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Recent advances in novel tumor
immunotherapy strategies based
on regulating the tumor
microenvironment and
immune checkpoints
Hanhui Jing, Yan Gao, Zongsheng Sun and Shanglong Liu*

Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao,
Shandong, China
Tumor immunotherapy, a novel and rapidly progressing cancer treatment, has

experienced remarkable advancements over recent years. It focuses on

augmenting the patient’s immune defenses and remodeling the immune

microenvironment (IME) of tumors, rather than directly targeting malignant cells.

The efficacy of immunotherapy relies substantially on multiple components within

the tumor microenvironment (TME), extending beyond adaptive immunity alone.

Immune cells within the TME play critical roles in both promoting immune

surveillance and facilitating immune evasion. This complexity emphasizes the

importance of immune checkpoint regulation in immunotherapeutic interventions.

Therapeutically targeting specific immune cell subsets and metabolic pathways in

combination treatments can transform an immunosuppressive TME into one that is

immunologically activated, facilitating enhanced immune cell infiltration and

consequently improving immunotherapy efficacy. Nevertheless, comprehensive

research remains necessary to fully elucidate the mechanisms underlying TME

interactions and immune checkpoint regulation, ultimately enabling more effective

immunotherapeutic approaches.
KEYWORDS
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Introduction

Over the past decade, tumor immunotherapy has rapidly evolved into a promising

therapeutic modality. Rather than directly attacking tumor cells, immunotherapy leverages

the body’s immune response by enhancing innate defenses and reshaping the IME. Its

primary objective is to potentiate natural anti-tumor immunity through increased

infiltration of adaptive and innate immune cells into the TME. The formation of a

favorable IME and enhanced immune responsiveness holds substantial clinical potential
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for predicting therapeutic outcomes and exploring new treatment

avenues. Immunotherapy is associated with fewer adverse effects

compared to conventional chemoradiotherapy. Targeting immune

checkpoints, a cornerstone of immunotherapy, exhibits synergistic

effects when combined with chemotherapy, radiotherapy, or

targeted therapies. The contemporary paradigm of advanced

cancer management has progressively transitioned from

chemotherapy and targeted therapies toward immunotherapy,

in c rea s ing ly in t eg ra t ing neoad juvan t and ad juvan t

treatment modalities.

Immune checkpoints represent crucial inhibitory molecules

within the immune system, predominantly expressed on immune

and tumor cell surfaces. Upon receptor engagement, these molecules

inhibit immune cell activation or promote immune exhaustion,

exerting immunosuppressive effects. Under physiological conditions,

immune checkpoints are essential for maintaining immune tolerance

and preventing autoimmunity. Recently, extensive studies have

primarily focused on immune checkpoints, both pivotal in

mediating tumor immune evasion. Continuing research efforts have

identified additional checkpoints. Immune checkpoint blockades

(ICBs), mainly antibodies targeting programmed death protein-1

(PD-1), programmed death ligand-1 (PD-L1), and cytotoxic

T lymphocyte-associated antigen-4 (CTLA-4), represent the primary

immunotherapeutic strategy currently employed.

Presently, a significant limitation of immunotherapy,

particularly ICB, is its restricted therapeutic response observed in

subsets of cancer patients. Response rates vary widely across distinct

cancer types and among patients diagnosed with identical

malignancies, considerably restricting ICB’s broader clinical

utility. Differential responses to immunotherapy, including

immune checkpoint inhibitors (ICIS), are predominantly

attributed to variations in tumor IMEs across cancer types and

subtypes. Immunosuppressive TMEs inhibit immune effector cells,

leading to their exhaustion or functional impairment, thus

hindering effective tumor eradication. Consequently, exploring

novel molecular targets aimed at improving the IME constitutes a

key direction in immunotherapy research. The roles and functions

of immune cells within tumor contexts are summarized in Table 1.
Abbreviations: ACAT, Acetyl-CoA acetyltransferase; CAF, Cancer-associated

fibroblast; CCL, Chemoattractant cytokine ligand; CTLA-4, Cytotoxic T

lymphocyte-associated antigen-4; CTLs, Cytotoxic T lymphocytes; CXCL17, C-

X-C motif chemokine 17; DCs, Dendritic cells; GGPP, Geranylgeranyl

pyrophosphat; ICBs, Immune checkpoint blockades; IDO, Indoleamine 2,3-

Dioxygenase; IFN-g, Interferon-g; LAG-3, Lymphocyte Activation Gene-3;

LDLR, Low-Density Lipoprotein Receptor; MCT, Monocarboxylate transporter;

MDSCs, Myeloid-derived suppressor cel ls ; OXPHOS, Oxidat ive

phosphorylation; PD-1, Programmed cell death protein 1; PD-L1, Programmed

death ligand 1; PDGF, Platelet-derived growth factor; RORa, Retinoic acid-

related orphan receptor a; TAMs, Tumor-associated macrophages; TILs, Tumor

infiltrating lymphocytes; TIGIT, T cell immune receptor with Ig and ITIM

domains; TME, Tumor microenvironment; TIM-3, T cell immunoglobulin

domain and mucin domain-3; TIICs, Tumor-infiltrating immune cells; VEGF,

Vascular endothelial growth factor; XBP-1, X-box-binding protein-1.
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TME and immunotherapy

The TME encompasses the local surroundings in which tumor

cells exist (1–4). Rapid proliferation of tumor cells accompanied by

underdeveloped vasculature results in insufficient oxygen delivery,

creating a hypoxic environment within tumor tissue (5, 6).

Additionally, tumor cells preferentially generate energy through

aerobic glycolysis, causing lactic acid buildup (7–9). Vascular

anomalies and metabolic dysfunction trigger cascades of signaling

pathways that foster the establishment of an immunosuppressive

TME (5). Tumor-infiltrating immune cells (TIICs) critically influence

cancer cell activity within this microenvironment. These cells exhibit

considerable heterogeneity and plasticity, exerting dual roles that

either suppress or promote tumor growth. TIICs primarily

encompass cancer-associated fibroblasts (CAFs), tumor-associated

macrophages (TAMs), T lymphocytes, B lymphocytes, dendritic cells

(DCs), neutrophils, natural killer (NK) cells, and myeloid-derived

suppressor cells (MDSCs) (10). Microscopically, the TME is

distinguished by pronounced fibrosis, limited vascularization,

extensive interstitial fibrosis, abundant CAFs, and marked

infiltration of immune cells with pro-inflammatory and tumor-

promoting characteristics. Moreover, the immunosuppressive

nature of the TME represents a defining feature of malignancies

and constitutes a critical site for interactions between tumor cells and

host immunity (11, 12). Therefore, modulation of immune cells

within the TME to regulate anti-tumor responses has increasingly

become a research priority. ICB therapy, representing a major recent

advance in tumor immunotherapy, has exhibited notable

effectiveness against various cancers Figure 1. Emerging

technologies and novel research paradigms promise continued

improvements in TME-focused immunotherapeutic strategies.

