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The role of transketolase in the
immunotherapy and prognosis
of hepatocellular carcinoma:
a multi-omics approach
Xuan-Yu Gu1, Zheng-Jun Zhou1, Hua Yao2, Jia-Li Yang1,
Jin Gu1, Rui Mu1 and Li-Jin Zhao1*

1Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical
University, Zunyi, China, 2Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical
University, Zunyi, China
Objective: To explore the role of transketolase (TKT) in the immunotherapy and

prognosis of hepatocellular carcinoma (HCC).

Materials and methods: TKT expression across various cancers and its

associations with tumor immunity and prognosis were analyzed using

nomogram models. A multi-omics approach was employed, including bulk

RNA-seq analysis, methylation profiling, single-cell analysis, and spatial

transcriptomics. Experimental methods included RT-qPCR, siRNA transfection,

luciferase reporter assay, and chromatin immunoprecipitation.

Results: TKT was significantly upregulated in multiple cancers and correlated

with immune cell infiltration, particularly in HCC. Elevated TKT expression was

associated with poor overall survival (OS) in HCC and was an independent

prognostic factor (p < 0.05). Drug sensitivity analysis suggested that higher TKT

expression was associated with reduced sensitivity to several chemotherapeutic

agents, including sorafenib (p < 0.01). Furthermore, hypermethylation of the TKT

promoter and low TKT expression were linked to improved OS in HCC (log-rank

test p = 0.005). Single-cell analysis revealed that TKT was predominantly

expressed in the monocyte/macrophage cluster associated with HCC, and

pseudo-time series analysis highlighted TKT’s role in cell differentiation within

this cluster. Spatial transcriptomics confirmed the close association between TKT

and macrophage distribution in HCC. Moreover, STAT3 was found to directly

regulate TKT expression by binding to its promoter region.

Conclusion: Our findings suggest that TKT may play a role in tumor immunity

and prognosis in HCC. Although these results provide insights into the potential

involvement of TKT in immune cell infiltration and survival outcomes, further

studies are required to fully elucidate its role in immunotherapy.
KEYWORDS

transketolase, TKT, hepatocellular carcinoma, Hep-G2, pentose phosphate pathway
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1529029/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1529029/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1529029/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1529029/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1529029&domain=pdf&date_stamp=2025-03-31
mailto:lijin.Zhao@zmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1529029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1529029
https://www.frontiersin.org/journals/immunology


Gu et al. 10.3389/fimmu.2025.1529029
Introduction

Hepatocellular carcinoma (HCC) is the sixth most common

malignancy and the fourth leading cause of cancer-related mortality

worldwide (1). While viral hepatitis and alcohol consumption

remain the predominant causes of chronic liver disease globally,

the increasing prevalence of obesity and metabolic syndrome in the

United States has led to non-alcoholic fatty liver disease becoming

one of the most common causes of chronic liver disease and HCC

(2, 3). Curative treatments, such as surgical resection, organ

transplantation, and ablation, are viable only for a subset of

patients (4, 5). Therefore, it is imperative to elucidate the roles of

key tumor molecular markers in the development and progression

of HCC and to develop targeted therapies that specifically address

these critical molecular drivers. In this context, multi-omics studies

have gained prominence as powerful tools for identifying tumor

molecular markers and key signaling pathways. By integrating

multi-omics data, researchers can gain a more comprehensive and

nuanced understanding of the molecular mechanisms underlying

HCC development and progression, thereby providing new

perspectives and a foundation for the development of innovative

therapeutic strategies.

In cancer cells, the Warburg effect manifests as elevated

glycolysis through the pentose phosphate pathway (PPP), despite

the presence of oxygen. Transketolase (TKT) enzyme reactions (6)

regulate the non-oxidative phase of the PPP, producing more than

85% of ribose-5-phosphate (R5P), a crucial precursor for DNA and
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RNA biosynthesis (7). In the non-oxidative phase of the PPP, TKT

mediates two key reversible reactions: the conversion of R5P and

xylulose-5-phosphate (Xu5P) into glyceraldehyde-3-phosphate

(G3P) and sedoheptulose-7-phosphate (S7P), and the

transformation of Xu5P and erythrose-4-phosphate (E4P) into

fructose-6-phosphate (F6P) and G3P (Figure 1) (8). The non-

oxidative PPP is nearly universal across organisms, implying the

widespread presence of TKT and its association with growth and

development. The TKT-regulated pathway produces R5P and

modulates NADPH levels. Both R5P and NADPH are critical for

cell survival. NADPH, a major cellular antioxidant, reduces reactive

oxygen species (ROS) levels and oxidative stress in cancer cells by

sustaining the reduced state of glutathione (9). TKT is linked to

resistance against chemoradiotherapy (10, 11). Targeted TKT

inhibition reduces tumor growth and increases sensitivity to

several chemotherapeutic drugs. Thus, TKT may be a new

biomarker, and its inhibition could be a promising strategy for

tumor treatment.

A correlation exists between the PPP and HCC, whereby the

PPP is activated in HCC tissues, leading to an increase in the

synthesis of TKT compared to non-tumor tissues (12). One study

revealed that TKT enhances the expression of PD-L1 and VRK2 via

the ROS-mTOR axis, thereby promoting immune evasion and HCC

metastasis. Targeted or knocked-down expression of TKT resulted

in a notable inhibition of FBXL6-induced immune evasion and

HCCmetastasis in vitro and in vivo (13). Moreover, an investigation

of nine clinical HCC samples revealed a considerably elevated TKT
FIGURE 1

Diagram of glycolytic and PPP metabolism and transfer reactions in the non-oxidative PPP. TKT, a key enzyme, generates R5P. Reversible TKT
reactions help the PPP adapt to metabolic needs. Under oxidative stress, TKT promotes F6P resynthesis, converting it to G6P, which boosts NADPH
production and prevents oxidative stress.
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expression in radiation-tolerant specimens relative to those

exhibiting radiation sensitivity, indicating that TKT may be

involved in radiation tolerance (10).

However, studies on the function of TKT in diverse tumors

remain limited. In this study, we analyzed data from The Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases, along with several clinical samples, to investigate the

association between TKT expression and pathological features.

