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Systemic inflammation is an
important risk factor and
predictor of graft loss and
mortality one year after
kidney transplantation
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Background: An inflammatory environment following kidney transplantation is

associated with increased risk of graft loss and mortality, however, evaluation of

systemic inflammation is not implemented in structured risk assessment in

kidney transplant recipients. Long-term results after transplantation are not

satisfactory, and thus tools addressing these issues are needed. In this study,

we tested the associations and predictive abilities of a predefined systemic

inflammation score one year after transplantation on death-censored graft loss

and mortality.

Methods: We included 805 patients who underwent kidney transplantation

between 2013 and 2017 at the Oslo University Hospital, Rikshospitalet. The

inflammation score included five specifically selected biomarkers known to

reflect various inflammatory pathways and to be associated with adverse

outcomes following transplantation. The score was assessed in relation to

outcomes in models with established risk factors. Discriminatory analyses were

performed using Harrell´s C-statistic, and model assessment were evaluated

using internal validation, calibration, and likelihood ratio tests.

Results: The median follow-up time was 6.4 years. There were 168 deaths

(20.9%) and 42 graft losses (5.2%). The inflammation score one year after

transplantation was significantly associated with graft loss (P<0.001) and

mortality (P<0.001). The diagnostic performance of the model for graft loss

revealed a c-statistic of 0.77 both with and without histological data. The

diagnostic performance for mortality displayed a c-statistic of 0.79. In all tested
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scenarios, the model fit significantly improved after including the

inflammation score.

Conclusions: These results suggest a strong association between systemic

inflammation one year after transplantation and both graft loss and mortality.

Predictive models including the inflammation score and established risk factors

were particularly informative when considering mortality. Evaluation of systemic

inflammation using this score could be an important tool for risk-assessment

after transplantation.
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1 Introduction
Inflammation is an established risk factor for morbidity and

mortality, including cardiovascular diseases and cancer (1–3).

Among kidney transplant recipients, inflammation early after

transplantation is associated with both kidney allograft loss and

mortality (4–7), as well as with the development of post-transplant

diabetes mellitus (PTDM) (8). However, these results have not been

sufficiently validated, and thus the recipients´ inflammatory profile

is yet to be implemented in daily clinical risk assessment.

The improvement in graft survival has decelerated during the

last 20 years, and the long-term results are still not satisfactory (9).

The iBox Scoring System is the gold standard for predicting the risk

of kidney allograft loss and consists of markers reflecting allograft

function, the recipients´ immunological response, and histological

features (10, 11). The scoring system has shown superior prognostic

performances compared with the presence of biopsy-proven acute

rejection within the first year after transplantation (12, 13). T-cell

mediated rejection (TCMR) and antibody-mediated rejection

(AMR) have traditionally been considered the two main classes of

transplant rejection, but novel findings including innate

allorecognition through macrophages and natural killer cells have

highlighted gaps in the current classification and understanding of

rejection (14, 15). In contrast to graft survival, there are no

established risk scores with an acceptable discrimination ability

for predicting mortality among kidney transplant recipients.

Implementation of non-invasive biomarkers into the risk

assessment of kidney transplant recipients is desirable, as protocol

biopsies are associated with both risks and resource demands.

Biomarkers that display predictive abilities regarding both graft

loss and mortality are of particular interest. Another important

feature is biomarkers that reflect pathways with potential treatment

options. We have previously demonstrated associations between

systemic inflammation scores ten weeks after transplantation and

both long-term graft loss and mortality (4, 5). The objective of this

study was to assess whether a specified version of our previously

established systemic inflammation score, determined in a new
02
cohort one year after transplantation, added information and