Relevant points are summarized in Table 2.
Targeted TME therapy

Tumor-infiltrating lymphocytes (TILs) comprise diverse

lymphocyte subsets predominantly residing within the TME.

These cells primarily include T cells, B cells, NK cells, DCs,

macrophages, and MDSCs, with T cells being most abundant.

CD4+ T cells mainly differentiate into helper T cells (Th cells)

and regulatory T cells (Tregs) (13–15). Th cells further differentiate

into specific subsets such as Th1 and Th2 cells, which typically

release various inflammatory cytokines to enhance the activity of

immune cells. T cells play a pivotal role in orchestrating anti-tumor

immune responses. However, infiltrating CD8+ T cells exhibit

elevated expression of co-inhibitory molecules, coupled with

reduced proliferation markers like Ki-67, indicative of functional

exhaustion and impaired effector capabilities. An acidic

microenvironment further diminishes T-cell-derived pro-

inflammatory cytokines, while increasing CTLA-4 expression.

Consequently, infiltrating T cells become increasingly susceptible

to inhibitory signals (5, 16, 17). Hypoxic conditions within tumors

lead to diminished CD4+ T cell populations and elevated expression

of immunoregulatory factors, such as VEGF and IDO. These
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TABLE 1 The role and effect of various immune cells in cancer.

Cell types Roles in cancer Effect

Effector T cells Killing cancer cells by directly identify; Secreting multiple cytokines to induce tumor apoptosis; Transforming into
memory T cells for a long time.

Anti-tumor

Regulatory T cells (Tregs) Inhibits effector T cells and promotes tumor growth and spread Pro-tumor

NK cells The release of perforin and granulin leads to apoptosis of cancer cells Anti-tumor

Dendritic cells Presents antigens and provides costimulatory signals and adhesion molecules for T cell activation; Produce high levels
of the pro-inflammatory cytokines

Anti-tumor

M1-polarized macrophages Pro-inflammatory cytokines are produced and Th1 is activated to kill tumor cells; Inhibits the formation of
tumor neovascularization

Anti-tumor

M2-polarized macrophages Secretion of TGF-b,IL-10 cytokines impair the immune response Pro-tumor

N1-polarized neutrophils Release cytotoxins, secrete cytokines, and promote apoptosis of tumor cells Anti-tumor

N2-polarized neutrophils Supports angiogenesis and secretes immunosuppressive factors such as ROS Pro-tumor

Myeloid-derived suppressor
cells (MDSCs)

Inhibits immune cells, remodels the extracellular matrix, and promotes immune escape Pro-tumor

B cells On the one hand, tumor cells are cleared through antibody-mediated cytotoxicity, and on the other hand, the immune
microenvironment is regulated to promote tumor growth and metastasis

Anti-tumor &
Pro-tumor
F
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FIGURE 1

Cancer immunotherapy categories (oncolytic viruses, vaccines, cytokines, cell transfer, checkpoint inhibitors) have evolved, showing clinical promise,
with their principles and cellular/molecular underpinnings depicted.
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molecules inhibit antigen-specific immune responses and decrease

IFN-g production from CTLs (18–20).

Alterations in metabolism constitute key hallmarks of tumors.

Tumor cells modify metabolic pathways and nutrient uptake to

sustain rapid proliferation. In the immunosuppressive TME, tumor

cells limit nutrient availability required for T cell activation and

generate abundant lactic acid, resulting in nutrient scarcity and

metabolic waste accumulation. These conditions prompt

phenotypic and functional shifts in TIL populations (21, 22). In the

hypoxic and nutrient-deficient TME, tumor cells preferentially

acquire and rapidly consume glucose, favoring glycolysis over

oxidative phosphorylation (OXPHOS) due to its metabolic

advantages. This intense glycolytic activity results in substantial

lactic acid accumulation (23, 24). Inhibiting lactate production

using inhibitors of lactate transporters can enhance IL-2 and IFN-g
secretion in T cells and promote T cell activation. Alterations in

tumor lipid metabolism also significantly affect T cell activity.

Cholesterol and its derivatives critically regulate T lymphocyte

function, including chemotaxis, cell cycle, and effector functions
Frontiers in Immunology 04
(25, 26). Interventions targeting membrane cholesterol represent a

potential strategy for modulating T cell activation. Studies have

shown that genetic knockout or pharmacological inhibition of

ACAT1 in CD8+ T cells suppresses intracellular cholesterol

esterification. Consequently, increased free cholesterol translocates

to the cell membrane, raising membrane cholesterol levels and

enhancing CD8+ T cell activation (27, 28). In preclinical melanoma

and lung cancer models, deletion of ACAT1 in CD8+ T cells

significantly suppressed tumor progression and metastasis (29–31).

Additionally, attaching liposomes loaded with the ACAT1 inhibitor

Avasimibe onto T cell surfaces increases membrane cholesterol

content, facilitates rapid T cell receptor clustering, and sustains T

cell activation, enhancing their cytotoxic effects against glioblastoma

and melanoma. Studies revealed that RORa suppresses genes

associated with cholesterol esterification in CD8+ T cells by

inhibiting NF-kB signaling, thereby strengthening CD8+ T cell-

mediated cytotoxic responses (32–34). Elevated cholesterol levels in

CD8+ T cells induce ER stress, activating the ER stress-related protein

XBP1. XBP1, functioning as a transcription factor, enhances
TABLE 2 Therapeutic targets that focus on the tumor-associated immune and stromal compartments, either investigated in interventional clinical
trials or approved by the FDA.

