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Microvascular invasion (MVI) is an independent risk factor for the recurrence and

metastasis of hepatocellular carcinoma (HCC), associated with poor prognosis.

Thus, MVI has significant clinical value for the treatment selection and prognosis

assessment of patients with HCC. However, there is no reliable and precisemethod

for assessing the postoperative prognosis of MVI patients. This study aimed to

develop a newHCC prognosis predictionmodel based onMVI characteristic genes

through spatial transcriptomics sequencing, distinguishing between high-risk and

low-risk patients and evaluating patient prognosis. In this study, four MVI samples

with different grades were selected for spatial transcriptomic sequencing to screen

for MVI region-specific genes. On this basis, an HCC prognostic model was

constructed using univariate Cox regression analysis, LASSO regression analysis,

random survival forest, and stepwise multivariate Cox regression analysis methods.

We constructed a 7-gene prognostic model based onMVI characteristic genes and

demonstrated its applicability for predicting the prognosis of HCC patients in three

external validation cohorts. Furthermore, our model showed superior predictive

performance compared with three published HCC prediction prognostic models

and could serve as an independent prognostic factor for HCC. Additionally, single

nucleus RNA sequencing analysis and multiple immunofluorescence images

revealed an increased proportion of macrophages in high-risk patient samples,

suggesting that HCC tumor cells may promote HCCmetastasis through MIF-CD74

cell interactions. To sum up, we have developed a 7-gene biomarker based on MVI

that can predict the survival rate of HCC patients at different stages. This predictive

model can be used to categorize into high- and low- risk groups, which is of great

significance for the prognostic assessment and personalized treatment of

HCC patients.
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1 Introduction

Hepatocellular carcinoma (HCC) is the primary liver cancer

accounts for approximately 85 to 90% of all liver cancers (1). It has

an insidious onset, and easy recurrence and metastasis. This makes

HCC the sixth most common cancer and the third leading cause of

cancer-related death (2). Surgical resection, liver transplantation,

neoadjuvant therapy and targeted drugs are the main methods for

early to intermediate stage HCC (3–5). Although these methods

have improved the effectiveness of HCC treatment, over 70% of

patients experience recurrence within 5 years after surgery,

indicating a poor prognosis (6). Ninety percent of cases of

recurrence and death are related to metastases (7). Therefore,

there is an urgent need to develop new prognostic assessment

methods to predict the clinical prognosis of HCC patients.

Constructing prognostic models to predict survival rates and

classify patients remains of great significant importance.

Tumor cells infiltrate blood vessels and form vascular cancer

thrombi during the metastasis process. Microvascular invasion

(MVI) refers to the presence of cancer cell nests in the lumens of

blood vessels lined with endothelium under a microscope (8, 9).

MVI represents an early stage of vascular infiltration and metastasis

in HCC and is an independent prognostic factor for tumor

recurrence and metastasis in HCC patients (10, 11). The

prediction of HCC prognosis is vital for the selection of

therapeutic approaches and prognostic improvement in patients

with HCC. Consequently, more accurate predictive markers of MVI

are needed to evaluate the risk of tumor recurrence and the

prognosis of HCC patients. The tumor microenvironment (TME)

plays an important role in the formation of MVI. However,

conventional sequencing methods have difficulty analyzing the

differential genes, microenvironmental changes and cellular

heterogeneity in the MVI sites of HCC. Single-cell RNA

sequencing (scRNA-seq) can reveal variations between different

types and cell heterogeneity. This technology is widely used in

various cancer studies, including studies of liver (12, 13), breast

(14), and kidney cancer (15). Single-nucleus RNA sequencing

(snRNA-seq) can also classify cells and map the cellular atlas of

tissues. However, because single-cell RNA sequencing is only

suitable for fresh tissue, many clinical frozen clinical samples

cannot be subjected to single-cell RNA sequencing (16).

Moreover, the dissociation process in single-cell RNA sequencing

induces the expression of stress genes, leading to transcription

biases in cells (17, 18). Furthermore, studies have shown that

snRNA-seq works consistently with scRNA-seq and accurately

captures the transcriptional state of cells, which has been

confirmed in various tissues (16, 19, 20). Therefore, this study

employs single-nucleus RNA sequencing instead of single-cell RNA

sequencing. Nevertheless, single-nucleus sequencing loses spatial

location information during the nucleus isolation process, making it

difficult to obtain the spatial positioning of individual cells within

tissues. The recent development of spatial transcriptomics (ST) has

enabled the sequencing of smaller tissue samples to obtain gene

expression profiles of specific locations and spatial locations of cells.

Spatial transcriptomics generates complete transcriptome data from
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an entire tissue sample and allows the localization and

differentiation of functional genes in specific tissue regions,

creating spatial expression maps of cells and genes (21). This

technology is now widely used in the research of various diseases,

including gene expression and cell mapping during heart

development (22), pancreatic cancer (23), prostate cancer (24),

and skin squamous cell carcinoma (25). It is currently assumed

that MVI is located mainly at the junction between the tumor and

adjacent tumor. ST can obtain not only transcriptome data of the

connection between the tumor and adjacent tumor but also data of

the MVI region, and directly screen the characteristic genes of the

MVI region. In conclusion, we combined spatial transcriptome

sequencing and single-nucleus RNA sequencing techniques to

obtain differentially expressed genes and determine the

microenvironment composition of microvascular invasion sites.

These finding are crucial for understanding the mechanism of

MVI formation and finding new treatment targets.

The purpose of this study was to investigate MVI molecular

markers using spatial transcriptome technology and to construct a

prognostic risk assessment model for HCC patients based on MVI,

with the aim of providing appropriate treatment methods for

HCC patients.
2 Materials and methods

2.1 Human HCC tissues

From May 2020 to February 2021, a total of 28 early HCC

tumors and adjacent normal tissues were collected from patients

who underwent surgical resection at the Eastern Hepatobiliary

Surgery Hospital (Shanghai, China). Each tissue sample was

approximately 1 cm ×1 cm × 1 cm in size, washed in PBS,

dehydrated, and quickly frozen in isopentane and liquid nitrogen.