enhanced the prediction of both long-term death-censored graft

loss and mortality. Moreover, in the present study we investigated

patients who underwent transplantation between 2013 and 2017

and, accordingly, were more comparable with today ’s

clinical practice.
2 Materials and methods

2.1 Study population and design

This registry study included 805 patients who underwent

kidney transplantation between 2013 and 2017 at Oslo University

Hospital, Rikshospitalet, Norway. Only adult patients (> 18 years of

age) with single kidney transplantation and patients who had been

to the one-year follow-up were included (Figure 1). The baseline of

the study was the one-year follow-up date. In all patients, a selected

panel of inflammatory biomarkers was measured in blood samples

taken from the patients at eight weeks- and one year after

transplantation during planned surveillance follow-ups. At the

time of measurement of the biomarkers the patients were

clinically stable without ongoing systemic infections or rejection

episodes. Of the included patients, 696 (86.5%) underwent a

protocol kidney graft biopsy in relation to the one-year follow-up.

Eleven patients (1.3%) were excluded because of one or more

missing values for the variables included in the models. Patients

were defined as immunological intermediate risk if they were panel-

reactive antibody (PRA) positive and human leukocyte antigen

(HLA) donor-specific antibody (DSA) negative. Patients with ABO-

incompatible (ABOi) transplantation or DSA positive were

classified as immunologically high risk. The study was conducted

in line with the STROBE guidelines for observational studies and

TRIPOD+AI (Transparent Reporting of a Multivariable For

Individual Prognosis or Diagnosis + Artificial Intelligence)

guidelines for studies on prediction models (16).

The primary outcomes were death-censored graft loss defined

as the patients return to dialysis or re-transplantation, and death.
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Patients who died with a functioning graft were censored at the time

of death as a functioning allograft. The causes of death are based on

the local physician’s report on the death certificate. The ‘other

causes’ category includes a range of conditions, as well as cases with

‘no obvious cause’ or ‘unknown cause of death’. The outcome data

were retrieved from the National Renal Registry on July 18th, 2023.
2.2 Measurement of inflammation
biomarkers and construction of the
inflammation score

We measured five inflammatory biomarkers, which in our

previous studies were associated with long-term graft loss and

mortality (4, 5, 7): soluble tumor necrosis factor receptor 1

(sTNFR1), growth/differentiation factor 15 (GDF-15), CXCL16,

osteopontin, and terminal 5b-9-complement complex (TCC). We

collected plasma and serum samples at the follow‐up visit eight

weeks and one year after kidney transplantation. The samples were

stored at -80°C and thawed < three times. sTNFR1, GDF-15

CXCL16 and osteopontin levels were measured by enzyme

immunoassays (EIA) using commercially available antibodies

(R&D Systems, Minneapolis, MN) in a 384-well format using a

combination of a SELMA (Jena, Germany) pipetting robot and a

BioTek (Winooski, VT) dispenser/washer. Absorption was read at

450 nm with wavelength correction set to 540 nm using an EIA

plate reader (Bio-Rad, Hercules, CA). TCC was measured by EIA

using a monoclonal antibody aE11 reacting with a neoepitope

exposed in C9 when incorporated in TCC (17, 18). Intra- and

inter-assay coefficients of variation were < 10% for all assays, based

on the performance in the laboratory that set up these analyses. In

the final study population, no patients had values below the level of

detection (5). CXCL16, sTNFR1, GDF-15 and TCC have shown

associations with both graft loss and mortality, whereas osteopontin

was only associated with graft loss. The biomarkers reflect several

pathways including complement activation, TNF-activity,

extracellular matrix remodeling, and vascular inflammation.

Inflammatory biomarker values were incorporated into the

inflammation score. We used a quartile-based approached rather
Frontiers in Immunology 03
than clear cut-off values, as the measurement of the biomarkers is

not standardized and is currently only meant for use in research.

