA-seq) data

analysis was conducted to obtain key cells. Additionally, cell communication and

pseudo-time analyses were implemented. In the end, the expression levels of the

key genes were assessed by collecting clinical samples.

Results:CD19 and GPR65 were identified as key genes associated with sialylation

in sepsis-induced ARDS. The constructed nomogram model demonstrated that

CD19 and GPR65 as a whole exhibited robust predictive capability for sepsis-

induced ARDS. Meanwhile, CD19 and GPR65 were also found to be significantly

co-enriched in the apoptosis and B-cell receptor signaling pathway. In addition,

some important regulators and drugs with targeting effects on key genes were
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predicted, such as NEAT1, OIP5-AS1, alprostadil, and tacrolimus. Further, the

scRNA-seq data analysis identified nine cell types, among which CD14

monocytes (CD14Mono) was designated as the key cell. Importantly, GPR65

expression exhibited dynamic changes during differentiation of CD14Mono. Also,

we found that CD19 was significantly up-regulated in ARDS group.

Conclusion: We identified CD19 and GPR65 as key genes associated with

sialylation in sepsis-induced ARDS, highlighting CD14Mono as key cell type

implicated in sepsis-induced ARDS. These findings offered theoretical support

for understanding the mechanism of sialylation on sepsis-induced ARDS.
KEYWORDS

sepsis-induced acute respiratory distress syndrome, sialylation, nomogram, single-cell
RNA sequencing, key genes
1 Introduction

Acute Respiratory Distress Syndrome (ARDS) is characterized

by acute inflammatory lung injury, with histological features

including diffuse alveolar damage, pulmonary edema, hyaline

membrane formation, alveolar hemorrhage, and inflammation

(1). ARDS constitutes 10% of intensive care unit admissions, with

more than 3 million cases reported annually worldwide, and is

associated with significant morbidity and mortality rates (2). While

various triggers, including pneumonia, aspiration, trauma,

pancreatitis, and multiple blood transfusions, can induce ARDS,

sepsis remains the predominant cause, responsible for 32% of

ARDS cases (3). The current treatment modalities for ARDS

primarily encompass mechanical ventilation, pharmacological

therapy with glucocorticoids, oxygen therapy, supportive care,

and positional therapy, among other strategies (1). Despite

advancements in mechanical ventilation therapy that have

notably decreased ARDS mortality rates, the rates remain high at

25-40%, and there are currently no targeted treatments or specific

key genes for critically ill patients (4, 5). Considering ARDS is a

highly heterogeneous syndrome with variations contingent upon

the underlying cause, the identification of specific key genes is

essential for the diagnosis and treatment of sepsis-induced ARDS.

Sialylation, a post-translational modification, is critical in

immune cell function and inflammatory responses (6). This

process is regulated by sialyltransferases, transporters, and

neuraminidases, and it plays a critical role in maintaining cell-cell

interactions. It is also associated with numerous diseases, including

cancer, embryonic demise, and immune system abnormalities (7).

Research indicates that the sialylation of C1 esterase inhibitor is

crucial for its interaction with histones, and this binding

can mitigate the adverse effects of lung injury. Moreover,

histone-C1 esterase inhibitor complexes have been identified in

bronchoalveolar lavage fluid from ARDS patients and various lung

injury models, suggesting a potential role for sialylation in ARDS
02
(8). Additionally, the activity of sialidase NEU1 may modulate the

sialylation status of angiotensin-converting enzyme 2 (ACE2) and

other host receptors, as well as the extent of lysosomal exocytosis,

thereby influencing the susceptibility, infectivity, and transmission

of SARS-CoV-2 (7). Although sialylation has been shown to be

associated with ARDS, the specific mechanism of sialylation in

ARDS needs to be further investigated.

Single-cell RNA sequencing (scRNA-seq) has advanced

ARDS research by profiling individual cell gene expression,

revealing rare cell subsets, transitional states, and complex cell-

cell communication networks (9). Ye et al. developed iMLGAM,

a machine learning and genetic algorithm framework for

predicting immunotherapy responses using multi-omics data (10).

Other studies identified a plasma cell signature predicting

immunotherapy outcomes (11, 12) and a T-cell exhaustion-

related feature predicting chronic infection or tumor prognosiss

(13) In ARDS patients, sepsis-related cases show increased CD14

cells, while pneumonia-related cases have more cytotoxic cells and

NK T cells, indicating significant immune cell heterogeneity (14).

scRNA-seq has demonstrated broad application potential and

important value in ARDS research. It not only reveals the

complexity and heterogeneity of immune cells in ARDS but

also provides a scientific basis for the development of

therapeutic strategies.