The samples were subsequently transported to the laboratory on dry

ice. The tissues were embedded in optimal cutting temperature

(OCT) compound (Sakura, catalog no. 4583) and stored at -80°C

until use. The cryosections were then subjected to H&E staining to

determine the number and distribution of MVI. The samples were

sent to OE Biotech for spatial transcriptomics and single nucleus-

RNA sequencing. All diagnoses were examined histologically by a

specialized pathologist.
2.2 Spatial transcriptomics sequencing

This experiment utilized the 10x Genomics Visium technology

platform. All reagents and consumables used in the experiment were

provided by this platform. Detailed product numbers are available at

www.10xgenomics.com/products/spatial-gene-expression. After

fixation, H&E staining, and imaging of the sections, tissue-specific

permeabilization was performed using kits provided by 10x. Library

construction and sequencing were then performed using spatially

barcoded mRNA-binding oligonucleotides according to standard

protocols of the 10x Genomics platform.
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2.3 Spatial transcriptome
sequencing analysis

After the raw spatial transcriptomics data were obtained, Space

Ranger was used for data quality control. The generated spot matrices

were analyzed using the “Seurat7” package. Subsequently, we utilized

principal component analysis (PCA) to reduce dimensions, t-

distributed Stochastic Neighbor Embedding (t-SNE) to demonstrate

clusters, and the mutual nearest neighbors (MNN) algorithm to

eliminate batch effects. Next, genes with spatial expression patterns

were identified using the FindMarkers function, followed by Gene

Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyzes for the differentially

expressed genes.
2.4 Single-nucleus RNA sequencing

The frozen liver tissue was rinsed twice with medium, and then

the frozen liver tissue was minced. Then resuspend the minced liver

tissue in 0.5 mL ice-cold EZ lysis buffer and homogenize on ice. The

homogenized liver tissue is then successively filtered through a cell

strainer. Next, centrifuge the filtered liver tissue for 5 min at 4°C

and 500 g to precipitate the cell nucleus. Subsequently, resuspend

the precipitated cell nucleus in 1 mL of ice-cold buffer and filter

through a 20 mm cell strainer. Finally, proceed immediately to

single-nucleus RNA sequencing of the obtained the cell nucleus.
2.5 Single-nucleus RNA
sequencing analysis

After obtaining the raw single nucleus data, we first utilized Cell

Ranger for data quality control and gene qualification. Following

quantification, we filtered out low quality cells and low abundance

genes. Subsequently, we applied MNN and t-SNE algorithms for

dimensionality reduction and clustering. Then we annotated the cell

types using the “SingleR” package and our own statistically

determined specific marker genes. Finally, we selected

differentially expressed genes based on the fold change and p-

value results, and performed GO enrichment analysis and KEGG

pathway enrichment analysis for these genes.
2.6 Data acquisition

A total of 424 TCGA-LIHC transcriptome sequencing datasets,

371 single nucleotide variation (SNV) datasets, and 377 clinical

information datasets were downloaded from The Cancer Genome

Atlas (TCGA) database (https://portal.gdc.cance.gov/). After the

data were integrated, 371 primary HCC transcriptome sequencing

data, 171 early Tumor Node Metastasis classification (TNM) HCC

transcriptome sequencing data, and 167 early TNMHCC SNV data

were obtained. In addition, 225 cases of HCC microarray data and

survival information were retrieved from the GSE14520 dataset in

the Gene Expression Omnibus (GEO) database (https://
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www.ncbi.nlm.nih.gov/geo/), including 93 cases of early-stage

TNM HCC microarray data; and 115 cases of HCC microarray

data and survival information were obtained from the GSE76427

dataset. From the International Cancer Genome Consortium

(ICGC) LIRI-JP dataset (https://dc.icgc.org/), 240 cases of HCC

transcriptomic sequencing data and survival information were

collected. The TCGA dataset acted as a training set for building

the predictive prognosis model, while the GSE14520, GSE76427 and

LIRI-JP datasets served as validation sets for external validation of

the model.
2.7 Gene set variation analysis

The HALLMARK gene sets were collected from the MSigDB

database (Molecular Signature Database, http://www.gsea-

msigdb.org/gsea/msigdb). Gene set variation analysis (GSVA) was

employed to assess HALLMARK pathway scores in HCC patients.

Pearson correlation coefficient was utilized to examine the

relationships between risk scores and HALLMARK signaling

pathways. A p value < 0.05 was considered statistically significant.
2.8 Evaluation and validation of the
prognostic models

The “Survminer” package was used to identify the optimal risk

score cutoff and calculate risk scores for HCC patients. Patients were

divided into high and low risk groups according to the best cutoff value.

The Kaplan-Meier survival curves show the prognosis of the high and

low risk groups and the log-rank test evaluate survival differences

between the two groups. The “timeROC” package was used to draw 1-

year, 2-year, and 3-year Receiver Operating Characteristic (ROC)

curves and calculate the Area Under the curve (AUC). The ROC

and AUC curve can be used to estimate the diagnostic value of the

prognostic model in predicting the prognosis of HCC patients. The

survival analysis was conducted in the GSE14520 external validation

cohort, and the ROC curves were plotted to verify the stability and

accuracy of the prognostic model. To further assess the predictive

performance of the prognostic model, we calculated the risk scores of

liver cancer patients at all stages in the TCGA, GSE14520, GSE76427

and LIRI-JP cohorts and performed survival analysis for each group.

The “AUCell” package was used to evaluate the expression of the

prognostic model gene set in each region of the spatial transcriptome.

The ssGSEA algorithm of the “GSVA” package was used to estimate

the expression of the prognostic gene set in each cell type from single-

nucleus transcriptome sequencing.
2.9 This model is compared with three
published MVI-related models

This model was compared with three existing MVI-related

models. Scores for HCC patients were calculated using scoring

formulas provided in two publications, grouped by optimal cutoff

values for survival analysis, and ROC curves were plotted. The
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correlation between this model and the three existing MVI-related

models was examined using Pearson correlation analysis, with p <

0.05 considered statistically significant.
2.10 Clinical characteristics of
the signature

To determine the correlation between the risk score and clinical

characteristics (age, gender, Grade classification, ChildPugh

classification, alcohol consumption, hepatitis B), we applied the

Wilcoxon test for assessment. ROC curves of the prognostic model

and various clinical characteristics were plotted using the “pROC”

package, and the AUC and concordance index values were compared.