Thus, a value within the upper quartile of each biomarker was

assigned one point, and accordingly, the inflammation score graded

from 0 to 5. Biomarkers were equally weighted based on their

individual risk coefficients (4, 5). Moreover, the values can only be

strictly compared with samples analyzed at the same time as

dilution can differ, but the distribution will remain the same. This

implies that the values in this cohort cannot be directly compared to

those from the 2007-2012 cohort.
2.3 Biopsies and histological classification

The goal for sufficient quality of the cores for histology was the

presence of ten glomeruli and two or more arteries, but a minimum

of seven glomeruli and one artery was accepted. Biopsies were

graded according to the Banff 2019 guidelines (19). For application

in the Cox regression models, the biopsy results were also graded as

interstitial fibrosis and tubular atrophy (IFTA) (ci + ct),

microcirculation inflammation (g and ptc), interstitial

inflammation (i and t), and transplant glomerulopathy (cg), as in

the iBox scoring system (10).
2.4 Candidate predictors

In the models on death-censored graft loss, we included the

variables from the iBox score and added the inflammation score.

We tested the models with and without histological data. The

included variables were estimated glomerular filtration rate

(eGFR) calculated using the 2021 CKD-EPI equation (20), urine

protein-creatinine ratio (U-PCR), DSA-status, and the

inflammation score. The histological data included were IFTA,

microcirculation inflammation, interstitial inflammation, and

transplant glomerulopathy (10).

In the model with mortality as the outcome variable, we

included recipient age, smoking status, dialysis vintage prior to

the first transplantation, either pretransplant diabetes mellitus or
FIGURE 1

Flow chart.
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PTDM, and the inflammation score. These variables were chosen as

they have previously been shown to be associated with long-term

mortality (4). HbA1c and cholesterol levels, as well as the presence

of DSA, were tested in the model but did not affect the results. The

measurement of the inflammatory biomarkers eight weeks and one

year after transplantation was paired, meaning that all included

patients were alive and had a functioning graft one year after

transplantation. Thus, we did not test the predictive abilities of

the inflammation score at eight weeks after transplantation as the

results would have been skewed.

In summary, the models were:
Fron
1. Model on graft loss with histological data: eGFR,

logarithmic urinary protein creatinine ratio, DSA-status,

inflammation score, IFTA, microcirculation inflammation,

interstitial inflammation, and transplant glomerulopathy.

2. Model on graft loss without histological data: eGFR,

logarithmic urinary protein creatinine ratio, DSA-status,

and inflammation score.

3. Model on mortality: recipient age, smoking status, dialysis

vintage, pretransplant diabetes or PTDM, and the

inflammation score.
2.5 Statistical analyses

We used R version 4.3.2. All hypothesis tests were two-sided,

and the significance level was set at 0.05. Continuous variables were

described by means and standard deviations or by medians and

interquartile ranges. We compared the means and proportions

between patients with and inflammation score ≤ 1 and patients

with an inflammation score > 1 by using Student´s t-test, analysis of

variance, or the Chi-Square test. The difference in values of the

inflammation biomarkers eight weeks and one year after

transplantation was examined by paired Student T-test. Mortality

and graft survival were estimated using the Kaplan-Meier method.

In the Cox regression models, death-censored graft loss and

mortality were outcome variables. When not specified, the hazard

ratios reported were from the model including the continuous

inflammation score. The proportional-hazards assumptions were

tested by PH-tests. Nonlinear relationships between continuous

variables and the outcome variables were investigated using

restricted cubic splines (using the “rms” package in R) (21). In

the model considering mortality there were no nonlinear

relationships, but between graft loss and U-PCR nonlinearity was

present. The U-PCR was transformed using the logarithmic

variable. The included variables are described in the “Candidate

predictors” section. The inflammation score was assessed as both a

continuous- and a categorical variable. The median follow-up time

was 6.5 years from the baseline assessment, and thus we tested the

models´ calibration at six years.

We assessed the models´ discrimination ability by measuring

the Harrell´s C-statistic by the “cindex” function in the “pec”

package in R. We created Receiver Operating Characteristic

(ROC) curves to illustrate the difference between the models with
tiers in Immunology 04
and without the inflammation scores by means of the “timeROC”

package in R. The calibration of the model was evaluated by visual

examination of calibration plots generated by using the “rms”

package in where the predicted proportions were compared to the

observed proportions estimated by the Kaplan-Meier method (22).