This study utilized transcriptome and single-cell sequencing

data pertaining to sepsis-induced ARDS from the GEO database to

identify key genes associated with sialylation in sepsis-induced

ARDS using a suite of bioinformatics approaches. Additionally,

enrichment analysis, regulatory network construction, and drug

prediction were performed to elucidate the mechanisms of action of

these key genes in sepsis-induced ARDS. Furthermore, based on the

cellular expression of key genes, critical cell types were identified,

and a pseudo-time series analysis was conducted on these cells to

assess the expression patterns of key genes throughout various

stages of differentiation. The ultimate aim is to offer novel insights
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and references for the clinical management of sepsis-

induced ARDS.
2 Materials and methods

2.1 Data extraction

ARDS-related transcriptome sequencing data (GSE32707 and

GSE66890) and single-cell RNA sequencing (scRNA-seq) data

(GSE151263) were gained by accessing the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/),

which were applied in this study. The GSE32707 dataset, which

obtained based on the sequencing platform GPL10558, contained

144 blood samples, of which 18 blood samples from patients with

sepsis-induced ARDS and 30 blood samples from patients with

sepsis were selected for inclusion in this study. In particular, these

blood samples were collected on the day of admission (day 0). The

GSE66890 dataset, obtained based on the sequencing platform

GPL6244, comprised 62 blood samples. Of these, 28 blood

samples from patients with sepsis and 29 blood samples from

patients with sepsis-induced ARDS were included in this study.

Specifically, GSE32707 dataset was utilized as the training set while

GSE66890 dataset was served as the validation set. The GSE151263

dataset consisted of peripheral blood mononuclear cell (PBMC)

samples from three patients with sepsis-induced ARDS and four

patients with sepsis, which were acquired based on sequencing

platform GPL20301. Additionally, a total of 110 sialylation related

genes (SRGs) were obtained through accessing Molecular Signatures

Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb) (6).

First, the gene expression matrix was obtained through

geoChina in the AnnoProbe package (v0.1.7). Subsequently, the

obtained gene expression matrix was examined to check whether

log2-standardization was required for it, so as to ensure the

consistency and comparability of the data. If in the gene

expression matrix, the 99th percentile was greater than 100, and

the difference between the maximum and minimum values was

greater than 50, while the first quartile (qx[2]) was greater than 0,

and the first quartile was between 0 and 1, and the third quartile was

between 1 and 2, then log2-standardization was carried out. Next,

the corresponding GPL file was used for gene annotation operations

in order to accurately identify the genes. Finally, the pre - processed

data was saved and used for subsequent analysis.
2.2 Differential expression analysis

With the application of the limma package (v 3.54.0) (15),

differential expression analysis was implemented between ARDS

and sepsis in the GSE32707 dataset with the aim of identifying

differentially expressed genes (DEGs) [P < 0.05 &|Log2 Fold Change

(FC)| > 0.5]. In order to understand the distribution of DEGs as a

whole, the ggplot2 package (v 3.4.1) (16) was employed to create a

volcano plot, and the top 10 up-regulated and down-regulated
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genes sorted by log2FC were marked in the volcano plot.

Subsequently, the ComplexHeatmap package (v 2.15.1) (17) was

utilized to draw a heat map of the expression for these 20 DEGs.
2.3 Weighted gene co-expression network
analysis

Based on the SRGs as the background gene set, the single-

sample gene set enrichment analysis (ssGSEA) algorithm of the

GSVA package (v 1.42.0) (18) was utilized to calculate the ssGSEA

score for each sample in the GSE32707 dataset, followed by

comparing the difference of these scores between the ARDS and

sepsis groups by Wilcoxon test (P < 0.05).

Key module genes linked to SRGs were gained with the

adoption of WGCNA using WGCNA package (v 1.70-3) (19).

First, clustering analysis was adopted on all samples in the

GSE32707 dataset. Through the clustering of the samples, it was

determined whether there were outliers that needed to be filtered

out to ensure the accuracy of the subsequent analysis. To ensure

that the inter-gene interactions maximally conformed to the scale-

free distribution, a soft threshold was determined for the data. The

optimal soft threshold (b) was determined when the scale free

topology model fit (R2) exceeded the threshold value of 0.85 and the

mean value of the neighborhood function also gradually

approached 0. Based on the determined optimal soft threshold

(b), the minimum number of genes per gene module was set to 50 in

accordance with the criteria of the hybrid dynamic tree cutting, thus

clustering genes into different modules. The ssGSEA score of SRGs

was used as a phenotypic trait, followed by calculating the

correlation coefficient between the module and this score by

Pearson correlation analysis. Modules with significant maximum

positive and negative correlations were selected and defined as key

modules [|correlation coefficient (cor)| > 0.3 & P < 0.05]. The genes

in these key modules were defined as the key module genes.
2.4 Identification and functional analysis of
candidate genes

The intersection of DEGs and key module genes was taken

using VennDiagram package (v 1.7.1) (20) to gain genes linked to

both sepsis-induced ARDS and sialylation, which were recorded as

candidate genes. The signaling pathways associated with the

candidate genes were investigated using Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analysis via

ClusterProfiler package (v 4.2.2) (21). A significance level of P <

0.05 was employed to determine the enrichment of these candidate

genes in the signaling pathway. Subsequently, these candidate genes

were entered into the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) database (http://www/string-db.org/),

followed by the construction of a protein-protein interactions

(PPI) network with the objective of probing their interactions at

the protein level (medium confidence = 0.4).
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2.5 Screening candidate key genes through
three machine learning algorithms