To determine whether the prognostic model is a prognostic factor for

HCC patients, multivariate Cox regression analysis was performed on

the prognostic model, age, gender, Grade classification, ChildPugh

classification, alcohol consumption, Hepatitis B virus (HBV),

Hepatitis C virus (HCV), alpha-fetoprotein, platelet count,

prothrombin, albumin, and creatinine levels to identify prognostic

factors for HCC. Nomograms for prognostic factors in HCC patients

were plotted using the “rms” package, with each patient assigned

points for each prognostic factor. The sum of these values resulted in

a total score that was used to predict the 1-year, 3-year, and 5-year

survival rates of patients with HCC. To compare the predicted

survival rates with those observed and to evaluate the accuracy of

the nomogram, a 5-year calibration curve was constructed.
2.11 Characteristics of different risk groups

The “DESeq2” package was used to identify genes highly

expressed in the high-risk group with a fold change (FC) > 2 and

an adjusted p value < 0.05. These highly expressed genes were

subjected to KEGG pathway enrichment analysis, and pathways

with a p value < 0.05 were considered enriched. Waterfall plots

for ten most frequently mutated genes in both the high- and low-risk

groups were created using the oncoplot function from the “maftools”

package. The tumor mutation burden (TMB) for each patient

was computed and a Pearson correlation analysis was performed

between the risk score and the TMB, with a correlation coefficient

and a p value < 0.05 considered statistically significant. The Tumor

Immune Estimation Resource (TIMER) 2.0 database (http://

timer.cistrome.org/) can assess the infiltration of six types of

immune cells in TCGA, including B cells, CD4+ T cells, CD8+ T

cells, neutrophils, macrophages, and dendritic cells. The Tumor

Immune Dysfunction and Exclusion (TIDE) score and exclusion

score are calculated via TIDE (http://tide.dfci.harvard.edu/) to

predict and the immune escape ability of HCC and infer the

effectiveness of immunotherapy in HCC patients.
2.12 Cell interaction analysis

Malignant cell scores in MVI samples were calculated using the

ssGSEA algorithm. Malignant cells are categorized into high-score
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and low-score groups based on the median of these scores. The

“CellChat” package was used to analyze cell the interactions

between high-score and low-score malignant cells and other cell

types to calculate and infer the cell interaction networks. The

number of interactions, the strength of interactions, and the

ability to send and receive signals are compared between high-

score and low-score malignant cells.
2.13 Quantitative real-time PCR

Total RNA was isolated from liver samples using TRIzol® LS

Reagent (Thermo Scientific, USA), and 250 µl of fluid was added to

750 µl TRIzol LS. Subsequently, 200 µl of chloroform was used for

phase separation and 100% isopropanol and Glycogen (Beyotime,

Shanghai, China) were used for RNA precipitation. Finally, the

RNA was eluted in 10 µl RNase-free water after being washed twice

in 75% ethanol. cDNA was synthesized by reverse transcription

with a PrimeScript™ RT Master Mix (Takara, Japan). qPCR was

performed using 2x SYBR Green qPCR Master Mix (bimake, USA)

with ABI Prism Q7 System (Thermo Fisher Scientific, USA) in a 10

µl reaction system. Expression of different genes were normalized to

GAPDH and were analyzed using the 2-DDCTmethod. The primers

used in this study are shown in Supplementary Table S1.
2.14 Gene set variation analysis

GSVA is a non-parametric and unsupervised approach for

assessing the enrichment of transcriptome gene sets. It evaluates

the enrichment of metabolic pathways in samples by synthesizing

scores for the gene sets of interest, transforming gene-level variations

into pathway-level changes to infer the biological functions of

samples. In this study, we subclassify myeloid cells and use the

GSVA algorithm to comprehensively score macrophages and non-

macrophages within myeloid cells, thereby assessing the potential

biological function changes in macrophages and non-macrophages.
2.15 Western blotting

The HCC tissues were lysed using RIPA buffer supplemented

with a protease inhibitor cocktail. The protein samples were then

resolved using SDS-PAGE and transferred to PVDF membranes

(Millipore, no. ISEQ00010). After blocking the membranes with 5%

skimmed milk (in TBST) for 1h at room temperature, they were

incubated with the primary antibody overnight at 4°C.

Subsequently, the membranes were incubated with the HRP-

conjugated IgG at room temperature for 1h. Finally, the bands

were visualized using enhanced chemiluminescence. Antibodies

used are listed as follow: GAPDH (Proteintech, Cat No. 10494,

1:5000), SPLI (Abclonal, Cat No. A1897, 1:1000), GPX2(Abclonal,

Cat No. A15999, 1:1000), CFL1 (Proteintech, Cat No. 10960,

1:3000), CANX (Proteintech, Cat No. 10427, 1:5000), DCN

(Proteintech, Cat No. 14667, 1:2000), CARHSP1 (Proteintech, Cat

No. 11672, 1:1500), PIGO (Abclonal, A18670, 1:1000).
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2.16 Multiple immunofluorescence

Tissue paraffin sections were baked at 60 °C for 1 hour, and then

placed in xylene I/II for 15 minutes for dewaxing. Different alcohol

concentrations (95%, 80%, 70%, 50%) were used for hydration. The

citrate antigen retrieval solution (PH 6.0) (MXB, China) was carried out

in the microwave for 20 minutes. Endogenous peroxidase was blocked

with 3% H2O2 at room temperature for 15 minutes in the dark.

Blocking was performed with 3% BSA. The primary antibody was

incubated overnight at 4°C. The next day, the primary antibody

was washed off with PBST, the HRP-conjugated secondary antibody

was added for 50 minutes at room temperature. A ready-to-use

fluorescent dye was added and incubated for 10 minutes at room

temperature (Abclonal; China). The antibody was washed, repeating

the steps with 3%H2O2 until staining with the three primary antibodies

was completed. DAPI incubation for 10 min was carried out for

nuclear counterstaining, followed by slide sealing and microscopic

examination. MIF (Proteintech, USA, 1:250); CD68 (CST, USA,

1:2000); CD74 (Santa Cruz; USA, 1:250).
2.17 Statistical analysis

In this study, GraphPad Prism 8.0 and R software v4.0.1 were

used for the statistical analysis and plotting of the experimental

data. A p < 0.05 was considered statistically significant.
3 Results

3.1 Identification of differentially expressed
genes in MVI by spatial
transcriptome analysis

To understand the causes of microvascular invasion in HCC

and identify new biomarkers, we employed spatial transcriptome

sequencing to discover novel targets. The workflow of this study is

shown in Figure 1. We collected 25 pairs of early HCC patient

tumors and adjacent normal tissues for cryo-embedding, and the

MVI grade and quantity were determined by H&E staining.