Furthermore, we examined the correlation between TKT

expression, tumor-infiltrating immune cells, tumor mutation

burden (TMB), and pathway-related molecules. A prognostic

nomogram was developed for patients with HCC to confirm

TKT’s prognostic value in HCC. The link between TKT and

immune cell infiltration was analyzed using bioinformatics, thus

enhancing our understanding of the role of TKT in HCC prognosis

and its potential in immunotherapy.
Materials and methods

Data source

RNA-seq data (in FPKM format) and clinicopathological

information for 414 patients (363 HCC and 51 normal cases)

were acquired from the TCGA database. The HCC dataset

(GSE14520) was downloaded from the GEO database, containing

225 HCC and 220 normal cases. Additionally, the GSE97626 dataset

contains data from three HCC cell lines with different metastatic

potentials. Both TCGA and GEO databases were publicly available,

with patient consent obtained. To ensure consistency, ENSEMBL

Gene IDs were converted to Gene Symbol IDs, and genes expressed

in less than 50% of samples were excluded.
Pan-cancer analysis

The TCGAplot R package (14) was used to determine pan-cancer

TKT levels. Pearson’s correlation analysis was employed to assess the

relationship between TKT and established immunotherapy

biomarkers, including immune cell infiltration, immune score,

TMB, and other well-known immune checkpoint (ICP) genes. The

cBioPortal tool (http://www.cbioportal.org/) was used to detect TKT

mutations in cancers. Univariate Cox regression and the Kaplan–

Meier (K-M) method were used to illustrate TKT’s prognostic role.

Continuous TKT expression variables were utilized in the

univariate Cox regression, while high- and low- TKT expression

was utilized in the K-M curve analysis, with the cutoff chosen by the

“surv-cutpoint” function of the “survminer” R package.
Identification of differentially expressed
genes between low- and high-TKT
expression subgroups

The samples were divided into the high- and low-expression

groups based on the median TKT expression level. DEGs between
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the two groups were identified using the R package ‘Limma,’ with

significance criteria defined as an adjusted P-value < 0.05 and |log2-

FC| > 1. The DEGs were visualized through volcano plots, which

were created using the “ggplot2” R package.
Nomogram establishment

Univariate and multivariate Cox regression models were

applied to investigate the impact of clinical factors (age, sex,

grade, stage, and TNM.T) and TKT expression on overall survival

(OS) in patients with HCC. Receiver-operating characteristic

(ROC) curves were plotted to determine the prognostic power of

the nomograms. Decision curve analysis (DCA) and calibration

curves validated the agreement between observed survival outcomes

and those predicted by the nomograms.
Methylation, protein expression, and
transcription factor analysis methods

The correlation between methylation and mRNA levels of the

signature genes was evaluated using the “corrplot” package, while

the relationship between DNA methylation and OS was assessed by

K-M survival analysis. Methylation data were obtained from the

Illumina Human Methylation 450K platform, including detailed

annotations, such as IllmnID, UCSC RefGene Names, and UCSC

RefGene Group. TKT protein expression data from the HCC cohort

were retrieved from the TCPA and Clinical Proteomic Tumor

Analysis Consortium (CPTAC) databases to complement these

analyses, providing a more comprehensive understanding of TKT

regulation at both transcriptional and protein levels. To further

investigate the transcriptional regulation of TKT, five web tools—

hTFTarget, ENCODE, ChIP_Atlas, GTRD, and KnockTF—were

used to identify potential transcription factors (TFs). Additionally,

TF-binding sites were predicted using the JASPAR database

(https://jaspar.elixir.no/), providing insights into the regulatory

mechanisms underlying TKT expression.
Single-cell and spatial transcriptome
analysis of TKT

Single-cell RNA sequencing (scRNA-seq) data from GSE140228

were downloaded from the TISCH database and processed using

Seurat V4 (15). After applying stringent quality control (UMI > 200,

mitochondrial gene content < 20%, and log10 genes per nUMI >

0.8), the filtered cells were visualized using UMAP. These cells were

manually annotated with CellMarker 2.0, and cell type markers

were identified through the “FindAllMarkers” function (min. pct =

0.25, logfc.threshold = 1, test.use = “wilcox”). Monocle 2 was

applied to further explore the expression patterns of TKT and

immune activation markers in the immune pseudotime trajectories

of HCC, reducing dimensionality with DDRTree, and visualizing

gene expression trends.
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Spatial transcriptome (ST) data from HCC samples

(GSE203612, GSE238264) were incorporated to investigate the

spatial architecture of the tumor microenvironment. By

integrating ST data with single-cell transcriptomics, we performed

reverse convolution analysis to deconvolute cellular composition on

10xVisium slides. A comprehensive scRNA-seq reference library

was established from the same cancer type using quality control

measures to ensure the reliability of the scRNA-seq data. A

signature score matrix was developed by averaging the top 25

genes in each cell type in the scRNA-seq reference. This matrix

was used to generate an enrichment scoring matrix using the

Cottrazm package, which facilitated cellular composition analysis.

SpatialFeaturePlot in Seurat was used to visualize these enrichment

scores, with higher scores corresponding to a greater abundance of

specific cell types in each spot.
Colocalization

Data for bbj-a-158 and eqtl-a-ENSG00000163931 were

obtained from the IEU OpenGWAS project. We utilized the

“coloc” package for colocalization analysis between TKT’s eQTL

and HCC, applying default priors (P1 = 10-4, P2 = 10-4, P12 = 10-5).

These parameters estimate the likelihood that an SNP is relevant to

gene expression, HCC, or both. The analysis generated the posterior

probabilities for five potential relationships: no association (H0),

association with only one trait (H1 or H2), two separate association

signals (H3), and a shared association signal (H4). The H4 model,

indicating a common causal variant, was preferred, and results with

a PP4 value greater than 0.75 were considered significant for dual

associations (16).
Experimental validation of TKT expression
and regulation

The HepG2, THLE2, and 293T cell lines were cultured in

specific media purchased from Pricella (Wuhan, China) under

conditions of 37°C and 5% CO2. HepG2 cells were applied to

model HCC, THLE2 cells served as normal liver cell controls, while

293T cells were used for dual-luciferase reporter assays to

investigate the transcriptional regulation of TKT. Three liver

cancer (LIHC) and normal tissue samples were obtained from the

Affiliated Hospital of Zunyi Medical University to investigate TKT

expression. Total RNA from the cells and tissues was extracted with

a TRIzol RNA extraction kit and reverse-transcribed into cDNA

using a reverse transcription kit. The expression levels of TKT were

quantified using RT-qPCR, while gene suppression effects were

calculated using the 2-DDCt method. Detailed primer sequences are

provided in Supplementary Table S1.

Subsequently, HepG2 cells were reverse-transfected with siRNA

using RNAiMAX, and further experiments were conducted 24 h

post-transfection. Among the three candidate siRNAs, si-2 and si-3

were selected for further study; siRNA sequences are detailed in

Supplementary Table S2. Cell viability was assessed using the CCK8
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plates. After 2 h of adhesion, 10 µl of CCK-8 solution was added at

designated time points (0, 12, 24, 36, and 48 h) and incubated at 37°

C in a 5% CO2 humidified environment for 1 h, followed by

absorbance measurement at 450 nm using a spectrophotometer.