Internal validation of the models was performed by using a

bootstrap procedure where we resampled the original dataset

created 1000 new datasets. In these datasets we simulated the

performance analyses and calculated the optimism corrected c-

statistic (22). We performed this for the final prediction models

regarding death-censored graft loss with and without biopsy data,

and mortality.

The difference between the models with and without added

inflammation scores, and the fraction of new information added by

implementing the inflammation score into the models were tested

by performing likelihood ratio (LR) c2 tests. An estimation of the

added prognostic value was done by measuring the adequacy of the

model (1- [Pre-test LRc2/Post-test LRc2]) (23, 24). Additionally, we
compared the c-statistics of the models with and without the

inflammation scores against each other using a bootstrapping

procedure. Finally, we performed decision curve analyses to

quantify and illustrate the additional clinical benefits of adding

the inflammation score (“dcurves” package in R) (25). In the plots,

the “Net Benefit” (the proportion of true positives in the absence of

false positives) is on the y-axis and Threshold Probability on the x-

axis. Test tradeoffs were calculated by 1/DNet Benefit at a

given threshold.
3 Results

3.1 Study population: characteristics,
outcomes, and biomarker distribution

Baseline characteristics are presented in Table 1. The main

cohort with inflammatory biomarkers consisted of 805 patients, and

of these, histological data were available in 696 patients. The median

follow-up time was 6.4 (interquartile range 5.1-7.8) years. There

were 168 (20.9%) deaths and 42 (5.2%) graft losses during the

follow-up period in the main cohort, and 37 (5.3%) graft losses in

the biopsy cohort. The causes of death were categorized as CVD

(n=37, 22.0%), malignancies (n=46, 27.4%), infections (n=31,

18.5%), and other causes (n=54, 32.1%). The total number of

deaths correlated with the inflammation grade with a similar

distribution observed across all causes of death.

We investigated the variance among biomarker values from

eight weeks to one year after transplantation (Figure 2). Overall, the

biomarker levels were significantly lower after one year compared

with eight weeks after transplantation (P < 0.001): (sTNFR1: 1.90

[IQR 1.56-2.38] ng/ml and 1.80 [IQR 1.45-2.25] ng/ml, GDF15:

2.02 [IQR 1.50-2.88] ng/ml and 1.59 [IQR 1.17-2.36] ng/ml,

CXCL16: 4.97 [IQR 4.33-6.02] ng/ml and 4.59 [IQR 3.97-5.40]

ng/ml, osteopontin 112 [IQR 86.3-146] ng/ml and 88 [IQR 64-119]

ng/ml and TCC: 0.38 [IQR 0.28-0.51] Complement Activating

Units [CAU] and 0.37 [IQR 0.29-0.50] CAU; eight weeks and one

year, respectively).
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3.2 Sensitivity analysis, internal validation,
and calibration of the models

3.2.1 Death-censored graft loss with
histological data

A total of 696 (86.5%) patients had a biopsy performed one year

after transplantation. There were 39 (5.6%) subsequent graft losses

in this group. We applied the variables identified in the iBox model

as the baseline for our model and added the systemic inflammation

score based on one-year biomarker samples (10). Table 2 presents

the results of the Cox regression models. Significant associations

with graft loss were observed for the inflammation score both as

continuous (HR 1.62, P = 0.001) and categorical (HR 6.61, P <
Frontiers in Immunology 05
0.001) variables, as well as the presence of DSA (HR 4.07, P = 0.003)

and IFTA grade 3 (HR 4.04, P = 0.002).

We performed sensitivity analyses of the model and calculated a

c-statistic value of 0.77. We additionally created ROC-curves at six

years after inclusion (Figure 3). The internal validity of the model was

tested by a bootstrapping procedure (B=1000). The optimism

corrected c-statistic was 0.76. We tested the model´s calibration at

six years by visual examination of calibration plots (Figure 4). For this

model there was some overfitting, but the overall calibration was

acceptable. The c-statistic of the model without the inflammation

score (the model representing the iBox score) was 0.74. Likelihood

ratio tests indicated that the addition of the inflammation score in the

model significantly enhanced the model fit with up to 20% of new

prognostic information (Table 3). A direct comparison of the c-

statistics for the model with and without the inflammation score did

not show a significant difference (P = 0.17).