Classification Target Tumor type Phase/Status Treatment Clinical
Trials.gov
Identifier

Study Start

TAMs

CSF1R Colorectal cancer and
pancreatic ductal
adenocarcinoma

Phase 1 Pexidartinib with
Anti-PDL1 Antibody

NCT02777710 2016-06

CCL2 Metastatic Castrate-
Resistant
Prostate Cancer

Phase 2 Monotherapy NCT00992186 2009-09

CCR2 Pancreatic Cancer Phase 1 Monotherapy NCT03851237 2019-01-02

CD40 Locally Advanced
Pancreas Cancer

Phase 1 Mitazalimab NCT06205849 2024-06-25

SIRPa Advanced Solid and
Hematologic Cancers

Phase 1 CC-95251 NCT03783403 2019-03-01

DCs

GM-CSF Metastatic Breast
Cancer

Phase 2 Herceptin NCT00429104 2002-08

FLT3L Metastatic
Colorectal Cancer

Phase 1 Monotherapy NCT00003431 1998-06

Immune
checkpoint blockade

CTLA-4 Advanced Ovarian
Cancer Advanced
Solid Tumor

Phase 3
Phase 1/2

PD-1/CTLA-
4 Antibody

NCT06542549
NCT03179007

2024-10-01
2017-06-07

LAG3 Advanced Solid
Tumor Malignancies
or Lymphomas

Phase 1 Sym022 NCT03489369 2018-05-08

TIM-3 Advanced Solid
Tumor Malignancies
or Lymphomas

Phase 1 Sym023 NCT03489343 2018-05-24

TIGIT Advanced Tumours Phase 1 PM1009 NCT05607563 2022-11-21

CAFs CXCR4 Multiple Myeloma Phase 1/2 Monotherapy NCT01010880 2008-10

FGFR Solid tumors Phase 2 Pemigatinib NCT04003623 2019-10-31
(Data was collected from http://clinicaltrials.gov and accessed in April 2025).
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expression of inhibitory molecules, resulting in functional exhaustion

and suppression of CD8+ T cells, and ultimately promoting tumor

progression (35–37).

Regulatory B cells are crucial to immune regulation, suppressing

inflammatory responses primarily through IL-10 secretion. Recent

studies have linked cholesterol metabolism to the anti-

inflammatory functions of B cells. Specifically, the synthesis of

GGPP, a cholesterol pathway metabolite, is essential for inducing

IL-10 production. This process suppresses the Th1 response and

limits overall immune reactivity, highlighting cholesterol

metabolism as a pivotal pathway in IL-10 production and B cell

regulation (38–40).

In recent years, non-coding RNAs (miRNA, lncRNA, and

circRNA) have been identified as critical for the development of

various cancers, and their aberrant expression serves as diagnostic

and therapeutic markers (41, 42). miRNAs can bind directly to the

3’-UTR or target other genes to regulate PD-L1 expression. Cortez

et al. found that in NSCLC, wild-type P53-induced miR-34 directly

binds to the 3′-UTR of PD-L1 to inhibit PD-L1 mRNA expression,

representing a potential therapeutic strategy by modulating the

tumor immune escape mechanism via the p53/miR-34/PD-L1 axis

(43). Xia et al. reported that LINC01140 overexpression protects

PD-L1 mRNA from miRNA-mediated suppression, facilitating

immune evasion in lung cancer cells (44). Additionally, exosomes

secreted by cells are rich in miRNA, mRNA, and functional

proteins, mediating cell-to-cell signaling within the TME (45). In

gastric cancer, increased PD-L1 expression through EV-mediated

miR-675-3p promotes immune evasion by cancer cells (46).
CAFs

Fibroblasts are critical multifunctional cells within connective

tissues, responsible for synthesizing extracellular matrix and

basement membrane components, modulating immune responses,

influencing epithelial differentiation, and sustaining tissue integrity

(47). Tumor cells induce activation and differentiation of fibroblasts

into CAFs through direct intercellular contact or secretion of

soluble signaling factors. CAFs prominently secrete proteins of

the TGF-b family, particularly TGF-b1 (48). Additionally, CAFs

suppress CD8+ T cell activity by expressing immune checkpoint

ligands, thereby facilitating tumor immune evasion (49, 50).

Therapeutic strategies targeting CAFs enhance the anti-tumor

activities of cytotoxic T lymphocytes and NK cells while reducing

regulatory Treg and MDSC populations (51, 52). Current research

mainly focuses on CAF-targeted approaches by inhibiting their

secreted cytokines and chemokines. For instance, combining TGF-b
pathway inhibitors with anti-PD-1 antibodies disrupts TGF-b
signaling, increases T cell infiltration, and augments anti-tumor

immunity. Khalili et al. demonstrated that melanoma-derived IL-1a
and IL-1b increase CAF density, whereas cytokine neutralization

mitigates CAF-mediated suppression of T cell activation (53).

Multiple studies confirm the significant role of CAFs in resistance

to immunotherapy, indicating CAF interactions with diverse

immune cells as promising therapeutic intervention targets.
Frontiers in Immunology 05
Several clinical trials involving CAF-targeted drugs combined

with existing therapies are underway (4, 49). Despite progress,

CAF heterogeneity has hindered therapeutic efficacy, potentially

causing off-target effects (54–56).
MDSCs

MDSCs are a heterogeneous population of immature myeloid cells

from bone marrow, including granulocytes and monocytes. Their

primary feature is potent suppression of T cell responses, positioning

them as key mediators of tumor-induced immunosuppression (57,

58). Activated MDSCs release immunosuppressive factors, which

inhibit CTLs, NK cells, and their subsets, promoting tumor immune

evasion and resistance to immunotherapy (59, 60). High-fat diets and

obesity can enhanceMDSC accumulation in tumor-bearingmice (61).

CYP27A1 synthesizes 27-HC, a cholesterol metabolite positively

correlated with poor prognosis. Studies have shown 27-HC

promotes M-MDSC differentiation and proliferation, facilitating

tumor progression by creating an immunosuppressive environment

(59, 60). Tumor-derived chemokines recruit MDSCs into primary or

metastatic sites in cancers such as breast, gastric, and ovarian tumors

(58, 59). Macrophage-derived ApoE in pancreatic cancer binds LDLR

on tumor cells, activating the NF-kB pathway and elevating CXCL1

and CXCL5 expression (62). CXCL1 and CXCL5 recruit M-MDSCs,

mediating immunosuppression by inhibiting CD8+ T cell infiltration,

thereby promoting tumor progression (63). In ovarian cancer (OC)

and melanoma, ApoE binds LRP8 on MDSCs, enhancing anti-tumor

immunity (64, 65). The LXR/ApoE axis influences MDSC survival,

and LXR agonists (RGX-104/GW3965) have demonstrated efficacy in

mouse models, significantly reducing tumor growth and metastasis by

inducing MDSC apoptosis (66–68). LXR agonists also potentiate PD-1

blockade efficacy by targeting TAMs and MDSCs. Currently, the LXR

agonist RGX-104/GW3965 is undergoing clinical trials for stage I solid

tumors (NCT02922764) to investigate MDSC-mediated

immunosuppression mechanisms and therapeutic potential (68, 69).