Complete clinical and pathological information can be found in

the Supplementary Table S2. To analyze the differentially expressed

genes in the MVI regions of hepatocellular carcinoma patients, we

performed spatial transcriptome sequencing on 2 M0 and 2 MVI

samples (P1_M0, P2_M0, P3_M1, P4_M2) (Supplementary

Figure 1A). The spatial transcriptome technology in this study

utilized the 10x Genomics Visium platform with spot diameters of

55 mm (containing 8-20 cells) (Figure 2A), and the 6.5 mm × 6.5

mm capture area contained 5000 spots. In this study, Space Ranger

was used to assess the quality of the spatial transcriptome

sequencing data, yielding a total of 13546 spots. After subsequent

quality control and batch effect correction, 11620 spots remained

(Supplementary Figures 1B, C). Furthermore, the data showed that

the number of spots per sample was approximately 3000, with an

average gene number per spot of approximately 3782 and an

average Unique Molecular Identifier (UMI) number per spot of
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15157 (Supplementary Table S3). Overall, UMI and gene counts

were higher in tumor regions than in normal areas, which is

consistent with previous studies (Supplementary Figures 1B, C).

Tissue sections were segmented by pathologists from our hospital

into five different regions: tumor, normal, inflammation, MVI and

fibrosis areas (Figure 2B). To verify whether the transcriptomic features

matched the histological information, we compared H&E images with

the corresponding spatial transcriptome data. The results confirmed

that the regions defined by the expression of cell type marker genes

were highly consistent with their pathological images. Specifically, ALB

and CYP2E1 were highly expressed in normal areas, GPC3 and

AKR1B10 were highly expressed in tumor areas, ACTA2 and

COL1A1 were highly expressed in fibrostic areas, and PTPRC was

highly expressed in inflammation areas (Supplementary Figure 2).

Next, we performed a differential expression analysis for the five

regions using the FindAllMarkers function, with the criteria of

absolute fold change (|FC|) > 1.5 and p.adj < 0.05. A total of 82

potential MVI-related genes were identified, including 49

upregulated genes and 33 downregulated genes (Figure 2C). GO

enrichment analysis revealed that these genes are involved in

biological processes such as the regulation of intercellular

adhesion, cell growth, coagulation, and the regulation of the

immune response in tumor cells (Figure 2D). These 82

differentially expressed genes were identified as MVI-related and

will be used for subsequent modeling.
3.2 Construction of the HCC prognostic
model on the basis MVI
characteristic genes

We employed various analysis methods, including univariate

Cox regression analysis, LASSO regression analysis, multivariate

Cox regression analysis, CoxBoost, random survival forest, and

stepwise regression analysis, to select the optimal HCC prediction

model in the TCGA training cohort (Supplementary Table S4).

Univariate Cox regression analysis was conducted on the early

TCGA HCC dataset to identify MVI genes associated with patient

prognosis. A total of 13 MVI genes related to the prognosis of HCC

patients were selected. These 13 MVI genes were then analyzed using

LASSO regression, resulting in 8 genes with non-zero coefficients

(Supplementary Figures 3A, B). Finally, a bidirectional stepwise

multivariate Cox regression was performed for these 8 genes to

obtain the best prognostic model based on the lowest AIC value.

CoxBoost was used to find the best model fit when the optimal

boosting step was performed as 97 through 10-fold cross-validation,

and picked out six non-zero coefficients of MVI-related genes were

selected (Supplementary Figures 3C, D). Then, these 6 genes were

subjected to multifactorial Cox regression analysis and bidirectional

stepwise regression analysis to optimize this model, obtaining the

best model based on the minimal AIC value.

Ultimately, the randomForestSRC package was utilized to

perform random survival forest analysis. The error rate was

lowest when the random survival forest model included 8 genes

(Supplementary Figures 3E–G). These 8 genes were then subjected

to multifactorial Cox regression analysis and bidirectional stepwise
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regression analysis to optimize the model, with the best model

identified based on the lowest AIC value.

The comparison revealed that the model built using a combination

of random survival forest and bidirectional stepwise multifactorial Cox

regression analysis achieved the highest calibration C-index (0.717107)

and the lowest error rate, suggesting that the model created using the

combination method has greater prognostic prediction accuracy

(Figures 3A, B). We then selected 7 key MVI-related genes (GPX2,

CANX, SLPI, CFL1, PIGO, CARHSP1, DCN) to construct the HCC

prognostic model. The formula for the prognostic risk score was as

follows: Risk Score = (0.000376 × GPX2 expression) + (0.002959 ×

CANX expression) + (0.000203 × SLPI expression) + (0.0045 × CFL1
Frontiers in Immunology 06
expression) + (0.056461 × PIGO expression) – (0.026806 × CARHSP1

expression) – (0.0101 × DCN expression). In this model, GPX2,

CANX, SLPI, CFL1, and PIGO have positive coefficients and are

considered risk-related genes, whereas DCN and CARHSP1 have

negative coefficients and are protective genes.

We subsequently plotted Kaplan-Meier curves based on the

expression levels of the 7 MVI genes. The curves showed that high

expression levels of GPX2, CANX, SLPI, CFL1 and PIGO in patients

were significantly associated with lower overall survival than those in

low expression groups, which correlated with worse survival rates in

HCC patients. DCN expression was associated with better survival

rates, whereas high expression of CARHSP1 suggested a better
FIGURE 1

Workflow of this study.
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prognosis for HCC patients, although the difference was not statistically

significant (Figure 3C). We also found that the risk score was positively

correlated with HCC-related HALLMARK signaling pathways such as

mTORC1, PI3K/AKT/mTOR, and p53, suggesting that the poor

prognosis of patients may be the result of a combination of multiple

oncogenic pathways (Figure 3D).
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3.3 The risk score based on MVI-related
genes might be an independent risk factor
for patients with HCC