Additionally, protein concentration, glucose, and lactate levels

were measured using the Enhanced Bradford Protein Assay Kit, O-

Toluidine Glucose Assay Kit, and L-Lactic Acid Colorimetric Assay

Kit, respectively. The experiments were conducted in strict

accordance with the manufacturer’s instructions. Protein

concentrations were adjusted using the BCA assay.

To explore the transcriptional regulation of TKT, 293T cells

were co-transfected with either the empty plasmid pGL3-TKT-wt

or pGL3-TKT-mut, along with pcDNA-3.1 or pcDNA-3.1-STAT3

mimics, using Lipofectamine 2000. After 48 h, luciferase activity

was measured using a Dual-Luciferase Reporter Gene Detection

System. ChIP assays were performed to verify the binding of STAT3

to the TKT promoter regions. Immunoprecipitation was conducted

using an anti-STAT3 antibody or IgG control, and the relative

enrichment of the target gene was quantified using RT-qPCR.

Primer sequences are provided in Supplementary Table S1.
Statistical analysis

The prognostic power of TKT in various cancers was evaluated

using univariate Cox regression analysis and the K-M method,

while Pearson’s correlation was applied to explore the relationships

between TKT and other factors. DEGs were mapped to gene

symbols using the “org.Hs.eg.db” (v3.10.0) R package, followed by

functional annotation and gene set variation analysis (GSEA) using

the “ClusterProfiler” (v3.14.3) R package with thresholds set at P <

0.05, FDR < 0.25, and |NES| > 1 for significant enrichment of items

and pathways (17, 18). Gene set variation analysis (GSVA), a non-

parametric and unsupervised method for assessing gene set

enrichment in expression data, was performed to investigate

hallmark function differences between high and low TKT

expression groups using reference gene sets from the MsigDB file

(h.all.v2023.2.Hs.symbols.gmt) (19). Chemotherapy drug response

prediction was also conducted using a similar approach. All in vitro

experimental data are presented as means ± standard deviation and

analyzed using Prism 10 software, with P < 0.05 indicating

statistical significance.
Results

TKT expression and its prognostic value in
pan-cancers

RNA-seq expression data from the TCGA demonstrated that

TKT was significantly overexpressed in several cancers, including

bladder cancer (BLCA), cervical cancer, colon cancer, esophageal

cancer, kidney chromophobe (KICH), kidney papillary cell

carcinoma, LIHC, lung adenocarcinoma, prostate cancer (PRAD),
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rectal cancer, thyroid cancer (THCA) and uterine corpus

endometrial cancer (UCEC), but exhibited low expression levels

in breast cancer (Figure 2A). After further typing of the TCGA

breast cancer data, we categorized breast cancer cases into triple-

negative breast cancer (TNBC) and non-triple-negative breast

cancer (non-TNBC) (Supplementary Figure S1A). The analysis

showed that the expression of TKT was significantly higher in

TNBC than non-TNBC cases. This phenomenon may be related to

the differences in metabolic alterations among tumor subtypes.

However, it is worth noting that non-TNBC occupied a larger
Frontiers in Immunology 05
proportion of the dataset, which may have affected the

interpretation of the overall analysis results. Non-TNBC is usually

accompanied by different metabolic profiles, which may have

masked the expression of specific metabolic markers for TNBC

subtypes in some cases (20). Supplementary Figure S1B presents the

physiological expression profiles of TKT in different tissues of the

human body from the GTEx database.

Moreover, TKT expression was found to be negatively

correlated with TMB in CHOL, ovarian cancer, and THCA, but

positively correlated in KICH, KIRC, LIHC, PRAD, STAD, and
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FIGURE 2

Comprehensive analysis of TKT gene expression, immune infiltration analysis, and their relationship with prognosis in pan-cancer. (A) TKT levels in
tumors and adjacent normal tissues from TCGA. (B) Relationship between TKT levels and TMB in TCGA. (C) Correlation between TKT levels and
immune cell ratios. (D) Relationship between TKT levels and immune scores. (E) Frequency and types of genetic alterations in TKT. (F) Cox
regression analysis of TKT expression across TCGA cancers. (G) K-M plots showing survival analysis of TKT levels in ACC, KICH, LIHC, MESO, SARC,
and HNSC. (*P <0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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UCEC (Figure 2B). Additionally, we found a positive association

between TKT and macrophages in most cancers and a negative

correlation with some effector immune cells, such as resting CD4+

memory T cells and activated natural killer (NK) cells (Figure 2C).

This immune modulation may support an immunosuppressive

milieu, promoting tumor growth and immune evasion. The

negative correlation of TKT expression with immune and stromal

scores (Figure 2D) highlights its role in influencing the density and

activity of non-tumor cells within the tumor stroma, further

suggesting that TKT expression may be linked to a less active

immune environment. Analysis of TCGA cohorts revealed frequent

TKT alterations, particularly in UCEC (6.05%) (Figure 2E), which

may underlie the specific phenotypic traits of this cancer type.

Overall, these findings suggest that TKT may play a role in cancer

cell metabolism and immune interactions, making it a promising

target for further investigation in precision oncology strategies.

The Cox proportional hazards model revealed significant

associations between TKT expression and OS across multiple

cancer types, including mesothelioma (MESO) (p < 0.001),

pancreatic cancer (P = 0.001), sarcoma (SARC) (P = 0.002),

LIHC (P = 0.003), KICH (P = 0.005), adrenocortical cancer

(ACC) (P = 0.019), KIRC (P = 0.038), HNSC (P = 0.042), BLCA

(P = 0.047), and ocular melanoma (UVM) (P = 0.047) (Figure 2F).

TKT was identified as a high-risk factor in most cancers,

particularly KICH, where it exhibited the highest HR (4.756),

suggesting that elevated TKT expression dramatically increased

the risk of mortality in these patients. Conversely, TKT is a low-

risk parameter in UVM, indicating a protective role or less

aggressive tumor phenotype associated with its expression in this

context. K-M survival analysis corroborated these findings, showing

that elevated TKT levels were associated with significantly shorter

OS in ACC, KICH, LIHC, MESO, SARC, and HNSC (Figure 2G).