Tregs are immunosuppressive cells that inhibit anti-tumor

immune responses. They suppress effector T cells via CTLA-4

expression and cytokines (70). IL-10 primarily mediates Treg

immunosuppression by inhibiting pro-inflammatory cytokines

from monocytes and macrophages, reducing IL-12 synthesis, and

hindering Th1 differentiation. Neutralizing antibodies against IL-10

can block Treg-mediated effector T cell suppression (71, 72). Tregs

highly express CD25, enabling them to compete effectively for IL-2,

resulting in effector T cell depletion and apoptosis (73).

TGF-b critically mediates immunosuppression by inhibiting

effector T cell activation and promoting the differentiation of

Tregs and Th17 cells (74). Tregs maintain immune tolerance

partly by promoting activation of latent TGF-b1 (74).

Additionally, Tregs express integrin avb8, activating TGF-b and

mediating immunosuppression through cytotoxic mechanisms.

Granzyme B, a serine protease delivered into target cells via

perforin, initiates caspase-3-dependent apoptosis. By secreting

granzyme B, Tregs induce apoptosis of effector T cells, thus

modulating immune responses. The expression of granzyme B in
frontiersin.org
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Tregs relies significantly on TCR/CD28 signaling through activation

of the PI3K-mTOR pathway (75). CCL1 activates Tregs by

increasing surface expression of CCR8, and interaction between

CCL1 and CCR8 induces Stat3-dependent Granzyme B expression,

enhancing Treg inhibitory activity. Tregs also mediate

immunosuppressive responses by altering cell metabolism. They

require more glucose than effector T cells to execute

immunosuppressive functions, leading to effector T cell

exhaustion due to competitive glucose consumption (76, 77).

cAMP inhibits T cell activation and function. In Tregs, FOXP3

increases intracellular cAMP by enhancing AC9 expression through

suppression of miR-142-3p and PDE3b. Subsequently, Tregs

directly transfer cAMP to effector T cells through cell-to-cell

contact, impairing their proliferation and reducing IL-2 secretion.

Furthermore, Treg interactions with DCs elevate DC cAMP levels,

downregulating expression of co-stimulatory molecules CD80/

CD86. Surface-expressed CTLA-4 on Tregs further suppresses

CD80/CD86 expression, impairing DC-mediated T cell activation.

Tregs also secrete IL-10, inhibiting DC maturation and reducing

their antigen-presenting capability (78–81).

CD70, a TNF family member expressed on dendritic and thymic

medullary epithelial cells, enhances cytotoxic T cell function. Tregs

down-regulate DC membrane CD70 expression via a CD27-

dependent mechanism, thus impairing DC function. Selective

depletion of Tregs from the TME improves anti-tumor immune

responses. Current immunotherapies targeting Tregs primarily

involve surface molecules overexpressed on Tregs but not

conventional T cells. CD25 (IL-2Ra) is the earliest identified Treg

marker. Tregs competitively bind IL-2 through CD25, inhibiting

effector T cell proliferation and activation. Administration of anti-

CD25monoclonal antibodies before tumor inoculation significantly

suppresses tumor growth in mice and enhances CD8+ T cell

infiltration. Recombinant IL-2-diphtheria toxin conjugates

selectively remove CD25+ Tregs from cancer patients, enhancing

cytotoxic T cell proliferation and cytotoxicity in vitro.

CTLA-4, highly expressed on Tregs, functions as an

immunosuppressive molecule that facilitates tumor cell survival.

Tumor-infiltrating CTLA-4+ Tregs evade anti-tumor immune

responses by dampening effector T cell activities. Anti-CTLA-4

antibodies enhance anti-tumor effects of CD4+ and CD8+ T

lymphocytes (82, 83). CTLA-4 also inhibits glycolytic metabolism

in T cells within the TME; therefore, CTLA-4 blockade enhances

glycolysis in Tregs, altering their stability and facilitating activation

of CD8+ TILs in vivo, especially in tumors with limited glycolysis

(84). Ipilimumab, an FDA-approved anti-CTLA-4 monoclonal

antibody, is currently employed for treating melanoma, and

several other cancers. It selectively reduces intratumoral Treg

populations via antibody-dependent cellular cytotoxicity (ADCC)

mediated by CD16+ monocytes. Additionally, intratumoral

ipilimumab treatment recruits CD68+CD16+ M1 macrophages,

facilitating Treg clearance (85, 86).

Chemokine receptors CCR4 and CCR8 are preferentially

expressed on Tregs; CCR4 interacts with ligands CCL17 and

CCL22. CCR4-positive Tregs secrete increased levels of IL-10 and

IL-35. CCR4 antagonists markedly reduce tumor-infiltrating Treg
Frontiers in Immunology 06
numbers and enhance responsiveness to sorafenib in murine liver

cancer models (87, 88). Moreover, Mogamulizumab, an anti-CCR4

monoclonal antibody, effectively eliminates Tregs through ADCC

in adult T-cell leukemia-lymphoma patients, significantly

increasing tumor-specific CD8+ T cells and promoting secretion

of IFN-g and TNF-a. Fc-optimized anti-CCR8 antibodies selectively

deplete CCR8-expressing Tregs within tumors without affecting

CCR8+ T cells elsewhere, effectively suppressing tumor growth (89,

90). Additionally, anti-CCR8 treatment induces persistent anti-

tumor responses without triggering harmful autoimmune effects.

Although several differentially expressed molecules distinguishing

tumor-infiltrating Tregs from conventional T cells have been

identified, the paucity of Treg-specific targets significantly

restricts clinical translation (91–94). Further research is thus

required to elucidate Treg-specific expression markers, as well as

their development, differentiation, and biological functions within

tumors Figure 2.
TAM

Macrophages are crucial components of innate immunity,

exhibiting remarkable functional plasticity. Under varying

physiological and pathological states, macrophages polarize into

either classically activated M1 or alternatively activated M2

phenotypes. M1 macrophages directly eliminate tumor cells and

amplify adaptive immunity by upregulating antigen-presenting

genes and co-stimulatory molecules. Conversely, M2 macrophages

facilitate tumor progression (95–97). Within the TME, tumor-

derived signals recruit monocytes and induce their polarization

into TAMs, promoting tumor cell proliferation, epithelial-

mesenchymal transition (EMT), and suppressing CD8+ T-cell-

mediated anti-tumor effects. Elevated TAM density correlates

with enhanced tumor progression and unfavorable prognosis,

whereas TAM depletion restores immune functions in the TME,

inhibiting tumor growth. TAM-depleting agents include

bisphosphonates and inhibitors targeting colony-stimulating

factor-1 (CSF-1) and its receptor (CSF-1R) (98, 99).