3.2.2 Death-censored graft loss without
histological data

The primary cohort consisted of 805 patients. The model used

without histological data consisted of four variables that were all

significantly associated with graft loss: the continuous inflammation

score (HR 1.63, P < 0.001)/categorical inflammation score (HR 2.3-

6.6, P < 0.001), eGFR (HR 0.98, P= 0.03), the logarithmic value of u-

PCR (HR 1.27, P = 0.003), and the presence of DSA (HR 5.05, P <

0.001). We tested the model´s discrimination ability, and the c-

statistic value was 0.77. We verified the internal validity again using a

bootstrapping procedure, and the optimism corrected C-statistic was

0.75. The calibration six years after transplantation was acceptable

(Figure 4). When we excluded the inflammation score from the

model the C-statistic was 0.74, but there was no significant change by

direct comparison of the C-statistics (P=0.12). However, the added

prognostic information when also including the inflammation score

was 23% (continuous) and 24% (categorical) and was significantly

different (P < 0.001) by comparing likelihood ratios (Table 3).

We also tested the model in patients who were defined as low-

risk (PRA-negative, DSA-negative, and ABO-compatible

transplantations) at the time of transplantation (n=651, graft

losses = 33). In this population, there was no difference in the

predictive abilities between the score with histological data (C-

statistic=0.79) and the score without histological data (C-

statistic=0.79). The optimism-corrected C-statistic was 0.78 with

histological data and 0.77 without histology. Implementation of the

inflammation score significantly improved the model fit (Table 3).

3.2.3 Mortality
A total of 168 (20.9%) deaths occurred during the follow-up period.

In the model describing long-term mortality, we included risk factors

identified in our previous studies (4): recipient age, smoking status,

dialysis vintage, pre-transplant diabetes or PTDM, and the systemic

inflammation score. All variables were retested in Cox regression

models and were found to be significantly associated with long-term

mortality (Table 2). Total cholesterol levels, HbA1c, and the presence of

DSA were also tested in the model, but they did not affect the results.
TABLE 1 Study population characteristics.

Inflammation score

General characteristics 0-1
(n=588)

≥2
(n=217)

P-value

Recipient age, y (SD) 48.8 (16.2) 57.3 (14.9) <0.001

Male sex, yes 394 (66.9%) 154 (71.0%) 0.31

Smoking history, yes 271 (46.0%) 116 (53.5%) 0.27

Pretransplant diabetes, yes 63 (10.7%) 49 (22.6%) <0.001

PTDM, yes 46 (8.5%) 28 (10.5%) 0.25

Dialysis vintage, months (SD) 12.1 (10.2) 16.5 (18.4) 0.004

Cause of graft loss

Rejection 9 (64.4%) 13 (46.4%)

Recurrence of original disease 3 (21.4%) 7 (25.0%)

Other 2 (14.3%) 8 (28.6%)

Transplant characteristics

Donor age, y (SD) 47.8 (16.4) 62.3 (12.7) <0.001

Male donor (%) 303 (51.4%) 104 (47.9%) 0.42

Deceased donor (%) 383 (65.0%) 190 (87.6%) <0.001

Cold ischemic time, h (SD) 10.0 (5.8) 12.5 (6.7) <0.001

Delayed graft function (%) 41 (7.0%) 42 (19.4%) <0.001

Mean number of HLA-
mismatches (SD)

3.0 (1.5) 3.1 (1.5) 0.55

ABOi (%) 18 (3.1%) 9 (4.1%) 0.59

DSA A

Preformed (%) 27 (4.6%) 13 (6.0%) 0.53

dnDSA B (%) 14 (2.4%) 4 (1.8%) 0.46

Immunological risk

High (%) 21 (3.6%) 5 (2.3%) 0.34

Intermediate (%) 20 (3.4%) 10 (4.6%)