These results highlight the prognostic potential of TKT, as its

expression not only influences tumor biology but also serves as a

critical determinant of patient outcomes. The strong correlation

between TKT expression and poor survival in various cancers

suggests its potential prognostic value, warranting further

investigation into its role in informing therapeutic decisions.
Expression and prognostic value of TKT
in HCC

TKT mRNA levels were notably elevated in HCC tissues

compared with normal liver tissues (Figure 3A), consistent with the

GEO database data (GSE14520) (Figure 3B). RT-qPCR analysis of

matched HCC and normal liver samples further validated the

increased TKT mRNA levels in HCC tissues (Figures 3C, D). ROC

curve analysis revealed a high diagnostic accuracy for TKT in

distinguishing HCC from normal liver tissues, with AUC values of

0.889 (CI = 0.851–0.927) for TCGA-LIHC and 0.895 (CI = 0.862–

0.928) for GSE14520 (Figures 3E, F). This indicates that TKTmay be a

reliable diagnostic biomarker for HCC. Furthermore, we examined the

influence of TKT levels on OS in patients with HCC by categorizing

them into high and low TKT groups according to the median level. K-
Frontiers in Immunology 06
Manalysis revealed that patients with higher TKT levels had markedly

poorer OS in both the TCGA-LIHC and GSE14520 cohorts

(Figures 3G, H, Table 1). A colocalization analysis was conducted to

explore potential genetic links between TKT and HCC susceptibility,

revealing a strong association between TKT expression and HCC risk

loci (PP4 = 1.00) (Figure 3I, Supplementary Table S3). This genetic

colocalization suggests that TKTmay be crucial in HCC pathogenesis,

reinforcing its value as a diagnostic and prognostic biomarker. These

findings provide substantial evidence for the role of TKT in HCC

development and progression, suggesting its potential utility as a

diagnostic and prognostic biomarker. Further studies are needed for

clinical applications.
Clinical application of a nomogram
incorporating the expression of TKT

Cox analyses indicated that TKT expression was an

independent prognostic factor in HCC (Figures 4A, B). To

enhance its clinical applicability, we developed a comprehensive

nomogram that integrated TKT expression with other clinical

features to predict OS in patients with HCC based on the TCGA

data (Figure 4C). This integrated model demonstrated a

significantly improved predictive performance over TKT

expression alone, as evidenced by a clear distinction in OS

between the low- and high-risk groups (P < 0.0001; Figure 4D).

The model’s predictive accuracy was further validated using ROC

curve analysis, with AUC values of 0.749, 0.725, and 0.699 for 1-, 3-,

and 5-year OS predictions, respectively (Figure 4E), demonstrating

its robust prognostic capability. These AUC values indicate a stable

and reliable model performance across different time points,

highlighting the enhanced precision achieved by integrating

multiple parameters. DCA further reinforced the clinical benefit

of this nomogram, showing a higher net benefit across a range of

threshold probabilities compared to using TKT or other clinical

features alone (Figure 4F). Additionally, calibration curves

demonstrated strong agreement between the predicted and

observed OS at 1, 3, and 5 years (Figure 4G), confirming the

nomogram’s predictive consistency and reliability. Overall, the

nomogram effectively integrated TKT expression with other

clinical parameters, offering a powerful tool for risk stratification

and personalized prognosis assessment in patients with HCC.
TKT involvement in key signaling pathways

In the CPTAC-LIHC cohort, TKT protein levels were

significantly elevated in tumor tissues compared to normal tissues

(Figure 5A), suggesting a potential role in the pathogenesis of LIHC.

Analysis of the CPTAC-LIHC dataset indicated a positive

correlation between TKT proteomic expression and the pentose

phosphate and p62 pathways (Figures 5B, C). These correlations

imply that TKT may be involved in various metabolic processes

critical for tumor progression, such as nucleotide biosynthesis and

redox balance, which are essential for cancer cell survival and
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proliferation. Additionally, its association with the p62 pathway

suggests a potential role in modulating autophagy-related processes,

although further investigation is needed to determine whether these

pathways are directly regulated by TKT or whether TKT is a

downstream effector of shared upstream signals. In contrast, TKT

expression was negatively correlated with the Akt, HER2, and E-

cadherin pathways (Figures 5D–F), suggesting that while TKT may

be associated with these pathways, it is more likely that this

relationship arises from shared regulatory mechanisms rather

than TKT directly influencing these pathways.

To further investigate the involvement of TKT in cancer

biology, we assessed its relationship with 10 cancer-related

pathways—TSC/mTOR, RTK, PI3K/AKT, RAS/MAPK, hormone
Frontiers in Immunology 07
ER, hormone AR, DNA damage response, cell cycle, epithelial–

mesenchymal transition (EMT), and apoptosis—using protein

expression data from the RPPA in the TCPA database (21). TKT

expression was positively associated with the EMT pathway, which

is crucial for tumor metastasis and invasion (Figure 5G). This

correlation with EMT was accompanied by a negative correlation

with E-cadherin, a key epithelial marker that is typically

downregulated during EMT. These findings suggest that TKT

may promote EMT by affecting E-cadherin expression, but the

mechanism remains unclear. Overall, these findings highlight TKT

as a potential modulator of multiple oncogenic pathways that may

contribute to tumor growth and metastasis in HCC. However,

further functional studies are required to establish causality.
FIGURE 3

Expression levels and prognostic value of TKT in the TCGA dataset and GEO database were analyzed. (A) TKT levels were elevated in HCC tissues in
the TCGA data. (B) Similar results were observed using GSE14520 data, showing higher TKT expression in HCC tissues. (C, D) RT-qPCR confirmed
increased TKT expression in tumor cells, when using b-actin as the normalization control (****P ≤ 0.0001). (E, F) ROC curve analysis for TKT
expression in TCGA-LIHC and GSE14520 datasets, with the x-axis denoting the false positive rate and the y-axis the true positive rate. AUC values
were categorized as low (0.5–0.7), medium (0.7–0.9), and high (0.9–1.0) predictive effects. CI indicates confidence interval. (G, H) K-M survival
curves assessed the prognostic significance of TKT expression in the TCGA-LIHC and GSE14520 cohorts. (I) Regional Manhattan plot of associations
of TKT and HCC risk. The lead SNP is displayed as a purple diamond.
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TKT methylation status

Figures 6A–D illustrates the inverse relationship between TKT

expression and methylation levels across promoter CpG sites, each

displaying distinct beta values representing their correlation

coefficients with TKT expression. Based on TKT promoter

methylation and mRNA expression levels, we categorized patients

into four groups: high methylation and high expression, low

methylation and high expression, high methylation and low

expression, and low methylation and low expression. The

subgroup with high methylation and low TKT expression in the

promoter region exhibited the most favorable OS, suggesting a

potential protective effect of promoter hypermethylation. In

contrast, the subgroup characterized by low methylation and high

TKT expression had the poorest OS, indicating a potentially

unfavorable prognosis (Figure 6E). These findings suggest that

hypermethylation of the TKT promoter suppresses its expression,

which could confer a survival advantage to patients with HCC by

limiting TKT-driven tumor progression. Conversely, the

hypomethylation-associated upregulation of TKT expression may

enhance its oncogenic potential, leading to worse patient outcomes.