Bader et al. demonstrated that clodronate-mediated TAMdepletion

reduces polyp formation in colon cancermousemodels, down-regulates

transcription factors related to carcinogenesis, and modulates intestinal

flora, thus inhibiting tumor progression (100, 101). CSF-1, a critical

growth factor for the monocyte-macrophage lineage, significantly

regulates macrophage chemotaxis, survival, proliferation, and

differentiation. Many tumors overexpress CSF-1, while its receptor

CSF-1R is broadly expressed on monocytes. Therefore, inhibiting the

CSF-1/CSF-1R pathway effectively depletes TAMs in tumors. CSF-1R

inhibitors, such as BLZ945 and PLX5622, are widely utilized. Inhibitors

targeting monocyte and macrophage recruitment effectively block

monocyte/macrophage infiltration into the TME, suppressing

tumor progression.

Metabolic regulation also critically influences macrophage

polarization. Directly targeting intrinsic macrophage metabolism

alters polarization states (5). TAMs in tumors exhibit enhanced

glutamine and fatty acid metabolism, essential for maintaining their
frontiersin.org
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M2 phenotype. Elevated fatty acid oxidation inmacrophages enhances

mitochondrial OXPHOS, reactive oxygen species (ROS) production,

phosphorylation of tyrosine protein kinase 1, and activation of STAT6,

thus promoting TAM polarization (102, 103). Tumor-derived

metabolites further affect macrophage polarization, impacting tumor

progression. Specifically, tumor-derived lactic acid binds the lipid

receptor G2A on macrophages, activating STAT3 and promoting

TAM polarization. Depleting macrophage G2A significantly inhibits

their polarization toward TAMs. CD47, expressed on the surface of

tumor cells, binds signal regulatory protein a (SIRPa) on

macrophages, preventing macrophage-mediated tumor clearance

through phagocytosis (104). Inhibiting the CD47/SIRPa interaction

between macrophages and tumor cells has the potential to restore

macrophage-driven anti-tumor immune responses mediated by

TAMs (105). Combining CD47/SIRPa-targeted treatments with

other therapeutic modalities, including angiogenesis inhibitors and

ICIS, can further suppress tumor progression.

Currently, several principal therapeutic agents targeting CD47/

SIRPa include: (1) Hu5F9-G4 monoclonal antibody, a macrophage

checkpoint inhibitor targeting CD47, promotes tumor cell

elimination via macrophage-mediated phagocytosis. Advani et al.

demonstrated that combining Hu5F9-G4 with rituximab effectively

enhanced antibody-dependent cellular phagocytosis (ADCP) to

treat B-cell non-Hodgkin lymphoma. Clinical trials have
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confirmed significant therapeutic efficacy of Hu5F9-G4 in

aggressive and indolent lymphomas (106, 107). (2) CC-90002, a

high-affinity humanized monoclonal antibody against CD47,

disrupts CD47-SIRPa interactions. Narla et al. indicated

significant dose-dependent anti-tumor effects of CC-90002 (108,

109). (3) ALX148 (Evorpacept), an engineered fusion protein

comprising a modified SIRPaD1 domain and inactive human

IgG1 Fc, binds CD47 with high affinity to block interactions with

native SIRPa. ALX148 promotes innate anti-tumor immunity by

increasing macrophage phagocytosis, DC activation, and

inflammatory TAM polarization. Combining Evorpacept with

anti-PD-1 or anti-PD-L1 antibodies markedly boosts macrophage

phagocytic activity, pro-inflammatory polarization, and DC

stimulation, thus potentiating tumor cytotoxicity. Consequently,

Evorpacept has emerged as a promising therapeutic candidate

targeting CD47 (110). The U.S. Food and Drug Administration

(FDA) has approved Evorpacept to treat head and neck squamous

cell carcinoma (HNSCC), and HER2-positive gastric or

gastroesophageal junction malignancies.

Although TAM depletion strategies inhibit tumor progression,

the non-specific effects necessitate further investigation to

determine the selective impact on TAM populations and potential

collateral effects on beneficial resident macrophages and other

immune cells.
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Innate immunity is crucial for the cancer - immunity cycle. Activated by tumors, its cells kill tumor cells directly and prime, expand, and infiltrate
tumor - specific T - cells. Therapeutic manipulation of it stimulates antitumor immunity and overcomes immune evasion.
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DCs

DCs are professional antigen-presenting cells capable of initiating

strong anti-tumor immune responses. Increased infiltration of DCs

into tumor tissue correlates positively with improved patient

prognosis (111). Studies indicate that patients with higher DC

infiltration at tumor margins show lower lymph node metastasis

rates and better overall survival compared to those lacking DCs.

Therefore, DC-based immunotherapy represents a promising strategy

for treating cholangiocarcinoma (CCA) (112). Agents that activate

DCs or reverse their immunosuppressive functions enhance both DC

and T cell activation. GM-CSF directly promotes DC maturation,

activation, and migration (113). TLR7/TLR8 agonists stimulate NF-kB
signaling, promoting secretion of pro-inflammatory cytokines and

increasing the expression of co-stimulatory molecules. Imiquimod, a

synthetic TLR7/TLR8 agonist, enhances DC-mediated cytotoxicity

and is approved for topical treatment of non-melanoma skin

cancers. Clinical trials involving TLR7/TLR8 agonists (e.g.,

NCT02574377, NCT02692976) are currently underway (114).

Additionally, unmethylated CpG oligodeoxynucleotides,

representing major TLR9 agonists, activate human DCs, facilitating

Th1-biased immune responses and CD8+ T cell-mediated anti-tumor

immunity. Clinical evaluations combining CpG oligodeoxynucleotides

with ICIS are ongoing (NCT02521870, NCT03831295) (115).

DCs bridge innate and adaptive immunity by activating and

programming T cells. Studies suggest that cholesterol,

hydroxysteroids, and cholesterol transporters influence DC

differentiation and maturation. For instance, 27-HC induces

monocyte differentiation into mature DCs, promoting surface

expression of characteristic molecules such as MHC-II and CD80,

thereby enhancing immune responses (5). Cyclosporin A, a broad-

spectrum immunosuppressant, inhibits 27-HC-induced DC

differentiation by interacting with calcineurin, down-regulating

specific DC markers (116). The absence of ApoE leads to

cholesterol accumulation on DC membranes, enhancing antigen

presentation through increased aggregation of MHC-II molecules,

thus strengthening CD4+ T cell-mediated immune responses.