Tacrolimus C0 (ug/mL) 6.1 (1.8) 6.3 (1.9) 0.12
ADSA within the first year after transplantation. Bde-novo DSA.
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The C-statistic of the model was 0.79. These results were

validated through the same procedure as previously described,

and the optimism-corrected C-statistic was 0.77. The calibration

of the model six years after transplantation was adequate,

supporting the validity of the model. The c-statistic of the model

without the inflammation score was 0.74. Likelihood ratio tests

indicated that the model significantly increased the fit of the model

(P < 0.001) and contributed up to 22-27% of new prognostic

information by comparing likelihood ratios (Table 3, Figure 3). A

direct comparison of the C-statistics also showed a significant

difference (P = 0.001).
3.3 Decision curve analyses

Figure 5 shows the decision curves that illustrate the added

benefit achieved by implementing the inflammation score into the

models. Regarding graft loss (a) there is no apparent difference up to

a risk threshold of approximately 20%, whereas at higher risk

thresholds, there is a benefit of adding the inflammation score to

established risk factors. For mortality (b), there is a slight benefit

associated with adding the inflammation score to the model from

the 10% threshold and upwards. At a 35% threshold regarding

mortality, the test trade-off [minimum number of tests required to

achieve one additional true positive (25)] was 71 (1/0.014) and 140

(1/0.014) at 10%. Regarding graft loss, at the 30% threshold the test

trade-off was 77 (1/0.013).
FIGURE 2

Distribution of the inflammatory biomarkers eight weeks and one year after kidney transplantation. Boxplots showing the distribution of the
inflammatory biomarkers eight weeks and one year after kidney transplantation. The values after eight weeks are highlighted in red, and the one-
year data is in blue. The scale of the y-axis is adjusted according to the variance of the appropriate biomarker.
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TABLE 2 Multivariable cox regression analyses: graft loss with biopsy
data, graft loss without biopsy data, and mortality.

Hazard
Ratio

95% Confidence
Interval

P-value

Graft loss with biopsy data

Inflammation score:

Continuous 1.62 1.25-2.11 0.001

Categorical (0-1 ref):

2-3 2.32 0.98-5.54 0.06

4-5 6.61 2.46-17.74 < 0.001

eGFR (ml/
min/1.73m2)

0.98 0.96-1.01 0.19

Logarithmic u-PCR
(mg/mmol)

1.17 0.96-1.44 0.13

DSAA 4.07 1.58-10.5 0.003

IFTAB grade 2 1.14 0.37.3.47 0.81

IFTAB grade 3 4.04 1.67-9.70 0.002

Microcirculation
inflammation (≥ 3)

1.12 0.09-13.3 0.92

Interstitial
inflammation (≥ 3)

0.74 0.21-2.26 0.59

Transplant
glomerulopathy (≥ 1)

2.99 0.73-12.32 0.13

(Continued)
fro
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4 Discussion

In this study, we have demonstrated the association between

systemic inflammation one year after transplantation and both

long-term death-censored graft loss and mortality in an updated

cohort recruited between 2013 and 2017. This complements

findings from cohorts suggesting the importance of inflammation

early after transplantation and adverse outcomes (4, 5).

Implementation of systemic inflammation, assessed by a

predefined inflammation score representing several distinct

pathways, into predictive models added to the prognostic

discrimination abilities regarding both mortality and death-

censored graft loss, thus suggesting a role for non-invasive

systemic inflammation scores in the risk assessment of kidney

transplant recipients after transplantation. These results are

supported by findings in other populations that represent either

direct or indirect measurements of systemic inflammation on

adverse outcomes following kidney transplantation (6, 7, 26, 27).