To investigate the associations between the risk score and

clinicopathological characteristics, we analyzed the correlations
FIGURE 2

Exploration of MVI differential genes with ST. (A) Workflow of Hepatocellular carcinoma samples collection, processing for spatial transcriptomics
sequencing, single-nuclei RNA sequencing and data analysis. (B) Regional division of HCC tissue sections: Tumor, Normal, MVI, Inflammation and
fibrosis areas. (C) Plot of differential genes in five regions delineated by spatial transcriptome sequencing. Red dots indicate genes up-regulated in
the five regions. Blue points indicate genes down-regulated in the five regions. (D) Gene Ontology enrichment analysis of MVI differential genes.
MVI, Microvascular Invasion; HCC, Hepatocellular Carcinoma; GO, Gene Ontology.
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between the expression of 7 MVI-related genes and clinical

parameters in HCC patients (Supplementary Figure 4A). The

results of the Wilcoxon test demonstrated a significant correlation

between the risk score and different Grade levels. As the grade level

increased, the risk score also increased. However, among other

clinical characteristics, the risk score was not significant
Frontiers in Immunology 08
(Supplementary Figure 4B). Furthermore, we compared the AUC

values and C-index of the risk score with those of various clinical

characteristics. We found that the risk score had the highest AUC

and C-index, indicating better predictive performance compared to

individual clinical characteristics (Figures 4A, B). This suggest that

the prognosis model has good predictive capability. To determine
FIGURE 3

Random survival forest and bidirectional stepwise multifactorial Cox regression identification of key MVI differential genes of the model and
prognostic analysis in the TCGA cohort. (A) C-indexes of 20 prognostic models obtained by different modeling methods. (B) Error curves of
20 prognostic models obtained by different modeling methods. (C) Survival analysis of 7 genes with the prognostic model based on the TCGA
database. (D) Correlation analysis between early HCC patients risk scores and HALLMARK pathways. TCGA, The Cancer Genome Atlas.
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whether the risk score is an independent risk factor for the

prognosis of HCC patients, we also conducted a multivariate Cox

regression analysis of the risk score and clinical characteristics. The

results showed that the risk score, age, and Child-Pugh classification

are related to the overall survival of HCC patients and can serve as

independent risk factors, with the risk score being more closely
Frontiers in Immunology 09
associated with poor prognosis (p < 0.001) (Figure 4C). To make

further specific predictions about individual prognosis, we

integrated these independent prognostic factors to create a

nomogram model. By calculating the score of each variable

according to the patient’s condition and summing them to get a

total score. It is possible to predict the patient’s 1-year, 3-year and 5-
FIGURE 4

The correlation between the risk score and clinical characteristics. (A) ROC curves for the prognostic model and clinical characteristics. (B) C-index
histograms for the prognostic model with different clinical characteristics. (C) Results of multivariate Cox regression analysis of the prognostic model
and clinical characteristics. (D) Nomogram model created from the prognostic model, age, and Child-Pugh classification. (E) Five-year calibration
curves. ROC, Receiver Operating Characteristic. *P< 0.05; ***P< 0.001.
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year survival rates, allowing an intuitive assessment of the patient’s

prognosis and expanding its clinical applicability (Figure 4D). The

calibration curve showed that the predicted 5-year survival rate was

highly consistent with the actual survival rate, indicating that the

nomogram is accurate and reliable (Figure 4E).
3.4 The HCC prognosis model based on
MVI characteristic genes possesses good
predictive value

To evaluate this prognostic model, we calculated the risk score

of HCC patients in the TCGA cohort based on the prognostic

model and classified the patients into low- and high-risk groups.

The results indicated that the high-risk group had shorter survival

times, higher mortality rates, and poorer prognosis compared to the

low-risk group. The ROC curve demonstrated that the AUC values

for 1-year, 2-year, and 3-year predictions were 0.81, 0.74, and 0.74,

respectively, indicating that the model has good predictive ability

for the prognosis of HCC patients (Figure 5A).

To further confirm the predictive value of the prognostic model

in patients with HCC, we applied the same method to classify HCC

patients into high- and low-risk groups in the validation cohort

GSE14520. The results showed that the high-risk group in the

validation cohort had shorter survival times, indicating a worse

prognosis (Figure 5B), which is consistent with the above results.

Moreover, the AUC values for 1-year, 2-year, and 3-year

predictions in GSE14520 were 0.52, 0.59 and 0.63, respectively.

These findings confirm the good predictive value of the prognostic

model and its utility in assessing the survival risk of patients with

HCC (Figure 5B).

In addition, we calculated the risk scores for HCC patients at all

stages in the TCGA cohort and divided them into high- and low-

risk groups. It turned out that the high-risk group had a worse

prognosis. This was also validated in the external validation sets

GSE76427 and LIRI-JP, indicating that this prognostic model can be

used to predict the prognosis of HCC patients (Figure 5C). We also

validated the expression of model genes using spatial

transcriptomics. We found that the gene set of this prognostic

model scored highest in the MVI regions of the spatial

transcriptome (Figure 5D). Single-cell nuclear transcriptome

UAMP plots showed the highest prognostic model gene set scores

in malignant cells, validating the expression of model genes at the

single-cell level (Figure 5E). Overall, this model can be used to

predict the prognosis of HCC patients and has good

predictive value.

Subsequently, we collected clinical tissues from HCC patients at

our hospital and assessed the expression of 7 genes in 24 pairs of

tumor and adjacent normal HCC tissues using qPCR. The results

showed that protective genes (DCN and CARHSP1) were expressed

at lower levels in tumors than in paired adjacent normal tissues

(Figure 5F); risk genes (PIGO, GPX2, CFL1, SLPI, CANX) were

expressed at higher levels in tumors than in paired adjacent normal

tissues (Figure 5F). Moreover, we have also added qPCR and

Western blot validation in samples of portal vein tumor
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thrombus. We examined the expression of these seven genes in

seven pairs of para-tumor, tumor, and portal vein tumor thrombus

(pvtt) tissues. The qPCR results indicated that the expression of

protective genes (DCN and CARHSP1) gradually decreased in

para-tumor, tumor, and pvtt tissues. Conversely, the expression of

risk genes (PIGO, GPX2, CFL1, SLPI, CANX) gradually increased

in these tissues (Figure 5G). In addition, we extracted proteins from

three pairs of para-tumor, tumor, and pvtt tissues and performed

western blotting (WB) experiments. The WB results showed that

the expression of protective genes (DCN and CARHSP1) gradually

decreased in para-tumor, tumor, and pvtt tissues. In contrast, the

expression of risk-associated genes (PIGO, GPX2, CFL1, SLPI, and

CANX) gradually increased in these tissues (Figure 5H). Therefore,

these experiments further validated our prognostic model.
3.5 The model developed in this study
outperforms other HCC models in terms of
prediction performance