Three machine learning algorithms were executed for these

candidate genes to further confirm the candidate biomarkers, which

comprised least absolute shrinkage and selection operator (LASSO),

Boruta, and XGBoost algorithms. The LASSO regression analysis

was performed using the glmnet package (v 4.1-4), with the

parameter setting of family=binomial (22). Then, 10-fold cross-

validation was applied, and the L1-penalty (lambda) was used to

shrink less important genes to zero. The error rate was calculated

for each lambda value, and the optimal lambda was identified. The

genes whose regression coefficients were not penalized to zero were

selected as the more important feature genes for the disease, and the

best classification model was constructed. Boruta was a feature

selection algorithm implemented through the Boruta package (v

7.0.0) (23), which randomly perturbed the order of each gene and

evaluated the importance of each gene. Then, correlation screening

was performed with the pValue parameter set to 0.01 to determine

the relevance of the genes. The maximum number of iterations was

set to 300, and the algorithm continued to screen and remove genes

with lower relevance. Finally, when the iteration reached the

maximum number of steps or other stopping criteria were met,

such as no more genes being marked as lowly correlated, the

remaining genes were considered the optimal feature genes. Next,

the XGBoost algorithm was performed using the xgboost package (v

1.7.3.1) (24). The maximum number of iterations was set to 25, and

eta was set to 0.3 to control the step size of weight updates during

each iteration. Based on this, the model was trained, and the feature

genes that made significant contributions to the model were

identified by evaluating their importance as output by the

algorithm. Furthermore, candidate key genes were obtained by

taking the intersection of the feature genes selected by these three

machine learning algorithms.
2.6 Identification of key genes and
evaluation of their predictive ability for
sepsis-induced ARDS

The expression levels of candidate key genes were evaluated

between the ARDS and sepsis groups in both GSE32707 and

GSE66890 datasets. Candidate key genes with consistent

expression trends in both datasets and significant differences in

gene expression levels between ARDS and sepsis groups were

selected and defined as key genes for subsequent analysis (P <

0.05). Subsequently, the distribution of key genes was interrogated

by implementing chromosomal localization and subcellular

localization analyses. The difference was that the chromosomal

localization analysis was performed using the RCircos package (v

1.2.2) (25), while the subcellular localization analysis was conducted

using the Cell-PLoc 3.0 website (http://www.csbio.sjtu.edu.cn/

bioinf/Hum-mPLoc3/). Afterwards, in order to determine

whether the identified key genes were accurate for the prediction
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of sepsis-induced ARDS patients, the rms package (v 6.5-0) (26) was

employed to construct a nomogram model of key genes in

GSE32707 dataset. In the nomogram model, the key genes were

scored separately, with each score corresponding to a specific key

gene. The sum of the scores of these key genes determined the total

point, which was then utilized to infer the incidence of sepsis-

induced ARDS. Moreover, calibration curve and decision curve

analysis (DCA) were adopted to evaluate the accuracy of the

predictive capability of the nomogram model. Notably, calibration

curve was plotted using rmda (v 1.6) (https://CRAN.R-project.org/

package=rmda) and DCA was implemented employing ggDCA

package (v 1.2) (https://rdrr.io/github/yikeshu0611/ggDCA/).
2.7 Functional enrichment analysis

Gene set enrichment analysis (GSEA) was implemented in

GSE32707 dataset to reveal the signaling pathways with

significant enrichment of key genes. First, ARDS samples were

categorized into high and low expression groups based on the

median expression of key genes. Then, the high and low expression

groups were subjected to differential expression analysis to identify

DEGs (high vs low) and their corresponding log2FC. After that,

these DEGs were sorted based on their log2FC, followed by

conducting GSEA via ClusterProfiler package on the sorted DEGs

(P.adjust < 0.05). The reference gene set utilized in this analysis was

‘c2.cp.kegg.v7.5.1.symbols.gmt’, which was gained from MSigDB.

Besides, the GeneMANIA database (http://genemania.org) was

applied to predict genes associated with key gene functions and

the functions they were involved in.
2.8 Construction of regulatory networks
and analysis of drug prediction

Regulatory factors that had regulatory relationships with key

genes were predicted through the application of multiple databases

with the objective of probing the regulatory mechanisms of key

genes. Initially, the miRDB database (https://mirdb.org/) was

employed for the prediction of microRNAs (miRNAs) that were

regulatory factors of mRNAs, thereby obtaining pairs of miRNA-

mRNA relationships. Subsequently, Encyclopedia of DNA

Elements (ENCODE) database (https://www.encodeproject.org/)

was utilized to predict long non-coding RNAs (lncRNAs) that

exhibited regulatory associations with these identified miRNAs,

resulting in the acquisition of pairs of miRNA-lncRNA

relationships. By integrating the obtained sets of miRNA-mRNA

and miRNA-lncRNA relationship pairs, a comprehensive lncRNA-

miRNA-mRNA regulatory network was constructed and visualized

using Cytoscape software (v 3.8.2) (27). Additionally, the Drug

Signatures database (DSigDB) (https://dsigdb.tanlab.org/

DSigDBv1.0/) was employed to predict drugs targeting key genes

to explore the potential therapeutic effects of these drugs on sepsis-

induced ARDS.
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2.9 scRNA-seq data analysis