The biomarkers included in the final inflammation score are

associated with either kidney graft loss or mortality following

kidney transplantation (4, 5, 7). They represent activation of TNF

related pathways (sTNFR1), complement activation (TCC),

chemotaxis (CXCL16), vascular inflammation (CXCL16 and

sTNFR1), and extracellular matrix remodeling (GDF-15 and

osteopontin). TCC, sTNFR1, and CXCL16 are additionally

markers of innate immunity. Lamarthée et al. demonstrated the

presence of innate immune cells in biopsies with AMR supporting

the role of innate immune cell involvement and allorecognition in

rejection (14, 15), and innate immune activity is associated with

poor outcomes in kidney transplant recipients with infections (28).

By combining biomarkers reflecting several pathways into one

score, we minimized the risk of disregarding or not identifying the

relevant pathways. The iBox Scoring System was used as the basis of

the prediction model for kidney graft loss. The performance of the

model was very good both with (C-statistic=0.77) and without
TABLE 2 Continued

Hazard
Ratio

95% Confidence
Interval

P-value

Graft loss without biopsy data

Inflammation score

Continuous:
Categorical (0-1 ref)

1.63 1.30-2.05 < 0.001

2-3 2.10 0.97-4.57 0.06

4-5 5.66 2.37-13.54 < 0.001

eGFR 0.98 0.96-0.99 0.03

Logarithmic u-PCR 1.27 1.09-1.48 0.003

DSAA 5.05 2.22-11.49 < 0.001

Mortality

Inflammation score

Continuous 1.38 1-25-1.53 < 0.001

Categorical (0-1 ref)

2-3 2.10 1.49-2.96 < 0.001

4-5 3.14 2.02-4.88 < 0.001

Recipient age, y 1.05 1.04-1.07 < 0.001

Smoking history (yes) 1.31 1.08-1.58 0.005

PreDM or
PTDM (yes)

1.67 1.23-2.27 0.001

Dialysis vintage, m 1.01 1.00-1.02 0.002

HbA1c C 1.00 0.98-1.03 0.84

Total cholesterol C 0.99 0.87-1.12 0.82

DSA A,C 0.43 0.13-1.39 0.16
APresence of DSA during the first year, either preformed or de novo DSA. BPresence of IFTA
changes in biopsies (grade 2 or grade 3). No IFTA or grade 1 was used as the reference
category. CNot included in the final model.
FIGURE 3

Sensitivity analyses: Receiver operator characteristics curves displaying the discrimination ability of the different models six years after inclusion.
ROC-curves displaying the discrimination ability for the different models on kidney graft loss with histological data (A) and without histological data
(B), and mortality (C). The models that include the inflammation score are highlighted in red, and the ones without the inflammation score are in
blue. The c-statistics are displayed in the figure.
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histological data (C-statistic = 0.77), and the performance of the

model improved significantly after the implementation of the

inflammation score compared to the base model. The

discrimination abilities were slightly inferior compared to those in

the iBox validation cohorts (10), which can probably be explained

by the rather low number of events (n=42).

One of the main strengths of the inflammation score is its

association with both graft loss and mortality. There are many
Frontiers in Immunology 08
models predicting the risk of graft loss, yet there is no adequate

model for patient survival implemented in daily practice. Our

model for long-term mortality included the inflammation score in

addition to the established risk variables recipient age, smoking

history, pre- or post-transplant diabetes, and dialysis vintage (4).

The model performed adequately (C-statistic=0.79) in our

population, and the model performed significantly better after the

inflammation score was included. This is also illustrated in the
TABLE 3 Fractions of new information added from including the inflammation score in the different models A.