Conversely, oxidized lipids impair DC cross-presentation in

cancer by promoting accumulation of triacylglycerols, and fatty

acids in DCs, reducing MHC-I expression and exogenous antigen

presentation (5). Additionally, liver X receptor (LXR) activation

impairs DC migration to lymphoid organs by suppressing CCR7

expression, promoting tumor immune escape.

Several clinical trials have explored DC vaccines, involving the

isolation, expansion, and in vitro manipulation of autologous DCs

for re-injection into patients. These studies primarily targeted

immunogenic cancers, such as prostate cancer and glioblastoma,

confirming the safety and clinical efficacy of DC-based vaccines in

stimulating NK cells and CD8+ T cell responses (117). Currently,

sipuleucel-T (Provenge), an autologous APC vaccine loaded with

prostate-specific antigen-GM-CSF fusion proteins, represents the

only clinically approved APC-based vaccine. Clinical trials

demonstrated that sipuleucel-T extends median overall survival

by approximately four months in prostate cancer patients. DC-

based therapies have the potential to enhance current cancer
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requires deeper understanding of DC biology and function (118).

Preclinical studies indicate that DC-based anti-tumor

immunotherapy holds considerable promise, warranting further

clinical validation.

Neutrophils represent an important immune cell population

within the TME. Increased proportions of tumor-associated

neutrophils (TANs) occur frequently in various solid tumors,

exhibiting similar pro-tumor activities as PMN-MDSCs (119).

Tumor-derived 22-HC recruits Tumor-derived 22-HC recruits

TANs through CXCR2 signaling, promoting angiogenesis,

immunosuppression, and tumor growth. Additionally, hypoxia-

inducible factor-1a (HIF-1a) induces 24-HC synthesis via

CYP46A1, facilitating anti-inflammatory neutrophil infiltration

and angiogenesis in pancreatic neuroendocrine tumors (120).

TANs mediate immunosuppression via PD-L1, impaired antigen

presentation, ROS, and related pathways, representing emerging

therapeutic targets and prognostic indicators (121, 122). The

neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker

for tumor prognosis. TAN infiltration closely associates with

tumor progression, and quantitative analysis of TANs, Tregs, and

TAMs interactions can predict cancer patient outcomes (123).

Targeting TANs with small-molecule inhibitors or neutralizing

antibodies is a promising therapeutic strategy. Studies indicate

down-regulation of methyltransferase-like 3 (METTL3) elevates

IL-8 expression, enhancing N2 TAN recruitment. IL-8

antagonists eliminate N2 TAN accumulation, significantly

delaying tumor growth in mice (124). CXCR1/2 inhibitors can

prevent immunosuppressive neutrophil recruitment, enhancing

PD-1 therapy efficacy and treatment response rates (119). TANs

also inhibit CD8+ T cell cytotoxicity via JAG2 signaling. Blocking

the Notch pathway with gamma-secretase inhibitor LY3039478 and

anti-JAG2 antibodies delays tumor growth and improves CD8+

T cell cytotoxicity. Additionally, TAN-secreted IL-17a promotes

gastric cancer EMT through JAK2/STAT3 signaling. Neutralizing

IL-17a or blocking JAK2/STAT3 signaling with inhibitor AG490

reduces TAN-mediated tumor migration and invasion (125).

TANs demonstrate high plasticity and heterogeneity, necessitating

further research into their characteristics. Current studies employing

single-cell sequencing investigate TAN polarization reprogramming to

identify new immunotherapy targets. Tumor cell response to

immunotherapy depends not only on intrinsic genetic

reprogramming but also on the complex interactions and cytokine/

chemokine regulation within the TME (121), Understanding TAN-

TME molecular interactions and signaling pathways presents new

avenues for targeted tumor immunotherapy, reshaping the TME and

hindering tumor cell colonization, growth, and invasion (126).

Combined therapeutic strategies targeting TANs, tumor cells, and

TME components may enhance tumor immunotherapy outcomes.

NK cells, innate lymphoid cells, possess intrinsic capacity to

recognize and eliminate malignant cells independently of prior

sensitization. NK cells exhibit potent tumoricidal activity,

promoting apoptosis via secretion of perforin, cytotoxic

molecules, and TNF. The activating receptor natural killer group

2D (NKG2D), predominantly found on NK cells, mediates tumor
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recognition and cytotoxicity (127). Cholesterol accumulation in NK

cells promotes their activation and enhances their cytotoxic

function, significantly influencing cancer progression, notably in

hepatocellular carcinoma. Additionally, activation of LXR signaling

in multiple myeloma cells elevates NK-cell-mediated cytotoxicity by

upregulating NKG2D ligands, including MICA and MICB (128).

PD-1, conventionally recognized as an exhaustion marker on

T cells, is also expressed on NK cells. Tumor-derived exosomal

circUHRF1 from hepatocellular carcinoma enhances PD-1

expression in NK cells, thus weakening their anti-tumor capacity

(129). Similarly, in gastrointestinal malignancies, elevated PD-1

levels on NK cells impair their cytotoxic activities due to PD-L1

binding; disrupting PD-1/PD-L1 interactions restores NK cell
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functions. Additionally, TIM-3 is another marker of NK cell

exhaustion; dual TIM-3 and PD-1-positive NK cells exhibit

reduced secretion of IFN-g and granzyme B, limiting their

cytotoxic effectiveness (130). NK cell effector functions in tumors

are compromised by inhibitory TME interactions.

Clinical approaches enhancing NK cell function have yielded

promising outcomes. A phase III/IVA trial in head and neck cancer

demonstrated that PD-1+ NK cell enrichment induced by anti-EGFR

antibody cetuximab predicts favorable prognosis. Subsequent anti-PD-1

antibody nivolumab administration significantly enhanced cetuximab-

induced NK cell activity. In colon cancer, TIGIT blockade prevents NK

cell exhaustion, thereby augmenting NK-driven anti-tumor responses

and improving T-cell-mediated immunity in an NK-dependent
TABLE 3 Selected clinical trials for tumor therapy.