These findings indicate that the TKT promoter methylation status

might be useful in predicting patient prognosis and could offer a

promising avenue for developing targeted therapies for HCC,

pending further validation.
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TKT expression correlates with tumor
immune microenvironment in HCC

Gene ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), GSEA, and GSVA analyses revealed that the

DEGs related to TKT were associated with several critical GO

biological processes, including steroid metabolic processes, cellular

responses to xenobiotic stimuli, xenobiotic metabolic processes, and

responses to oxidative stress (Figure 7A). These associations suggest

that TKT may be central in metabolic reprogramming in HCC,

particularly in processes related to detoxification, hormone

metabolism, and oxidative stress response—key pathways that

cancer cells exploit to support survival under adverse conditions.

The ability of TKT to modulate these processes underscores its

potential function in enhancing cancer cell resistance to external

stressors such as chemotherapy or oxidative damage, contributing

to tumor persistence.

GSEA analysis of the KEGG pathways revealed that the high-

TKT group was enriched in pathways involved in antigen

processing and presentation, DNA replication, cell cycle, Human

T-cell leukemia virus 1 infection, oxidative phosphorylation, and

ribosome biogenesis (Figure 7B). The enrichment of pathways

related to DNA replication and the cell cycle suggests that TKT

expression may drive increased proliferative activity in tumor cells,

promoting uncontrolled cell division—a hallmark of cancer.
TABLE 1 TCGA-LIHC and GSE14520 clinical baseline table.

Datasets Variable Level Alive Dead P

n 233 130

TCGA-LIHC

Gender female 68 (29.2) 50 (38.5) 0.091

male 165 (70.8) 80 (61.5)

Age <60 118 (50.6) 55 (42.3) 0.157

>60 115 (49.4) 75 (57.7)

Grade G1-G2 152 (65.5) 78 (61.9) 0.572

G3-G4 80 (34.5) 48 (38.1)

Stage Stage I-II 185 (83.0) 69 (59.5) <0.001

Stage III-IV 38 (17.0) 47 (40.5)

TNM.T T1-T2 194 (84.0) 77 (59.7) <0.001

T3-T4 37 (16.0) 52 (40.3)

n 146 96

GSE14520

Gender Female 23 (15.8) 8 (8.3) 0.135

Male 123 (84.2) 88 (91.7)

Age <60 118 (80.8) 78 (81.2) 1.000

>60 28 (19.2) 18 (18.8)

TNM staging I 75 (54.0) 21 (24.4) <0.001

II 46 (33.1) 32 (37.2)

III 18 (12.9) 33 (38.4)
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Moreover, the involvement of oxidative phosphorylation and

ribosomal activity indicates that TKT may enhance the metabolic

capacity of tumor cells, enhancing energy production and protein

synthesis needed for tumor growth.

In contrast, GSVA analysis demonstrated that UV response

downregulation, bile acid metabolism, KRAS signaling

downregulation, and coagulation pathways were enriched in the

low TKT group, highlighting reduced metabolic and stress response

activity in these cells. In contrast, high TKT expression positively

correlated with E2F targets, ROS pathway, DNA repair, and MYC

targets (v1 and v2) (Figure 7C). The activation of the ROS pathway

in the high TKT group suggests that TKT may help cancer cells

manage oxidative stress, an important survival mechanism in

hypoxic tumor environments. The positive association with E2F
Frontiers in Immunology 09
and MYC targets further implies that TKT supports tumor

proliferation and progression by regulating TFs involved in cell

cycle progression and metabolic control. These findings indicate

that high TKT expression promotes the metabolic and proliferative

aggressiveness of HCC cells.

A comprehensive analysis of ICPs revealed significantly higher

levels of ICPs such as CD44, CD80, CD86, and CTLA-4 in the high-

TKT expression group (Figure 7D), thereby allowing tumor cells to

evade immune surveillance, and facilitating tumor progression

(Supplementary Figure S1C). The correlation between TKT and

HLA gene expression (Supplementary Figure S1D) further

highlights its involvement in immune modulation, influencing

tumor-immune system interactions. The lower TIDE score

observed in the low TKT group (Figure 7E) suggests that tumors
FIGURE 4

The nomogram constructed and validated based on TKT expression. (A) Univariate Cox regression forest plot showing the link between TKT mRNA
level and OS in HCC patients with various clinicopathological features. (B) Multivariate Cox regression forest plot illustrates the link of TKT mRNA
expression with OS in HCC patients, considering multiple clinicopathological factors. (C) A nomogram was constructed using risk scores and clinical
features to predict OS in HCC patients. (D) K-M survival curves for HCC patients, stratified by the nomogram, indicate remarkably better OS for the
low-risk group (p < 0.0001). (E) The AUC values for forecasting 1-, 3-, and 5-year OS were 0.749, 0.725, and 0.699, respectively. (F) DCA for the
nomogram. (G) Calibration plots show that the observed OS of HCC patients aligns closely with the nomogram-predicted OS.
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with low TKT expression may be more responsive to

immunotherapy, while high TKT expression could predict poorer

immunotherapy outcomes due to enhanced immune suppression.

Further analysis revealed a relationship between TKT and

hypoxia-responsive gene expression, with a higher hypoxia score

in the high TKT group (Supplementary Figure S1E). This

association highlights its role in supporting tumor adaptation to

hypoxic microenvironments, a common feature in aggressive

cancers. Hypoxia induces metabolic shifts, promotes angiogenesis,

and enhances tumor survival, while TKT may be intricately

involved in these adaptive processes. To further explore the

relationship between TKT expression and HCC metastaticity, we

subsequently analyzed the expression levels of TKT in several HCC

cell lines with different metastatic potentials (Huh7, MHCC97L,

and HCCLM3) in the GSE97626 dataset. The results showed that

TKT expression in the high metastatic cell line HCCLM3 was
Frontiers in Immunology 10
significantly higher than that in the low metastatic cell line Huh7,

while MHCC97L cells showed intermediate levels (Supplementary

Figure S1F). Based on these results, we hypothesized that TKT may

play an important role in promoting HCC metastasis. Further, high

enrichment scores for stemness gene sets in the high TKT group

(Supplementary Figure S1G) suggest that TKT may be involved in

maintaining cancer stem cell properties such as unlimited

proliferation and self-renewal, contributing to tumor

heterogeneity, recurrence, and resistance to therapies.