To further verify the prediction accuracy of our model, we

compared it with three published HCC models. These models

include a prognostic model of 7 MVI-related genes developed by

Du et al. (26), a prognostic model of 3 MVI-related genes developed

by Tang et al. (27) and a 6-gene HCC prediction model developed

by Beaufrère et al. (28). We scored patients according to the scoring

formulas provided in these three models and the ssGSEA algorithm,

grouped them based on the optimal cutoff values, performed

survival analysis, and plotted ROC curves (Figures 6A–C). We

explored the correlation between our model and the three published

HCC-related models using Pearson correlation analysis and

considered p < 0.05 to indicate statistical significance. Notably,

the model developed in our study showed a positive correlation with

the predictive values of the models of Du and Tang et al. with

consistent scoring trends (Figures 6A, B). However, it did not

correlate with Beaufrère’s prediction model, possibly because

Beaufrère et al. developed an HCC prediction model based on

data obtained using NanoString technology (Figure 6C). Finally, we

compared the corrected C-index of the four models and found that

the C-index of our model was greater than that of the three

published HCC-related models, which clearly shows the

predictive performance of our model (Figure 6D).
3.6 The high-risk group is more susceptible
to genetic mutations and immune evasion

After assessing the performance of the model on various

dimensions, we proceeded to evaluate the distinct characteristics

of the different risk groups. Differential expression analysis was

performed using the DESeq2 package for high- and low-risk groups

with a threshold of FC > 2 and p.adj < 0.05 and identified 512 highly

expressed genes in the high-risk group. KEGG pathway enrichment

analysis showed that these genes were enriched in pathways related

to the cell cycle, nucleocytoplasmic transport, and DNA replication
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(Figure 7A). Subsequently, the maftools package was used to

analyze SNV data of HCC from TCGA. A waterfall chart was

utilized to display information about the top 10 most frequently

mutated genes in the high- and low-risk groups. Common mutation
Frontiers in Immunology 11
genes in the high-risk group, such as CTNNB1 (36% vs. 23%), TP53

(32% vs. 25%), TTN (27% vs. 20%) and MUC16 (23% vs. 16%), had

higher mutation frequencies (Figure 7B). In addition, the TMB of

early HCC patients was also calculated, which revealed a positive
FIGURE 5

Further validation of the model in TCGA, GEO, ICGC cohorts and HCC tissues. Survival curves, ROC curves and heatmaps of model gene expression for
early HCC patients from (A) TCGA and (B) GSE14520 datasets. (C) Survival curves for HCC patients from TCGA, GSE14520, GSE76427, and LIRI-JP
databases. (D) Violin plots of expression of prognostic model gene set in different regions in the spatial transcriptome. (E) The UAMP plot of prognostic
model gene set in single-nucleus transcriptomics. (F) The expression of protective genes and risk genes in para-tumor and tumor tissue samples.
(G) The expression of protective genes and risk genes in para-tumor, tumor and portal vein tumor thrombus tissue samples. (H) Immunoblotting of
proteins in the prognostic model expression (CFL1, PIGO, GPX2, SLPI, CANX, DCN, CARHSP1) in para-tumor, tumor, and portal vein tumor thrombus
tissues samples. L, para-tumor; T, tumor; P, pvtt. P <0.05 is considered statistically significant. GEO, Gene Expression Omnibus; ICGC, International
Cancer Genome Consortium. (*P < 0.05; **P < 0.01; ***P < 0.001).
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correlation between the risk score and tumor mutation burden

(Figure 7C). Further investigations examined the association

between the prognostic model and immune infiltration by

evaluating immune cell proportions in HCC patients using

TIMER 2.0. Differences in the proportions of immune cells

between the high- and low-risk groups were compared. The

results indicated increased proportions of macrophages, dendritic
Frontiers in Immunology 12
cells, and neutrophils in the high-risk group (Figure 7D). This

suggests that these cells could promote early HCC metastasis,

angiogenesis, and immune escape. TIDE was then used to predict

the response of different risk groups to immunotherapy. The results

demonstrated that the high-risk group had high TIDE scores and

high exclusion scores and was susceptible to immune escape,

resulting in worse immunotherapeutic effects (Figure 7E).
FIGURE 6

Comparison with 3 published MVI-related models. (A) Survival curves, ROC curves and correlation plots of risk in HCC patients predicted by the
model of Du et al. compared with this model. (B) Survival curves, ROC curves and correlation plots of risk in HCC patients predicted by the model of
Tang et al. compared with this model. (C) Survival curves, ROC curves and correlation plots of risk in HCC patients predicted by the model of
Beaufrère et al. compared with this model. (D) Bar chart of C-indexes for the 4 models.
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3.7 The interaction between MIF and CD74
may facilitate tumor metastasis in HCC

In the above experiments, we demonstrated that high-risk scoring

patients possess a more complex immune microenvironment and are

prone to immune escape. However, the mechanism of this immune
Frontiers in Immunology 13
evasion remains unclear. Therefore, to investigate the potential

mechanisms of tumor cell immune escape and metastasis in the

high-risk group, we analyzed intercellular interactions at the single-

cell level. We selected 2 M0 samples and 3 MVI samples (P1_M0,

P2_M0, P3_M1, P4_M2, P5_M2) for single-nucleus sequencing. The

single nucleus data showed that each sample contained
FIGURE 7

High and low-risk group mutations and immune characteristics. (A) KEGG enrichment results of highly expressed genes in the high-risk group.
(B) Waterfall plots of the top 10 mutated genes in both the high- and low-risk groups. (C) Correlation graph between the risk score and tumor
mutation burden. (D) Immune infiltration status in different risk groups. (E) TIDE scores and exclusion scores in different risk groups. KEGG, Kyoto
Encyclopedia of Genes and Genomes; TIDE, Tumor Immune Dysfunction and Exclusion. *P < 0.05; **P < 0.01.
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approximately 10,000 nuclei, with an average of 2,324 genes per cell

and an average of 4,454 UMIs per cell (Supplementary Table S5). The

quality of single-nucleus transcriptome sequencing was assessed

using Cell Ranger, and after quality control, doublet removal and

batch effect correction, a total of 54,771 single nuclei were obtained

from the 5 samples (Supplementary Figures 5A, B). Then, we used the

Seurat package for dimensionality reduction and clustering obtained

25 cell clusters (Supplementary Figure 6A). Each cluster was
Frontiers in Immunology 14
annotated with cell types using the singleR and scLearn packages,

and copy number variations in hepatic parenchymal cells were

inferred using the inferCNV package to identify normal

hepatocytes and malignant cells (Supplementary Figures 5C, D).