Classification Cancer types Clinical trials Phase Status

Dendritic cell vaccines for cancer immunotherapy

Prostate cancer NCT00779402 Phase 3 Completed

Colorectal caner NCT02503150 Phase 3 Unknown

Kidney cancer NCT05127824 Phase 2 Recruiting

Breast cancer NCT00266110 Phase 2 Completed

Melanoma NCT01876212 Phase 2 Completed

Macrophage-targeted immunotherapies

Solid tumor NCT01204996
NCT00537368

Phase 1
Phase 1

Completed
Completed

Pancreatic neoplasms NCT01413022 Phase 1 Completed

Prostate cancer, Bone Metastases NCT00757757 Phase 1/2 Terminated

Advanced solid tumors
and lymphomas

NCT02675439 Phase 1 Terminated

Acute myeloid leukemia NCT02641002 Phase 1 Terminated

MDSC-based therapeutic strategies

Solid tumors with
liver metastases

NCT00094003 Phase 1 Completed

NSCLC NCT00752115 Phase 2/3 Completed

Renal cell carcinoma NCT04203901 Phase 2 Terminated

Head and neck cancer NCT03993353 Phase 2 Recruiting

Lymphoma NCT00529438 Phase 1 Completed

Inhibitors of NK cell-associated checkpoints

Solid tumors NCT05162755 Phase 1 Active,
not recruiting

Urothelial carcinoma NCT05327530 Phase 2 Active,
not recruiting

Gastric cancer NCT04933227 Phase 2 Terminated

Lymphoma or solid tumors NCT05390528 Phase1/2 Recruiting

Tumor-associated neutrophil (TAN)-targeted cancer therapies

Leukemia NCT03922477 Phase 1 Terminated

Cervical cancer NCT05179239 Phase 3 Recruiting

Colon cancer NCT03026140 Phase 2 Recruiting

CAR-NKT therapies

B cell malignancies NCT03774654
NCT04814004

Phase 1
Phase 1

Recruiting
Unknown status

Neuroblastoma NCT03294954 Phase 1 Recruiting
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manner. Moreover, re-administration of anti-PD-L1 antibodies

enhances persistent immune memory (131). Monalizumab, a

monoclonal antibody targeting NKG2A, enhances NK cell

cytotoxicity and restores CD8+ T cell functions. Phase II clinical trials

combining monalizumab with cetuximab in head and neck carcinoma

showed an objective response rate of 31%. TGF-b, an important

immunosuppressive molecule that induces NKG2A expression, is also

an emerging therapeutic target. Inhibitors such as galunisertib block

TGF-b, thereby augmenting NK and T cell cytotoxicity and improving

outcomes from anti-PD-1/PD-L1 therapies (132). Future developments

will likely increase NK-targeted therapies, offering personalized

treatment strategies based on tumor-specific characteristics.
Tumor immunotherapy

Immune checkpoint inhibition (ICI): Upon activation,

T lymphocytes involved in anti-tumor immunity up-regulate

various inhibitory receptors. These receptors bind ligands highly

expressed on tumor cells, suppress immune responses, and weaken

anti-tumor immunity. These negative regulatory mechanisms of

immune activation are termed immune checkpoints. ICI has

emerged as a major area of immunotherapy research. Among

extensively studied immune checkpoints are CTLA-4 and PD-1,

co-inhibitory receptors expressed by T cells that negatively regulate

their function (133). Tumor cells inhibit T cell-mediated immunity

primarily by expressing high levels of checkpoint ligands.

Immunotherapy strategies employ monoclonal antibodies

targeting these checkpoints to enhance endogenous anti-tumor

responses. Numerous studies have demonstrated the effectiveness

of ICIs in reversing tumor-induced immunosuppression. Currently,

PD-1/PD-L1 and CTLA-4 inhibitors represent the most actively

investigated checkpoint inhibitors. Additionally, CD40, a co-

stimulatory receptor on APCs, has emerged as another promising

immunotherapy target. Several CD40 agonists are undergoing

clinical trials in oncology and immune disorders. ICIs have

shown therapeutic success in various malignancies, including

melanoma and hepatocellular carcinoma. Response rates to ICIs

correlate closely with tumor-specific genetic profiles, particularly

DNA mismatch repair deficiency (dMMR) and microsatellite

instability-high (MSI-H) status (134). In 2017, the FDA approved

pembrolizumab and nivolumab specifically for MSI-H/dMMR

CRC. The Phase III clinical trial KEYNOTE-177, involving 307

treatment-naive metastatic CRC patients with MSI-H/dMMR,

randomized patients 1:1 to pembrolizumab (200 mg every

3 weeks) or standard chemotherapy. Median progression-free

survival (PFS) improved significantly to 16.5 months with

pembrolizumab versus 8.2 months with chemotherapy. At 24-

month follow-up, the mean survival duration was 13.7 months

for pembrolizumab-treated patients compared to 10.8 months for

chemotherapy recipients. Adverse event incidence rates were

comparable, at 97% (149/153) for pembrolizumab and 99% (142/

143) for chemotherapy (135). Pembrolizumab has also entered
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Phase II clinical studies targeting PD-1 in CCA, significantly

improving overall survival (OS) and objective response rates

(ORR) in patients harboring mismatch repair defects. FDA-

approved ICIs, including pembrolizumab, nivolumab,

durvalumab, atezolizumab, and avelumab, have demonstrated

efficacy in various solid tumors (Table 3). Emerging checkpoint

inhibitors targeting molecules such as TIGIT, TIM-3, and

inhibitory ligands (B7-H3, B7-H4, B7-H5) are currently being

intensively studied for solid tumor therapy (136).
Combination therapy

To enhance the therapeutic efficacy of immunotherapy,

combinations of anti-PD-1/PD-L1 antibodies with anti-CTLA-4

antibodies or tyrosine kinase inhibitors (TKIs) have frequently

been explored (137). Combination therapies generally exhibit

superior efficacy compared to TKI monotherapy. Although both

PD-1 and CTLA-4 inhibit T cell activation, CTLA-4 acts primarily

during early T cell activation, whereas PD-1 mainly inhibits

activated CD8+ T cells within the TME (138). Simultaneous

inhibition of CTLA-4 and PD-1 significantly enhances CD8+

T cell activation in tumors, exerting synergistic therapeutic effects.