Genomic analysis revealed a positive correlation between high

TKT levels and increased TMB, as well as a higher fraction of FGA

(Figures 7F, G). This association between TKT and genomic

instability suggests that TKT may promote mutagenic processes,

driving genetic diversity within tumors, which could lead to the

emergence of more aggressive or therapy-resistant clones that

contribute to poor prognosis. The significant chromosomal
FIGURE 5

Analysis of TKT proteomics. (A) Differences in TKT total protein levels (mass spectrometry) in the CPTAC database between tumor and normal
groups. (B–F) Correlation analysis between TKT expression and functional protein levels by TCPA-RPPA sequencing. (G) Correlation of gene
expression of TKT with pathway levels quantified by TCPA-RPPA sequencing of functional proteins.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1529029
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2025.1529029
alterations identified through CNV analysis (Figure 7H) in the

high-TKT expression group, along with the higher mutation

frequencies of key driver genes such as TP53 and CTNNB1 (51%

vs. 19% and 37% vs. 7%, respectively) (Figure 7I).

Overall, these findings suggest that TKT plays multiple roles in

HCC by influencing metabolic reprogramming, cell proliferation,

immune evasion, and genomic instability. The involvement of TKT

in oncogenic pathways and its effects on the tumor

microenvironment highlight its potential as a therapeutic target.

However, further studies are needed to explore its suitability for

combination therapies aimed at inhibiting metabolic pathways,

enhancing immune responses, or addressing genomic instability.
Frontiers in Immunology 11
ScRNA-Seq and spatial transcriptome
analysis of HCC

Overall, we identified nine major immune cell categories: B

cells, CD4 Tconv cells, CD8+ T cells, CD8 Tex cells, DCs, ILCs,

mast cells, monocytes/macrophages (mono/macro), NK cells,

plasma cells, Tprolif cells, and Tregs (Figure 8A). TKT expression

was significantly upregulated in mono/macro cells (Figure 8B),

suggesting a potential association between TKT and immune cell

function. Further analysis of the interactions between mono/macro

and other immune cell types revealed dynamic relationships,

indicating TKT’s involvement in immune cell regulation
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Exploration of TKT promoter cg sites. (A) Distribution of methylation levels for each and all sites averaged over normal and tumor tissues. (B)
Correlation of each promoter site with gene expression in tumor tissues. (C) Differences in methylation levels between normal and tumor tissues for
the mean values of all sites. (D) Correlation of mean values of all sites with gene expression in tumor tissue. (E) K-M survival analysis of 4 survival
periods for genetic molecular subtypes.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1529029
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2025.1529029
(Figure 8C). ScRNA-Seq data showed that TKT expression was

relatively high in mono/macro, with fluctuations at specific

differentiation stages, suggesting a potential role in macrophage

polarization and adaptation within the tumor microenvironment

(Figures 8D–G).

Using the Visium spatial transcriptomics platform, we

evaluated the spatial distribution of TKT within tissue

microenvironments (Supplementary Figure S2, Figure 8H).

Spearman correlation analysis confirmed that TKT expression
Frontiers in Immunology 12
was predominantly enriched in macrophages, with a strong

correlation observed between the two (Figure 8I), consistent with

the ScRNA-Seq findings. This suggests that TKT may support

macrophage-driven processes such as immune regulation and

inflammatory responses, particularly in the context of tumor

development. The tumor microenvironment was further analyzed

by defining regions as “malignant” (score of 1), “normal” (score of

0), or “mixed” (regions containing both malignant and non-

malignant cells). TKT expression was highest in mixed regions,
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followed by malignant regions, and was lowest in normal regions

(Figure 8J). This pattern highlights the potential role of TKT in the

interaction between malignant and immune cells, facilitating tumor

progression. The increased expression of TKT in these regions may

reflect its role in promoting immune evasion, tumor cell survival,

and adaptation within the complex tumor microenvironment.

These findings imply that TKT may contribute to macrophage

dynamics and the crosstalk between tumor and immune cells,

highlighting its potential as a therapeutic target.
Drug susceptibility analysis

We subsequently computed IC50 values using the

“oncopredict” package in R to investigate therapeutic responses,
Frontiers in Immunology 13
assessing patient sensitivity to various immunotherapy and

chemotherapy drugs, including those in clinical trials. Patients

with low TKT expression exhibited lower IC50 values for axitinib,

gefitinib, and lenalidomide, suggesting an enhanced sensitivity to

these treatments. Conversely, patients with high TKT expression

had lower IC50 values for bortezomib, cisplatin, cyclopamine,

docetaxel, gemcitabine, and sorafenib, indicating increased drug

sensitivity (Supplementary Figure S3).

To further explore the potential role of TKT in immunotherapy,

we subsequently analyzed TKT expression in HCC samples from

patients treated with nivolumab (PD-1 inhibitor) and cabozantinib

(a multi-targeted tyrosine kinase inhibitor), using the GSE238264

dataset. We categorized patients into responding and non-

responding groups, based on the response to immunotherapy,

and compared the differences in TKT expression between the two
FIGURE 8

scRNA-Seq and spatial transcriptome analysis of TKT in HCC. (A, B) The relationship between TKT expression levels and various immune cell
clusters. (C) Cell-cell interactions between mono/macro and other immune cell clusters. (D) Cell type trajectory. (E) General cell trajectory. (F) TKT
in Mono/Macro trajectory. (G) TKT pseudotime trajectory. (H) ST localization of TKT. (I) Differential expression of TKT in malignant, mixed malignant,
and normal regions. (J) Spearman correlation of TKT expression with microenvironmental components at ST resolution.
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groups. The results showed that the expression of TKT in tumor

tissues of patients with poor response to immunotherapy was

significantly higher than that of patients with a good response

(Supplementary Figure S4). Further analysis revealed that TKT

expression was generally higher in non-responding patients than in

responding patients in various immune cells. However, the results

were reversed in macrophages, for which responding patients had

significantly higher levels of TKT expression. This finding suggests

that TKT expression may play an important role in the efficacy of

immunotherapy by regulating the metabolism and function of

immune cells and thereby influencing the characteristics of the

tumor microenvironment.
The oncogenic effect of TKT is dependent
on reprogrammed glucose metabolism in
Hep-G2 cells

The Warburg effect, which promotes cancer cell growth and

resistance to therapeutic interventions, is characterized by glucose

metabolism reprogramming. TKT, a critical enzyme linking the PPP

and glycolysis, plays a central role in this metabolic shift, suggesting

its potential influence on cancer cell metabolism. We therefore

hypothesized that elevated TKT expression in cancer facilitates

tumor growth and metastasis by altering glucose metabolism.