The scRNA-seq data analysis was performed in GSE151263 dataset

to probe the expression of key genes at the cellular level. First, the

scRNA-seq data were filtered using Seurat package (v 5.0) (28) to filter

out cells with less than 300 genes and genes covered by less than 5 cells,

followed by retaining the genes and cells that satisfied the following

conditions, which contained 200 < nFeature < 3,000, nCount < 20,000,

and mitochondrial percentage < 5%. Subsequently, multiple samples

were integrated using IntegrateData and the filtered data were

normalized using NormalizeData from the Seurat package, followed

by the identification of 2,000 highly variable genes using the

FindVariableFeatures function. Immediately following this, principal

component analysis (PCA) was implemented to assess the distribution

of 2,000 highly variable genes in the ARDS and sepsis groups. The data

were normalized using the ScaleData function in Seurat package, and

statistically significant principal components (PCs) were determined

using the JackStrawPlot function. Afterwards, the cells were clustered

using the Uniform manifold approximation and projection (UMAP)

method (resolution = 0.4). Moreover, the obtained cell subpopulations

were annotated using the singleR package (v 1.0.6) (29) to identify

specific cell types. By the way, the distribution of annotated cell types in

the ARDS and sepsis groups was visualized.
2.10 Cell communication and pseudo-time
analyses

The CellChat package (v 1.6.1) (30) was employed for cell

communication analysis in annotated cell types. Following the

creation of cell chat objects, importation of ligand receptor data

in CellChatDB.human, and preprocessing, cell communication

networks were generated. Heat map and circle plot were utilized

to visually represent the number and weight of interactions between

different cell types, while bubble plot was constructed to

demonstrate the probability of communication regulated by

specific ligand-receptor pairs from certain cell populations to

other cellular groups. Subsequently, the expression of key genes in

different cell types was demonstrated by UMAP, followed by

implementing Wilcoxon test to assess the differences in key gene

expression between different cell types in ARDS and sepsis groups

(P < 0.05). Cells with significant expression of key genes in both

cell types between the two groups were selected and defined as

key cells. Further, pseudo-time analysis was implemented on the

key cells using the monocle package (v 2.22.0) (31) with the

objective of exploring their differentiation status and the changes

in the expression of key genes during their differentiation stages.
2.11 Reverse transcription quantitative
polymerase chain reaction

To further verify whether the key genes identified through

bioinformatics analysis exhibit consistent expression patterns in
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clinical samples, the 5 sepsis-induced ARDS blood samples were

collected in Daping Hospital, Army Medical University. The blood

samples obtained from 5 sepsis patients were utilized as control

samples. These blood samples were utilized to perform RT-qPCR.

This study was approved by the Ethics Committee of the Daping

Hospital, Army Medical University, Chongqing, China (#2019-

112). All patients had signed an informed consent form. Total

RNA of 10 samples was separated by the TRIzol (Ambion, Austin,

USA) based on the manufacturer’s guidance. The inverse

transcription of total RNA into cDNA was conducted using the

SureScript-First-strand-cDNA-synthesis-kit (Servicebio, Wuhan,

China) based on the producer’s indication. Subsequently, qPCR

was carried out utilizing the 2xUniversal Blue SYBR Green qPCR

Master Mix (Servicebio, Wuhan, China) under the direction of the

manual. The primer sequences for PCR were tabulated in

(Supplementary Table 1). The expression was uniformized to the

internal reference GAPDH and computed employing the 2−DDCt

method (32).
2.12 Statistical analysis

Based on R software (v 4.2.2), the data were analyzed.

The Wilcoxon test was utilized to assess the differences between

different groups. The P value less than 0.05 was considered

statistically significant.
3 Results

3.1 Recognition of DEGs and key module
genes linked to SRGs

With the application of the limma package, 166 DEGs were

selected in the GSE32707 dataset. Among them, 64 genes were

notably up-regulated in the ARDS group, while 102 genes

were notably down-regulated in the ARDS group (Figures 1A, B).

The Wilcoxon test demonstrated that the ssGSEA score of SRGs

was significantly down-regulated in the ARDS group compared to

the sepsis group, suggesting that sialylation does have an effect on

sepsis-induced ARDS (Figure 1C). Subsequently, key module genes

linked to SRGs were gained through WGCNA. The clustering

analysis results indicated that outlier samples were identified

using a height of 100, resulting in the elimination of five samples

classified as outliers (Figure 1D). Immediately thereafter,

the optimal soft threshold (b) was chosen to be six based on the

criteria that R2 exceeded 0.85 and the mean value of the adjacency

function gradually approached zero (Figure 1E). After that, 14 gene

modules were gained (Figure 1F). Furthermore, Meblue and

Meblack were selected as key modules due to the fact that Meblue

(cor = -0.67, P = 6.5 × 10-6) and Meblack (cor = 0.49, P = 0.0023)

exhibited significant maximum positive and negative correlations

with ssGSEA scores, respectively (Figure 1G). In these two key

modules, 2,784 key module genes were obtained.
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3.2 Identification of seven candidate key
genes