We identified 8 cell types: B cells, T/NK cells, myeloid cells,

fibroblasts, dendritic cells, endothelial cells, normal hepatocytes,

and malignant cells (Figure 8A; Supplementary Figures 6B, C).

Subsequent observation of the proportions of different cell types in
FIGURE 8

Cell interaction analysis and multiplex immunofluorescence of MVI and tumor sites. (A) UAMP plots of single-nuclei RNA sequencing data for various
cell type markers. (B) Ration of cell types in MVI and no-MVI samples. (C) Interactions between high- and low-grade malignant cells and the
receptors of other cells. (D) Representative HE staining and multiple immunofluorescence images of MVI sites in HCC microvascular invasion
samples. (E) Representative HE staining and multiple immunofluorescence images of tumor sites in HCC microvascular invasion samples. UAMP,
uniform manifold approximation and projection.
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samples with or without MVI, it was found that the higher the degree

of MVI, the higher the proportion of myeloid and T/NK cells, and

that myeloid increased more (from 7.31% to 11.24%) than T/NK

(from 12.61% to 14.89%) (Figure 8B). We further subclassified

myeloid cells and identified five myeloid subpopulations:

circulating cells, dendritic cells, plasma cell-like cells, monocytes,

macrophages (Supplementary Figures 7A, B). Pathway enrichment of

various myeloid subpopulations revealed that macrophages were

enriched for the HIF-1 signaling pathway as well as the angiogenic

pathway (Supplementary Figures 7C, D). Gene Set Variation analysis

(GSVA) also revealed that macrophages were enriched for several

signaling pathways associated with tumor progression, such as

hypoxia, angiogenesis, and PI3K-AKT (Supplementary Figure 7E).

And the Top20 gene in macrophages was associated with the

prognosis of patients (Supplementary Figure 7F).

The ssGSEA algorithm was employed to compute prognostic

model gene set scores in malignant cells from MVI samples. These

malignant cells were then categorized into high and low score

groups based on the median of these scores. The interactions of

high- and low-scoring malignant cells with other cell types were

examined using CellChat. Bar graphs showed that malignant cells

with high scores had a higher number and stronger intensity of

interactions with other cells (Supplementary Figure 8A). And

heatmaps also demonstrated that high-scoring malignant cells

have stronger capabilities in sending and receiving signals

(Supplementary Figure 8B). Additionally, compared to low-

scoring malignant cells, high-scoring malignant cells could

communicate with macrophages, monocytes, and B cells through

the MIF-(CD74+CD44) axis (Figure 8C). In addition intercellular

interaction analysis showed that malignant cells with high and low

scores had ligand-receptor interactions with macrophages but not

with T/NK cells (Figure 8C). Therefore, we focused primarily on

macrophages. Multiple immunofluorescence staining indicated that

MIF-CD74 macrophages interact in the MVI region of MVI

samples, where MIF-CD74 can promote tumor metastasis at the

MVI site (Figure 8D). Furthermore, there is an interaction between

MIF-CD74 macrophages in the tumor regions of the MVI samples,

suggesting that their interaction may facilitate tumor progression

(Figure 8E). However, there was no significant interaction between

MIF-CD74 macrophages in the adjacent non-tumor tissues of the

MVI samples and the tumor tissues of the non-MVI samples.

(Supplementary Figures 8C, D).

The MIF-CD74 signaling pathway activates various pathways

that promote cell growth and angiogenesis and inhibit the tumor

suppressor protein p53 (29). Studies have shown that in kidney

renal clear cell carcinoma, the strong interactions between tumor

cells and tumor-associated macrophages, driven by MIF and its

receptors CD74 and CD44, are critically involved in tumor

progression, angiogenesis, and the mechanism of immune evasion

(30). Furthermore, CD36+ cancer-associated fibroblasts (CAFs)

employ MIF and CD74 to attract CD33+ myeloid-derived

suppressor cells (MDSCs), creating an immunosuppressive

environment that facilitates immune evasion in hepatocellular

carcinoma (31). In summary, it is suggested that malignant cells

in HCC could use the MIF-(CD74+CD44) interaction to promote

metastasis, angiogenesis, and immune evasion.
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4 Discussion

Hepatocellular carcinoma (HCC) is an extremely aggressive

cancer and one of the most common causes of cancer-related death

worldwide. It is characterized by its tendency to metastasize a high

recurrence rate and considerable heterogeneity (32). Only 5%-10%

of HCC patients are candidates for surgical treatment, with more

than 70% experiencing recurrence within five years of surgery (1).

Microvascular invasion (MVI) is considered a risk factor for

postoperative recurrence and metastasis in HCC patients. Studies

have shown that MVI is a predictive indicator of survival in HCC

patients (28), therefore, the prediction of HCC prognosis is crucial

for selecting treatment modalities and evaluating the prognosis of

HCC patients. However, there are currently no accurate molecular

markers for MVI to predict the prognosis of HCC patients. On this

basis, we investigated different genes at MVI sites in HCC patients

by spatial transcriptomics sequencing and constructed an HCC

prognostic model.

In this study, we screened for differential genes at MVI sites by

spatial transcriptomic sequencing. By comparing MVI locations with

other regions, we identified 82MVI-related genes.We then used early

HCC data from TCGA as the training set to develop an HCC

prediction model using various analytical approaches, including

univariate Cox regression, LASSO regression, multivariate Cox

regression, CoxBoost, random survival forests, and stepwise

regression analysis. By comparing the C-index and error curves, we

ultimately selected 7 key MVI genes (GPX2, CANX, SLPI, CFL1,

PIGO, CARHSP1, DCN) to construct the HCC prognostic model.