TKT knockdown (Figure 9A) significantly reduced glycolytic

activity in Hep-G2 cells, as demonstrated by decreased glucose

uptake and lactic acid production (Figures 9B, C). Additionally, TKT

depletion resulted in increased ROS levels (Figure 9D), indicating its

role in maintaining redox homeostasis. TKT knockdown also inhibited

Hep-G2 cell proliferation (Figure 9E), highlighting its role in driving

oncogenic processes. These findings suggest that TKT promotes cancer

cell growth and survival by reprogramming glucose metabolism,

making it a potential target for therapeutic strategies aimed at

inhibiting cancer cell metabolism and proliferation.
STAT3 regulation of TKT

Using five TF prediction tools and correlational studies of TKT

expression, we identified three genes that consistently correlated

with TKT expression: MYC, GATA2, and STAT3 (Figure 9F).

Among these, we focused on STAT3, a key regulator of glucose

and lactic acid metabolism in HCC (22, 23). To substantiate

STAT3’s role in the transcriptional regulation of TKT, we

engineered wild-type (WT) and mutant (MUT) TKT plasmids

based on the predicted STAT3 binding site (GTCCTG) identified

through JASPAR promoter analysis (Figure 9G). Dual-luciferase

assays confirmed STAT3 binding to this site (Figure 9H). Further

validation using ChIP-qPCR analysis demonstrated direct STAT3

binding to the TKT promoter region (Figure 9I), highlighting

STAT3 as a critical regulator of TKT expression. Given STAT3’s

established role in modulating glucose metabolism, this regulation

suggests a direct link between STAT3 and TKT in cancer cell

metabolism reprogramming.
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These findings reveal a dual regulatory mechanism: STAT3-

mediated transcriptional activation promotes TKT expression,

while hypomethylation of the promoter region further enhances

the transcriptional activity of TKT. Activation of TKT by STAT3

may drive metabolic reprogramming by enhancing the flow of

glucose in the PPP, thereby enhancing cancer cell survival and

proliferation. Hypomethylation of the promoter region promotes

the binding of TKT to TFs, further facilitating its expression and

function. This complex interplay of epigenetic and transcriptional

regulation highlights the central role of TKT in cancer metabolism,

suggesting its potential as a therapeutic target, particularly in terms

of inhibiting the STAT3-TKT signaling pathway and regulating

TKT expression.
Discussion

The role of TKT in different cancers demonstrates its dual role as

both a potential risk factor and a protective factor, a phenomenon

that highlights the complexity of its function. As a key enzyme of the

PPP, TKT plays an important role in supporting rapid cell

proliferation and growth; however, under certain conditions it may

also exert a protective role. This dual function of TKT may be closely

related to the metabolic requirements of different tumor types, as well

as to the characteristics of the TME. Overexpression of TKT in tumor

types with faster proliferation rates (e.g., pancreatic and HCC) is

usually associated with a poor prognosis, because TKT supports

tumor cell growth and survival by enhancing the activity of the PPP,

promoting nucleotide synthesis and enhancing cellular antioxidant

capacity. In such tumors, high expression of TKT helps tumor cells to

better cope withmetabolic stress and oxidative damage, which in turn

increases their drug resistance and enhances metastasis. In contrast,

in less metabolically active tumor types (e.g., UVM), TKT may play a

protective role by maintaining redox homeostasis. Oxidative stress,

particularly ROS accumulation, plays a key role in tumorigenesis and

the pathology of certain ocular diseases (24–26). In these tumors,

TKT expression reduces oxidative damage, thereby protecting tumor

cells from the adverse impacts of metabolic imbalance. This

protective effect may explain the association between TKT in UVM

and better prognosis. Thus, the dual role of TKT in different cancers

reflects its key role in the complex interaction between metabolic

demands and the tumor microenvironment.

HCC is known for its highly malignant and aggressive nature,

which contributes to unfavorable outcomes, primarily due to drug

resistance, recurrence, and metastasis (27–29). HCC exhibits

significant heterogeneity, with various molecular subtypes

coexisting within individual tumor lesions (30). These subtypes

exhibit unique biological properties and marked differences in key

malignant behaviors such as proliferation, invasion, and drug

resistance, all of which are essential for tumor progression (31).

This study found high TKT levels in clinical samples of HCC, Hep-

G2 cell lines, and datasets from the TCGA and GEO databases.

Additionally, elevated TKT levels were identified in mono/macro

from patients with HCC in the GSE140228 dataset. Previous studies

have established a connection between dysregulated TKT expression
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and metabolic reorganization, a foundational mechanism driving

malignant progression (6, 32, 33). Prior studies have shown that TKT

is associated with a poorer prognosis in colorectal cancer, due to its

promotion of metastasis (34, 35). Similarly, in our analysis of the

GSE97626 dataset, we found that HCC cell lines MHCC97L and

HCCLM3 with high metastatic potential had significantly higher

TKT expression levels than Huh7 cells with low metastatic potential.

This indicates that TKT may play a crucial role in the metastatic

process of HCC. Overall, the findings of the present study align with

those of Li et al. (36).

Thanks to the rapid development of tumor immunotherapy and

microarray sequencing technology, bioinformatics has played an

increasingly important role in the exploration of new targets for

HCC immunotherapy. Studies have shown that the difference
Frontiers in Immunology 15
between immune score and stromal score significantly affects the

survival and prognosis of patients with liver cancer (37). In

addition, higher immune scores in tissues adjacent to HCC were

found to be associated with earlier recurrence, further confirming

the critical role of immune cells in the development and progression

of HCC (38). Therefore, the ESTIMATE score, as an effective tool to

comprehensively evaluate the content of immune cells and stromal

cells in tissues, has significant potential and is expected to become

an important indicator to predict patient prognosis.

Tumor cells drive tumor progression by interacting with and

adapting to their microenvironment. A growing array of promising

immunotherapies is currently under clinical investigation for cancer

treatment. This study noted that TKT was positively correlated with

eosinophils, macrophages M0, and Tregs in HCC tissues. Tregs are
FIGURE 9

Experimental verification of TKT. (A) TKT mRNA levels were assessed in Hep-G2 cells, negative control (NC), and siRNA-treated subclones (si-1, si-2,
si-3), with NC serving as the internal control. (B) Glucose uptake assay in NC, si-2, and si-3 subclones. (C) Lactic acid assay in NC, si-2, and si-3
subclones. (D) Intracellular ROS levels were measured following TKT knockdown. (E) Cell proliferation assay in NC, si-2, and si-3 subclones. (F)
Prediction of TFs potentially binding to TKT using five databases. (G) Binding sequence of STAT3 to TKT predicted from the JASPAR database. (H)
Verification of the transfectant’s impact on STAT3 interaction with the TKT promoter through a luciferase reporter assay in HCC cells. (I) ChIP assay
results confirm direct binding between STAT3 and the TKT promoter region. (*,#P <0.05, **,##P < 0.01, ***,###P < 0.001, ****,####P < 0.0001,
and ns means no significance).
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crucial in curbing autoimmunity and provide effective anti-tumor

immunity. Increased Treg infiltration within tumor sites is

frequently correlated with worse outcomes in patients with cancer

(39). Moreover, TKT is significantly associated with various ICPs

and immunomodulatory factors. Given their critical roles in

immune evas ion, ICPs have become focal points in

pharmaceutical investigations, and their blockade represents the

most promising strategy for cancer immunotherapy (40). Our

analysis of HCC using the TCGA database confirmed the

correlation of TKT with additional ICP genes, including CD44,

CD80, CD86, and CTLA-4, which may explain the association of

TKT overexpression with poorer prognoses in patients with cancer.