A total of 39 candidate genes were identified through crossing 166

DEGs and 2,784 key module genes (Figure 2A). KEGG results

indicated that these candidate genes were remarkably enriched to six
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signaling pathways, including phagosome, apoptosis, and cellular

senescence (P < 0.05) (Figure 2B). After excluding the discrete

proteins, a PPI network comprising 19 nodes and 51 edges was

generated. Notably, candidate genes such as CD19, GZMK, KLRD1,

and EOMES exhibited enhanced interactions with other genes within

this network (Figure 2C). When the lambda in the LASSO analysis was
FIGURE 1

Recognition of DEGs and key module genes linked to SRGs. *, p < 0.05; (A) Volcano plot display of differentially expressed genes; (B) Heatmap
display of differentially expressed genes; (C) Box plot of SRGs scores; (D) Sample clustering diagram; (E) Determination of soft threshold in WGCNA
algorithm; (F) Cluster dendrogram; (G) Heatmap of the relationship between gene modules and traits.
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0.0518339, 16 feature genes were identified (Figure 2D). Meanwhile,

eight and 15 feature genes were identified by Boruta (Figure 2E) and

XGBoost algorithms (Figure 2F), respectively. Furthermore, seven

candidate key genes were identified by overlapping three parts of the

feature genes obtained through these three machine learning

algorithms, which contained PIK3CG, FCRLA, FCRL5, NKG7,

CD19, GPR65, and PPM1K (Figure 2G).
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3.3 The key genes with different
distribution exhibited excellent predictive
ability for sepsis-induced ARDS

The expression levels of these seven candidate key genes were

assessed between the ARDS and sepsis groups in both GSE32707

and GSE66890 datasets. The results revealed that the expression
FIGURE 2

Identification of seven candidate key genes. (A) Candidate genes identification; (B) KEGG enrichment chord diagram; (C) Candidate genes PPI network;
(D) Screening candidate key genes using LASSO regression analysis; (E) Boruta algorithm for identifying candidate key genes; (F) XGBoost for assessing
the importance of feature genes in screening; (G) Venn diagram related to core genes.
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trends of CD19 and GPR65 were consistent in both datasets, with

CD19 being significantly upregulated in the SRDS group, while

GPR65 was significantly downregulated (P < 0.05) (Figure 3A).

Thus, CD19 and GPR65 were recorded as key genes associated with

sialylation in sepsis-induced ARDS. Subsequently, the distribution

of key genes was explored. Chromosomal localization results

revealed that CD19 was located on chromosome 16, and GPR65
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was situated on chromosome 14 (Figure 3B). Meanwhile,

subcellular localization analysis demonstrated predominant

cytoplasmic expression for both CD19 and GPR65 (Figure 3C).

After that, the predictive ability of key genes as a whole for sepsis-

induced ARDS was evaluated. A nomogram model was created

based on CD19 and GPR65. Within this model, a higher total point

demonstrated an increased probability of sepsis-induced ARDS
FIGURE 3

The key genes with different distribution exhibited excellent predictive ability for sepsis-induced ARDS. *, p < 0.05; **, p < 0.01; ***, p < 0.001, ns, not
significant; (A) Training set key genes expression and validation set key genes expression; (B) Chromosomal localization map of key genes; (C) Subcellular
localization prediction map; (D) Nomogram; (E) Calibration curve; (F) DCA curve.
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(Figure 3D). The calibration curve demonstrated a close

resemblance between the slope of the nomogram model and the

ideal curve (P = 0.639), further emphasizing its predictive accuracy

(Figure 3E). Additionally, the nomogram model exhibited a greater

net benefit compared to a single key gene in DCA, highlighting its

superior performance (Figure 3F).
3.4 Specific signaling mechanisms of CD19
and GPR65

GSEA was implemented to probe the specific signaling

mechanisms of CD19 and GPR65 in sepsis-induced ARDS. The

results demonstrated that among the significantly enriched top 5

pathways, high expression of CD19 and GPR65 was markedly co-

enriched in oxidative phosphorylation, ribosome, Alzheimer’s

disease, and Parkinson’s disease, whereas low expression of

GPR65 was significantly enriched in olfactory transduction

(P.adjust < 0.05) (Figures 4A, B). In addition, CD19 and GPR65

were significantly co-enriched in apoptosis, B-cell receptor signaling

pathway, NOD-like receptor signaling pathway and others

(Supplementary Table 2). Additionally, top 20 genes associated
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with CD19 and GPR65 functions were predicted in the

GeneMANIA database, such as CD81, CD22, CD79A, SYK, etc.