The Phase III CheckMate 214 trial demonstrated that nivolumab

plus ipilimumab improved PFS, OS, and ORR compared to

sunitinib monotherapy in patients with intermediate- or poor-risk

advanced renal cell carcinoma (RCC), subsequently leading to FDA

approval of this combination therapy (139). In preclinical mouse

breast cancer models, ICIs induced CD8+ T cell activation and

vascular normalization in tumors, alleviating immune suppression

within the TME and enhancing ICI. This positive feedback between

immune activation and vascular normalization provides a rationale

for combining immunotherapy strategies. The Phase III JAVELIN

Renal 101 trial indicated that combining the anti-PD-L1 antibody

avelumab with axitinib extended median PFS by 6.6 months

compared to axitinib alone in advanced renal carcinoma patients

(140) . S imi la r ly , KEYNOTE-426 demons t ra t ed tha t

pembrolizumab (anti-PD-1 antibody) plus axitinib improved OS,

PFS, and ORR versus sunitinib monotherapy. Consequently, the

FDA approved these combination therapies in 2019 for advanced

renal cancer treatment. In metastatic pancreatic cancer,

pembrolizumab combined with CXCR4 inhibitor BL-8040

markedly increased disease control and median OS, associated

with elevated CD8+ T cell infiltration, decreased MDSCs, and

stable regulatory Treg levels (141). Furthermore, CXCR4

inhibition enhanced the effectiveness of PD-1 blockade combined

with chemotherapy in advanced pancreatic cancer patients. Animal

models of pancreatic cancer liver metastasis demonstrated that

gemcitabine combined with PD-1 blockade improved survival

outcomes, increased tumor infiltration of Th1 lymphocytes, and

enhanced M1 macrophage activity. Additionally, gemcitabine

combined with DC vaccines promoted systemic chemotherapy

and T cell-mediated responses. Murine studies further indicated
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that IL-6 combined with PD-L1 blockade significantly inhibited

pancreatic cancer growth. Combining GM-CSF vaccines with PD-1

blockade notably prolonged survival in pancreatic cancer

models (142).

However, combination therapy does not universally benefit all

patients and can induce severe adverse reactions. In KEYNOTE-

426, diarrhea and hypertension were common with pembrolizumab

and axitinib, and liver-related adverse events increased compared

with monotherapy, forcing treatment discontinuation in 30.5% of

patients. Identifying suitable biomarkers and clarifying drug

interactions in combination therapies are thus essential to

minimize adverse effects and economic burdens (143).

Stem cell therapy that reprograms the TME provides a novel

strategy for overcoming tumor immune escape and enhancing

treatment sensitivity by intervening in key aspects such as

immunity and vascularization in the TME (127, 144, 145).

Macrophages have long been utilized in ACT, but the

development of macrophage therapies requires a more cost-

effective and durable approach for generating M1 macrophages.

Among these approaches, macrophages are engineered to express

CAR (CAR-M) (146). Zhang et al. found that induced pluripotent

stem cell (iPSC)-derived macrophages (CAR-iMac) have emerged

as a promising cellular immunotherapy source (147). In March

2021, the first patient in a phase I multicenter clinical trial received

CAR-M therapy targeting HER2 to overcome solid tumors (148).

Additionally, promising results have been achieved in preclinical

ACT studies using genetically engineered T-cell receptors (TCRs)

and chimeric antigen receptors (CARs). In NSCLC, anti-PD-1/PD-

L1 combined with CAR-T cell therapy promotes the restoration of

normal immune recognition and maintenance of immune system

homeostasis (149). Fang et al. reported that PD-1-meso CAR-T cells

were effective and safe for advanced ovarian cancer, rapidly

improving the TME without obvious adverse reactions (150).

However, the long-term efficacy of CAR-T cells remains uncertain

in most clinical studies, even for leukemia. Nevertheless, CRISPR/

Cas9 technology has significantly advanced the understanding of

tumor genomics and contributed to cancer immunotherapy. Lu’s

team used CRISPR/Cas9-edited PD-1 knockout T cells in patients

with advanced NSCLC. The results showed a median PFS of 7.7

weeks, an OS of 42.6 weeks, and stable disease in two patients (151).

Overall, single-agent immunotherapy exhibits limited efficacy,

whereas combination therapies effectively transform the TME from

immunosuppressive to immuno-activated states and enhance

immune cell infiltration. Additional therapeutic targets in the TME,

present opportunities for targeted drug development. Combining

such strategies with ICIs is potentially beneficial. Personalized

treatment strategies based on patient-specific tumor characteristics

will improve treatment outcomes and extend patient survival.
Predictive biomarkers

Predictive biomarkers are critical for population stratification

and efficacy assessment, providing an essential pathway for

translating basic research into clinical practice. With the advent
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flow cytometry, many additional predictive markers have emerged

due to the generation of abundant genetic information. Cancer stem

cells (CSCs) significantly contribute to tumor heterogeneity. CSCs

can drive tumor growth, promote disease progression, and are

associated with distant metastasis and treatment resistance.

Fendler et al. identified a small CSC population through single-

cell sequencing and evaluated CSC heterogeneity, providing new

insights for clinical applications related to tumor drug resistance

and CSC-targeted treatments (152). ctDNA has demonstrated

associations with clinical response or survival in patients with

melanoma, colorectal cancer (CRC), and gastric cancer receiving

anti-PD-1 therapy. Another analysis of 18 patients with MSS

metastatic CRC identified ctDNA as a biomarker predictive of

responses to nivolumab immunotherapy (153). Single-cell multi-

omics studies and innovative high-throughput sequencing

technologies have opened new avenues for personalized patient

treatments. For example, in heterogeneous diseases such as bladder

cancer, gene expression models based on multi-omics sequencing

can identify patient populations likely to respond well to cytotoxic

drugs, enabling precise targeted therapies (154).

Noninvasive imaging modalities (e.g., PET, magnetic resonance

imaging (MRI)) can facilitate monitoring of T-cell activation and

anticancer T-cell responses (155–158). Radiomics captures features

such as tissue morphology, lesion heterogeneity, and changes

during continuous imaging throughout treatment or monitoring

(159, 160). Studies report a strong correlation between radiomics

features and cellular-level heterogeneity indices. Furthermore, PET

and MRI can assess T-cell density by detecting energy metabolism-

related substances in tumor tissues (161–163). These non-invasive

analytical methods allow dynamic observation of patient

responsiveness after treatment.
Summary and prospects

As more combination therapies emerge, involving ICIS, adoptive

cell therapy, and chemoradiotherapy or targeted agents, promising

outcomes are increasingly evident. However, immunotherapy efficacy

requires further improvement. Currently, no reliable predictive

indicators for immunotherapy responsiveness exist. Resistance

involves complex multifactorial mechanisms, including T cell

exhaustion, immunosuppressive cell infiltration, ineffective tumor

immune infiltration, and epigenetic factors. Treatment-related

adverse reactions present significant clinical challenges. Tumor

heterogeneity and dynamic TME interactions account for varied

immunotherapy responses and adverse events. Selecting precise

targets, identifying suitable patients, and using combination

treatments can partly address immunotherapy limitations.

Understanding TME impact on immunotherapy is crucial for

identifying more effective targets and therapeutic strategies. A

deeper understanding of the spatial-temporal heterogeneity within

the TME and its interactions with immunotherapy could guide

individualized immunotherapy approaches. Concurrently, sensitive
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and specific biomarker identification will accelerate translating basic

research into clinical practice.
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