In HCC, TKT expression positively correlates with tumor stemness,

which promotes tumor initiation, metastasis, and drug resistance.

Common mutations in patients with HCC, such as TP53 and

CTNNB1, may influence the effectiveness of ICP inhibitor (ICI)

therapy (41). TP53 mutations can drive immune evasion in HCC

cells, potentially diminishing the effectiveness of ICI therapy.

Additionally, alterations in CTNNB1 and AXIN1 may modify the

Wnt/b-catenin pathway (42), thus affecting the responsiveness of

HCC cells to ICI therapy. Although there are currently no studies

directly exploring the relationship between TKT and TMB, its

biological role indicates that high TKT expression could indirectly

contribute to elevated TMB by increasing genomic instability in

tumor cells. This, in turn, may influence the response to

immunotherapy. While TMB serves as an effective predictive

biomarker for immunotherapy across various cancers, its

limitations as a standalone marker are evident. Consequently,

combining TKT expression with TMB analysis could offer a more

comprehensive and reliable basis for the prediction of responses to

personalized immunotherapy. Although further research is needed

to explore the relationship between TKT and TMB, as well as to

assess their clinical relevance across different tumor types, this

approach could ultimately lead to the development of more

accurate biomarker combinations for optimizing immunotherapy

strategies. These findings suggest a correlation between TKT and

tumor immunity, highlighting TKT’s role in tumor development

and its potential impact on the effectiveness of immunotherapy.

In recent years, significant progress has been made in the

systematic treatment of HCC, particularly in the fields of targeted

therapy, immunotherapy and chemotherapy combination therapy.

As the first systemic treatment approved by the FDA, Sorafenib has

demonstrated significant efficacy in HCC patients, and has arisen as

a cornerstone of clinical treatment. However, there are significant

differences in how individual patients respond to the drug. In our

study, it was found that groups with high TKT expression were

more sensitive to sorafenib and cisplatin. We further found that low

TKT expression may be associated with better immunotherapy

responses. This finding provides a new perspective regarding the

role of TKT in tumor metabolism. Specifically, that TKT may

regulate the response of HCC to different drug therapies through

metabolic reprogramming in tumor cells, thereby affecting its

efficacy. As such, therapeutic strategies targeting TKT may

enhance the sensitivity of tumor cells to existing targeted
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therapies and immunotherapies by influencing metabolic

homeostasis, thereby optimizing the comprehensive treatment

regimen for HCC.

TKT inhibitors, such as oxygen thiamine (OT) and Oroxylin A,

are gaining increasing attention for their ability to disrupt key

metabolic processes that support cancer cell proliferation and

therapeutic resistance. OT inhibits TKT, which requires ThDP

(thiamine pyrophosphate), the active form of thiamine, as a

cofactor for its activation (43–46). By interfering with nucleic acid

synthesis and redox balance, OT modulates the PPP, thereby

disrupting essential metabolic processes in cancer cells. This not

only suppresses tumor growth, but also increases ROS levels,

increasing the sensitivity of cancer cells to chemotherapy.

Combining OT with chemotherapeutics like sorafenib, imatinib,

cisplatin, or gemcitabine has shown promise in restoring drug

sensitivity in resistant cancers, such as chronic myelogenous

leukemia, and pancreatic cancer (47). Additionally, OT has

demonstrated synergy with docetaxel and doxorubicin in the

treatment of triple-negative breast cancer (48). In the future,

combining TKT inhibitors like OT and Oroxylin A with

traditional chemotherapy holds significant potential as a strategy

to overcome resistance and enhance treatment outcomes across a

wide range of cancers.

Similarly, Oroxylin A, a selective TKT inhibitor, has shown

strong preclinical evidence in inhibiting HCC growth. By targeting

the non-oxidative branch of the PPP, Oroxylin A disrupts

nucleotide synthesis and redox homeostasis, both of which are

essential for cancer cell metabolism and survival. Studies in mouse

models and patient-derived organoids have shown that Oroxylin A

significantly reduces HCC tumor growth. These results indicate that

targeting the non-oxidative PPP could be a novel strategy for

treating HCC and potentially other cancers (49). Combining TKT

inhibitors like OT and Oroxylin A with traditional chemotherapy

may also offer a promising approach to overcome resistance and

improve treatment outcomes across various cancers. It is important

to note that TKT has a dual function. Although overexpression of

TKT is one of the key factors in the malignant progression of

hepatocellular carcinoma, its role in normal growth and

development is equally crucial. Indeed, studies have shown that

TKT deficiency disrupts the normal function of the intestinal

barrier, which in turn leads to enteritis. In addition, decreased

TKT activity has been implicated as a driving factor in the

development of diabetic complications (50). By activating TKT,

not only can diabetic retinopathy and cardiomyopathy be

prevented, but the healing of limbs in diabetic patients can also

be promoted, while the symptoms of diabetic nephropathy can be

alleviated (51). More critically, TKT inhibitors may trigger side

effects when used in combination with chemotherapeutic

agents. For example, TKT inhibitors counteract each other’s

antitumor effects when used in combination with lovastatin (52).

Therefore, more detailed safety and efficacy evaluations must be

performed before TKT inhibitors can be used in clinical application.

This study has certain limitations. First, some findings were

based on a single approach or database, without cross-verification
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from multiple sources. Second, although our bioinformatics

analyses indicated an association between TKT and unfavorable

outcomes in HCC and immune responses, it remains uncertain

whether TKT affects prognosis by regulating immune processes.

Finally, while our findings suggest promising directions for future

studies, additional experimental validation is essential to elucidate

the specific biological functions and molecular mechanisms

involved. In summary, through this multi-omics approach and

experimental analysis, we provide a holistic view of TKT function

in immunotherapy and prognosis, emphasizing its role in HCC.

The insights gained from this study may inform future therapeutic

strategies targeting TKT and enhance our understanding of its

impact on cancer progression and treatment responses.
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