Their common functions included B cell activation, lymphocyte

differentiation, B cell receptor signaling pathway, etc (Figure 4C).
3.5 Multiple factors and drugs existed to
modulate relationships with key genes

A lncRNA-miRNA-mRNA network containing 52 nodes and

85 edges was constructed by applying multiple databases for

prediction. In this network, GPR65 expression was regulated by

several factors, such as OIP5-AS1 regulated the expression of

GPR65 through hsa-miR-300, hsa-miR-381-3p, hsa-miR-3150b-

3p, hsa-miR-411-5p, and hsa-miR-577 (Figure 5A). Meanwhile,

several other lncRNAs, including NEAT1, TUG1, H19, and

SNHG1, exerted regulatory functions in the modulation of

GPR65 expression. Subsequently, 36 drugs were found to target

key genes. Among them, methyl methanesulfonate had target

relationship with both CD19 and GPR65 (Figure 5B). Besides,

some other important drugs were predicted, including alprostadil,

tacrolimus, methotrexate, etc.
FIGURE 4

Specific signaling mechanisms of CD19 and GPR65. (A) KEGG enrichment analysis of CD19-associated pathways. (B) KEGG enrichment analysis of
GPR65-related pathways. (C) Co-expression network mapping of coregulated genes.
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3.6 Nine cell types were annotated by
scRNA-seq data analysis

There were 24,796 cells and 16,788 genes in the scRNA-seq data

before quality control (QC) (Supplementary Figure 1A). Then, 20,290

cells and 14,008 genes were retained after quality control in the

GSE151263 dataset (Supplementary Figure 1B). A total of 2,000

highly variable genes were identified, followed by labeling the top 10

highly variable genes (Supplementary Figure 1C). PCA results

demonstrated a largely centralized distribution of ARDS and sepsis

genes, with no significant outliers (Supplementary Figure 1D).

Following this, the top 40 PCs were selected for subsequent analysis

(Supplementary Figure 1E). After the reduced dimensional clustering

analysis, 10 cellular taxa were obtained (Figure 6A). Furthermore, 9 cell

types were identified through annotation, which contained CD14

monocytes (CD14Mono) (LYZ, CD14, and S100A9), CD4+ T

(CD4T) cell (CCR7), natural killer T (NKT) cell (IL7R and CD3D),

CD8T cell (CD8A and CD8B), B cell (CD79A and MS4A1), natural

killer (NK) cell (NKG7 and GNLY), CD16 monocytes (CD16Mono)

(MSA7 and FCGR3A), megakaryocyte (Mk) (PF4 and PPBP),

monocytes B (MonoB) cell (HLA-DQA1) (Figure 6B). Of these, nine

cell types were found in the ARDS group, while eight cell types were

found in the sepsis group (Figure 6C). The expression of marker genes

for these nine cell types was visualized by bubble plots (Figure 6D).

Also, we found that there were significant changes in the proportion of

NK, CD14Mono, and CD8T between ARDS and sepsis

groups (Figure 6E).
3.7 The key cells that communicated with
other cells had different stages of
differentiation

Cell communication analysis was implemented to probe the

exchange of information between the nine cell types obtained by

annotation. In both the ARDS (Figures 7A, B) and sepsis groups

(Figures 7C, D), there was an increased number and intensity of
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interactions between CD14Mono and other cell types. Additionally,

our findings demonstrated that the likelihood of cellular

communication between NKT and Mk via MIF - (CD74+CXCR4)

was significantly higher in the ARDS group compared to other groups

(Figure 7E). Conversely, in the sepsis group, the probability of cellular

communication between NKT and CD16Mono via MIF - (CD74

+CXCR4) exhibited the highest magnitude (Figure 7F). Next, the

expression levels of key genes were evaluated in cells obtained by

annotation. The results demonstrated that CD19 was highly expressed

in Mk andMonoB, while GPR65 was more widely expressed in almost

all cell types (Figure 7G). Afterwards, the expression of key genes was

compared in these cell types between the ARDS and sepsis groups. The

results indicated that the expression levels of both CD19 and GPR65

were significantly different in CD14Mono between two groups

(Figure 7H, Supplementary Figure 2). Therefore, CD14Mono was

selected as the key cell.

The pseudo-time analysis was conducted for key cells. The

findings revealed a temporal differentiation of CD14Mono from

right to left, exhibiting five distinct states with state three being the

predominant state throughout the observation period (Figure 8A).

Furthermore, our results demonstrated a gradual differentiation of

CD14Mono from the sepsis group towards sepsis-induced ARDS

(Figure 8B). In addition, the expression levels of CD19 and GPR65

were evaluated at various stages of differentiation in CD14Mono.

The findings demonstrated that CD19 expression remained

relatively stable throughout the entire differentiation process of

CD14Mono, whereas GPR65 expression exhibited a pattern

characterized by an initial increase, followed by a decrease, and

then another subsequent increase (Figure 8C).
3.8 Expression evaluation of key genes

The expression levels of the key genes in the ARDS and sepsis

groups were assessed using RT-qPCR. The results demonstrated

that the expression level of CD19 remained consistent with the

public database, and its expression was significantly higher in the
FIGURE 5

Multiple factors and drugs existed to modulate relationships with key genes. (A) Core ceRNA network diagram; (B) Key gene-drug relationship.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1528769
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1528769
ARDS group, suggesting that the data from the public databases

were reliable and that CD19 might serve as a potential biomarker.