Fraction of new information added (%) P value (likelihood ratio test)

Graft loss Mortality Graft loss Mortality

Final model, linear B 23.0 % 26.9 % < 0.001 < 0.001

Final model, categorical C 24.6 % 22.3 % < 0.001 < 0.001

Model with histological data, linear 20.5 % < 0.001

Low risk model without histological data, linear D 31.3 % < 0.001
AThe proportion of the total predictive information added by including the inflammation score into the models by measuring the pre- and post- likelihood ratio tests.
BFinal model on graft loss and mortality including the inflammation score as a linear variable.
CThe final model on graft loss and mortality including the inflammation score a categorical variable.
DExcluding patients with intermediate- and high immunological risk.
FIGURE 5

Decision curve analyses. Decision curves on graft loss (A) and mortality (B). The net benefit is on the y-axis and the threshold probability on the x-
axis. The prediction model including the inflammation score is in purple. The red line represents a scenario where all patients are treated, and the
green line illustrates a scenario where none is treated. In all scenarios, both models with and without the inflammation score perform better than the
“treat all” approach. For both graft loss and mortality the model with the included inflammation score performs better.
FIGURE 4

Calibration plots six years after kidney transplantation. Calibration plots at six years for kidney graft loss and mortality. The y-axis displays the
observed proportions of kidney grafts or patients six years after transplantation (estimated by the Kaplan-Meier method), whereas the x-axis shows
the predicted probabilities. The black line illustrates a perfectly calibrated model, and the blue line represents the optimism corrected
appropriate model.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1529812
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Heldal et al. 10.3389/fimmu.2025.1529812
decision curves (Figure 5). In contrast, cholesterol and HbA1c levels

did not come out significantly in the Cox regression analyses and

did not add to the discrimination ability. We also tested other

transplant specific risk factors in the model (DSA), but these did not

affect the results. DSA is currently the most important single

biomarker related to rejection and death-censored graft loss,

however, it is not associated with mortality. Donor-derived cell-

free DNA (dd-cf DNA) is an emerging biomarker following

transplantation. A recent study found associations between

circulating dd-cf DNA and the development and severity of both

TCMR and AMR (29), but there is currently not described any

associations between dd-cf DNA and mortality.

The role of protocol biopsies in the follow-up after kidney

transplantation is disputed. A recent study from Norway and

Finland found limited utility of one-year protocol biopsies in low-

risk patients without any previous events (e.g. acute rejection, DSA)

(30). In our study, there were no apparent differences between the

predictive abilities of the models also with and without histological

data. In addition, when we only assessed patients having a low

immunological risk at the time of transplantation, there was no

difference between the two approaches. We previously described a

correlation between systemic vascular inflammation and local

inflammatory changes in the kidney graft and between a score

representing extracellular matrix regulation and IFTA changes in

the graft (5). In “low-risk” patients, the measurement of the

systemic inflammation score could be a better and non-invasive

tool to identify patients at risk of graft loss than protocol biopsies.

Based on the study design we cannot establish whether the

inflammation represents a marker of disease activity, is the driving

force of the disease, or a combination thereof. It is also possible that

an increased inflammatory score is a result of ineffective

immunosuppression or wrongly targeted immunosuppression,

and if so, could be a signal for adjusting the actual

immunosuppressive regimen in specific patients. Structured data

on infections and hospital admissions were not available and thus

we could not test the associations between the inflammation score

and the risk of future infections. The score has not undergone

proper external validation, but the associations between the

inflammation score and both mortality and graft loss have been

reproduced in two different cohorts and datasets from different time

eras at our center. Outside of TCC, the measurement of the

biomarkers is currently not standardized and can only be

compared to the values measured at the same time. However, the

levels of these markers were generally relatively high (> 10 ng/ml)

and the way to routine measurements should not be too long.

Ideally, we would have wanted more events regarding graft loss. The

low number of events in the graft loss model is a limitation,

although the findings are highly significant.

In conclusion, a pre-defined systemic inflammation score

representing several molecular pathways is associated with both

long-term graft loss and mortality in kidney transplant recipients.

When implemented into prediction scores with clinical data, the

performance of all models was significantly enhanced after

implementation of the inflammation score. The model on

mortality after kidney transplantation performed better than any

model known to us. Our results suggest that structured evaluation
Frontiers in Immunology 09
of systemic inflammation, and potentially repeated measurements

within the first year after transplantation, could be an important

tool for risk assessment of kidney transplant recipients and help

identify risk patients at an early stage.
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