Studies have shown that the genes in the prognostic model influence

metastasis and angiogenesis in HCC and other tumors. The

expression of Glutathione Peroxidase 2 (GPX2) is associated with

tumor metastasis of rat HCC both in vitro and in vivo. Reducing

GPX2 expression in rat HCC cells leads to decreased migration; tail

vein injection of cells with knocked down GPX2 results in reduced

tumor formation capability and fewer lung metastases. Moreover,

immunohistochemistry results of human HCC samples indicate that

GPX2 is more highly expressed in tumor sites than in adjacent non-

tumor tissues (33). High expression of GPX2 is associated with poor

prognosis. Cox regression analysis shows that GPX2 expression is an

independent prognostic factor for HCC overall survival. Cells with

high GPX2 expression have stronger resistance to lenvatinib, making

GPX2 a critical target for lenvatinib treatment in HCC (34). Calnexin

(CANX) complexes on the cell surface can reduce the number of

extracellular disulfide bonds, thereby degrading the extracellular

matrix, which serves as a physical barrier to HCC growth, thereby

inducing tumor growth and invasion (35). Secretory leukocyte

peptidase inhibitor (SLPI) is upregulated in several cancer types

and is highly expressed in liver cancer cell lines. Studies have

shown that SLPI promotes metastasis (36). Cofilin 1(CFL1) is

upregulated in the tumor tissues of HCC and is significantly

associated with the overall survival and disease-free survival of

HCC patients. Moreover, downregulation of CFL1 can inhibit the

migration, invasion, and metastasis of HCC cells both in vitro and in

vivo (37). CFL1 is also highly expressed in tumor tissues of HCC

patients who are insensitive to sorafenib and is associated with poor

prognosis. The co-delivery of siCFL1 and sorafenib via nanoparticles
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could represent a new strategy for advanced HCC (38). Furthermore,

CFL1 is expressed more highly in portal vein tumor thrombus (pvtt)

than in HCC tumor tissues, and an increase in CFL1 expression is

closely related to adverse clinical features, making it an independent

risk predictor for the overall survival of HCC patients. Silencing of

CFL1 can inhibit the growth viability, invasiveness, and epithelial-

mesenchymal transition (EMT) of HCC cells in vitro, and it can also

suppress the growth and lungmetastasis of HCC cells in nudemice in

vivo (39). miR-155 influences TNF-a mRNA stability by inhibiting

calcium regulated heat stable protein 1 (CARHSP1), thereby

modulating the inflammatory response and protecting vessels in

atherosclerosis (40). Phosphatidylinositol Glycan Anchor

Biosynthesis Class O (PIGO) can serve as a potential marker for

the prognosis of prostate cancer (41). Decorin (DCN) is

downregulated in HCC with portal vein tumor thrombus (pvtt)

tissue, and low DCN expression is associated with microvascular

invasion (MVI) occurrence and poor prognosis, indicating that DCN

can promote vascular invasion in HCC tissues (42). Furthermore,

DCN is underexpressed in tumor tissues of HCC patients, and

overexpression of DCN can inhibit the proliferation of HCC cells,

while knockdown of DCN can enhance HCC cell proliferation,

making it a new target for HCC (43). These studies are largely

consistent with the results of our prognostic genes. Thus, these seven

genes are closely related to the growth and prognosis of HCC cells,

which also confirms the accuracy of modeling these seven genes to

some extent.

We also carried out corresponding validations for this model.

First, we performed a multivariate Cox regression analysis on risk

scores and clinical characteristics. The results indicated that the risk

score, age, and Child-Pugh classification were associated with the

overall survival of HCC patients and served as independent risk

factors. And the risk score is more closely related to a worse

prognosis. We also represented independent prognostic factors in

a nomogram model to visually assess patient prognosis to improve

its clinical applicability. Second, we calculated the risk score for each

patient and divided them into high- and low-risk groups. Survival

analysis revealed that the high-risk group had shorter survival

times, higher mortality rates and a worse prognosis. In addition,

we collected clinical samples from HCC patients at our hospital and

examined the expression of 7 genes in 24 pairs of cancerous and

adjacent noncancerous HCC tissues using the qPCR assay. The

results showed lower expression of DCN and CARHSP1 in tumors

compared to paired adjacent noncancerous tissues; PIGO, GPX2,

CFL1, SLPI, and CANX were more highly expressed in tumors than

in adjacent noncancerous tissues. Furthermore, we compared the

model constructed in this study with three published HCC models.

The results showed that the C-index of our model exceeded that of

the three published HCC-related models, which demonstrated the

predictive performance of our model. These results confirm that the

validations conducted further clarify the reliability and predictive

value of the prognostic model and support its clinical utility for

personalized treatment and prognosis prediction.

In addition, we observed the relationship between the high- and

low-risk groups and the immune microenvironment. The results

indicated a higher proportion of macrophages, dendritic cells, and
Frontiers in Immunology 16
neutrophils in the high-risk group. Moreover, the high-risk group

had higher immune rejection scores. These findings suggest a more

complex immune microenvironment in the high-risk group,

leading to increased immune evasion and worse immunotherapy

outcomes. It further confirms the importance of the prognostic

model in clinical decision-making regarding treatment options for

patients. Subsequently, we also explored the potential mechanisms

behind HCC metastasis. We found that malignant cells can interact

with macrophages through the MIF-CD74 axis, thereby promoting

HCC metastasis.

The advantage of this risk scoring system is that it develops an

individual scoring system for patients, where those classified as high

risk have an increased probability of tumor recurrence. Additionally,

this risk scoring model can predict the prognosis of early HCC patients

in conjunction with age and Child-Pugh classification, and can assess

the possibility of postoperative recurrence. Therefore, in the era of

precisionmedicine, this risk evaluationmodel not only provides amore

scientific and advanced indicator for assessing tumor recurrence and

prognosis risks for clinical use but also offers guidance for personalized

treatment of cancer patients.
5 Conclusion

To sum up, in this study, we developed and validated a

prognostic model for HCC patients based on MVI genes. This

model can more accurately predict the overall survival (OS) of HCC

patients at different stages. Moreover, the risk score of this model

can serve as an independent prognostic factor, which is of great

importance for distinguishing patient types and selecting

appropriate treatment options.
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