The expression trend of GPR65 remained consistent with the public

database, yet it did not exhibit statistically significant differences in

the sepsis and ARDS groups (P < 0.05) (Figure 9). This may be due

to the small sample size in the PCR validation. These findings

suggest that the role of GPR65 in sepsis and ARDS is complex, and

further experimental validation and mechanistic studies

are required.
4 Discussion

Acute Respiratory Distress Syndrome (ARDS) is a life-

threatening condition characterized by heterogeneous etiologies

(33). Among these, sepsis is the predominant cause, accounting
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for 32% of ARDS cases. Sialylation, a critical post-translational

modification, significantly influences immune cell function and

inflammatory responses (34). In ARDS, aberrant sialylation affects

CD14 monocytes, which are key immune cells that express

sialylated receptors. Dysregulated sialylation impairs the function

of these monocytes, impacting their migration and ability to

phagocytose pathogens. This dysfunction contributes to excessive

inflammation and tissue damage. The underlying mechanism

involves interactions between sialylated receptors and endothelial

selectins. Emerging studies suggest that the sialylation of C1 esterase

inhibitor may play a significant role in ARDS (35, 36). Additionally,

sialylation can modulate the activity of cytokines and chemokines,

thereby influencing the inflammatory cascade in ARDS. However,

the specific role of sialylation in sepsis-induced ARDS remains to be

fully elucidated. Therefore, investigating the potential biological

functions of sialylation-related genes (SRGs) in sepsis-induced
FIGURE 6

Nine cell types were annotated by scRNA-seq data analysis. (A) UMAP dimensionality reduction clustering result plot; (B) Annotation of cell
subpopulations; (C) The result of cell subpopulation distribution in two groups; (D) The expression of marker genes for these nine cell types was
visualized by bubble plots; (E) Graph of cell proportions in different groups.
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ARDS could provide deeper insights into its pathogenesis and offer

valuable guidance for the diagnosis and treatment of patients with

sepsis-induced ARDS.

In this study, we combined single-cell sequencing and

transcriptome analysis to investigate the mechanisms of sialylation-

related genes in sepsis-induced ARDS.We identified CD19 and GPR65

as key genes associated with sialylation in this context. The nomogram

model we constructed demonstrated that CD19 and GPR65, when

considered jointly, exhibited strong predictive power for sepsis-induced

ARDS. Additionally, we found that CD19 and GPR65 were

significantly enriched in pathways related to apoptosis and B-cell
Frontiers in Immunology 12
receptor signaling. Furthermore, we identified several important

regulators and potential drug targets, including NEAT1, OIP5-AS1,

alprostadil, and tacrolimus. Our scRNA-seq data analysis revealed nine

distinct cell types, with CD14Mono emerging as the key cell type.

CD14Mono exhibited extensive and intense communication with other

cells and displayed various stages of differentiation. Notably, GPR65

expression underwent dynamic changes during the differentiation

process of CD14Mono.

Our preliminary research indicates that CD19 and GPR65 are

key sialylation-related genes in sepsis-induced ARDS, with CD19

upregulated and GPR65 downregulated in ARDS patients. CD19, a
FIGURE 7

Communication between key cells and other cells and expression of key genes in different cells. *, p < 0.05; ****, p < 0.0001; (A, B) Chord diagram
of differences in the number and intensity of cell-cell communication interactions among ARDS cell subsets; (C, D) Chord diagram depicting
differences in the number and intensity of cell-cell communication interactions among sepsis cell subsets; (E) Bubble chart of ARDS cell
communication; (F) Bubble chart of sepsis cell communication; (G) Expression of genes in different cells; (H) The expression levels of both CD19 and
GPR65 were significantly different in CD14Mono between two groups.
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B-cell surface antigen and member of the immunoglobulin

superfamily, is vital for B-cell development, proliferation,

differentiation, and signaling (37–41). However, B cells can

contribute to cytokine storms in severe infections, driving ARDS

development (34, 42–45). Thus, CD19 may impact ARDS through

its role in B cells. GPR65 (TDAG8), a proton-sensing G protein-

coupled receptor, is involved in various biological functions. It has

been shown to protect against LPS-induced acute lung injury and
Frontiers in Immunology 13
may influence ARDS pathology by modulating inflammatory

mediator production and release, including cytokines like IL-6

(46). Furthermore, GPR65 may be involved in the pathological

processes of ARDS by influencing the production and release of

inflammatory mediators (47–50). Our study found significant

upregulation of CD19 and downregulation of GPR65 in sepsis-

induced ARDS patients, suggesting they could be new therapeutic

targets for this condition.
FIGURE 9

Expression evaluation of key genes. *, p < 0.05, ns, not significant; (A) The expression level of CD19 was significantly higher in the ARDS group; (B)
The expression level of GPR65 was higher in the sepsis group.
FIGURE 8

Pseudo-time analysis of CD14Mono. (A) Temporal differences in cell differentiation, stages of cell differentiation and cell cluster; (B) Stages of cell
cluster differentiation; (C) The expression levels of CD19 and GPR65 were evaluated at various stages of differentiation in CD14Mono.
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This study shows that high expression of CD19 and GPR65 is

significantly associated with pathways related to oxidative

phosphorylation, ribosome function, apoptosis, B-cell receptor

signaling, and NOD-like receptor signaling. These pathways are

key in ARDS pathophysiology. Oxidative phosphorylation is

modulated by mechanisms like MSC-EVs, ketone body

metabolism, and S1PR3 inhibition (51). Ribosome-related genes

are differentially expressed in sepsis-induced ARDS. Dysregulated

apoptosis can worsen lung injury. Dysregulation of apoptotic

processes can lead to excessive cell death, potentially exacerbating

lung injury and impairing recovery from ARDS (52–55). BAP31

deficiency may improve ALI and ARDS by reducing neutrophil

recruitment via the NF-kB pathway (56). NOD-like receptor

signaling is involved in pathogen recognition and immune

response modulation in ARDS. These findings suggest that

sialylation plays a crucial role in sepsis-induced ARDS. However,

previous phenotype classifications based on clinical markers were

limited. Phenotype classification based on key gene functional

analysis is necessary for precise treatment of sepsis-induced ARDS.

We also assessed the regulatory networks and drug predictions

for sialylation-related genes (CD19 and GPR65). A lncRNA-

miRNA-mRNA network with 52 nodes and 85 edges was

constructed using multiple databases. Key lncRNAs regulating

GPR65 expression include OIP5-AS1, NEAT1, TUG1, H19, and

SNHG1. OIP5-AS1 worsens LPS-induced ALI/ARDS via the miR-

223/NLRP3 axis (57), TUG1 reverses LPS-induced apoptosis and

inflammation in macrophages (58, 59), and NEAT1 is linked to the

inflammatory response in ARDS (60–63). Additionally, drugs like

alprostadil, tacrolimus, and methotrexate were identified as

targeting these key genes. Alprostadil protects against ARDS by

inhibiting apoptosis and suppressing MAPK and NF-kB pathways

(64–66), while tacrolimus can reverse ARDS (67). Further research

on these lncRNAs and drugs is crucial for understanding the

pathogenesis and developing treatments for sepsis-induced ARDS.

Single-cell RNA sequencing (scRNA-seq) has deepened our

understanding of cellular heterogeneity and dynamics in ARDS.

Our study identified nine distinct cell types, with CD14+ monocytes

(CD14Mono) emerging as a key population. This aligns with recent

scRNA-seq literature highlighting the critical role of CD14+

monocytes in ARDS pathogenesis. For instance, spatial

transcriptomics has mapped immune-stromal interactions in lung

niches, revealing immunosuppressive myeloid subsets that may

parallel CD14Mono-mediated immune dysregulation (68). CD14-

dependent pathways, potentially related to LPS, LBP, and sCD14

concentrations, have been implicated in pneumonia-related

inflammation in ARDS. Changes in CD14+ monocytes may

correlate with treatment outcomes in ARDS immunomodulatory

therapies (69). Our computational analysis suggests novel

interactions between CD14+ monocytes and other immune

subsets, particularly through CD19 and GPR65. The identification

of CD19 and GPR65 as modulators of monocyte behavior opens

new avenues for precision immunology. Future studies should

leverage AI-driven frameworks like iMLGAM to predict patient-

specific responses to such interventions (10). Integrating these
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insights with spatial multi-omics and AI-driven analytics will be

crucial for advancing ARDS therapeutics.
5 Conclusions

This study identified CD19 and GPR65 as key sialylation-

related genes in sepsis-induced ARDS through bioinformatics

analyses. A nomogram model was built to assess their predictive

power for ARDS. Enrichment analysis, molecular regulatory

network construction, and drug prediction were performed to

explore their mechanisms. Single-cell sequencing revealed

significant differences in CD19 and GPR65 expression in

CD14Mono cells between ARDS and sepsis groups, with GPR65

showing an initial increase, then decrease, and a subsequent

increase during differentiation. These findings offer new insights

into ARDS diagnosis and treatment via sialylation, highlighting our

ongoing commitment to monitor these mechanisms’ effects.
Data availability statement

The datasets analysed during the current study are available in

the GEO: GSE32707 and GSE66890 and GSE151263 repository,

[http://www.ncbi.nlm.nih.gov/geo/]; and MSigDB repository,

[https://www.gsea-msigdb.org/ gsea/msigdb].
Ethics statement

The studies involving humans were approved by Daping

Hospital, Army Medical University, Chongqing, China (#2019-

112). The studies were conducted in accordance with the local

legislation and institutional requirements. Written informed

consent for participation in this study was provided by the

participants’ legal guardians/next of kin.
Author contributions

XL: Writing – original draft, Funding acquisition. YH: Writing –

original draft. HZ: Data curation, Writing – original draft. XY: Data

curation, Validation, Writing – original draft. QL: Software, Writing –

review & editing, Methodology. JD: Writing – review & editing,

Funding acquisition.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported by

the Chongqing Technology Innovation and Application Development

Key Projects, Grant/Award NUMBER: CSTB2022TIAD-CUX0019;

and the Qingbo Project of The Second Affiliated Hospital of Army

Medical University: 2022YQB043.
frontiersin.org

http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/
https://doi.org/10.3389/fimmu.2025.1528769
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1528769
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Frontiers in Immunology 15
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1528769/

full#supplementary-material

SUPPLEMENTARY FIGURE 1
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dimensionality reduction and clustering of single-cell sequencing data; (E)
Scree plot of principal components for dimensionality reduction and

clustering of single-cell sequencing data.
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(A-H) The expression levels of both CD19 and GPR65 in 8 cell types between

two groups.
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CD19 and GPR65 were significantly co-enriched pathways.
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