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Cancer stem cells and tumor-
associated macrophages as
mates in tumor progression:
mechanisms of crosstalk and
advanced bioinformatic tools to
dissect their phenotypes
and interaction
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Palermo, Palermo, Italy, 4Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” (AOUP),
Palermo, Italy, 5Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome,
Rome, Italy
Cancer stem cells (CSCs) are a small subset within the tumor mass significantly

contributing to cancer progression through dysregulation of various oncogenic

pathways, driving tumor growth, chemoresistance andmetastasis formation. The

aggressive behavior of CSCs is guided by several intracellular signaling pathways

such as WNT, NF-kappa-B, NOTCH, Hedgehog, JAK-STAT, PI3K/AKT1/MTOR,

TGF/SMAD, PPAR and MAPK kinases, as well as extracellular vesicles such as

exosomes, and extracellular signaling molecules such as cytokines, chemokines,

pro-angiogenetic and growth factors, which finely regulate CSC phenotype. In

this scenario, tumor microenvironment (TME) is a key player in the establishment

of a permissive tumor niche, where CSCs engage in intricate communications

with diverse immune cells. The “oncogenic” immune cells are mainly represented

by B and T lymphocytes, NK cells, and dendritic cells. Among immune cells,

macrophages exhibit a more plastic and adaptable phenotype due to their

different subpopulations, which are characterized by both immunosuppressive

and inflammatory phenotypes. Specifically, tumor-associated macrophages

(TAMs) create an immunosuppressive milieu through the production of a

plethora of paracrine factors (IL-6, IL-12, TNF-alpha, TGF-beta, CCL1, CCL18)

promoting the acquisition by CSCs of a stem-like, invasive and metastatic

phenotype. TAMs have demonstrated the ability to communicate with CSCs via

direct ligand/receptor (such as CD90/CD11b, LSECtin/BTN3A3, EPHA4/Ephrin)

interaction. On the other hand, CSCs exhibited their capacity to influence

immune cells, creating a favorable microenvironment for cancer progression.

Interestingly, the bidirectional influence of CSCs and TME leads to an epigenetic

reprogramming which sustains malignant transformation. Nowadays, the
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integration of biological and computational data obtained by cutting-edge

technologies (single-cell RNA sequencing, spatial transcriptomics, trajectory analysis)

has significantly improved the comprehension of the biunivocal multicellular dialogue,

providing a comprehensive view of the heterogeneity and dynamics of CSCs, and

uncovering alternative mechanisms of immune evasion and therapeutic resistance.

Moreover, the combination of biology and computational data will lead to the

development of innovative target therapies dampening CSC-TME interaction. Here,

we aim to elucidate the most recent insights on CSCs biology and their complex

interactions with TME immune cells, specifically TAMs, tracing an exhaustive scenario

from the primary tumor to metastasis formation.
KEYWORDS

cancer stem cells, TAMs, single-cell RNA sequencing (scRNA-seq), spatial transcriptomics,
signaling pathway analysis, trajectory analysis
Cancer stem cells hallmarks and
crosstalk with TAMs: an old story new

In this review we revised the literature period of the last twenty

years using as main keywords the following: cancer stem cells,

stemness, tumor-associated macrophages, metastasis, metastatic

niche, hallmark, proliferation, immune evasion, neo-angiogenesis,

epithelial-mesenchymal transition, crosstalk, pathways,

chemoresistance, therapy resistance, target therapy, preclinical

model, clinical model, clinical trial, immunotherapy, stemness,

self-renewal, invasion, tumorigenicity, oncogenic pathways,

metastasis-associated macrophages, tumor microenvironment,

scRNA-seq, spatial transcriptomic, trajectory analysis, stromal

cells, extracellular matrix and immune cells.

Cancer stem cells (CSCs) are a small subpopulation within

tumor bulk sharing features of normal stem cells, such as self-

renewal and plasticity (1). Accordingly, the CSC model introduced

the concept of the capability of CSCs to recapitulate the

intertumoral heterogeneity, differentiating into various cancer cell

phenotypes and, in parallel, guaranteeing their population

maintenance (2). Due to their genetic flexibility, CSCs can be

involved in different biological aspects such as tumor initiation,

proliferation, invasion, migration, and chemoresistance (1). All

these pro-tumoral traits underlined the critical role of CSCs in

cancer progression and made CSCs a potential target for innovative

therapeutic approaches (3). Tumor microenvironment (TME)

provides an essential environmental niche necessary for cancer

development (4). Among the immune cells that have a central

role in orchestrating TME, tumor-associated macrophages (TAMs)

represent a plastic immune cell population that drives multiple

interactions within the TME, leading the spatiotemporal evolution

from primary tumor to metastasis (5). TAMs can establish with

CSCs an intricate complex communication in fueling different

aspects of cancer progression: i) direct ligand-receptor interaction:

TAMs expressing colony-stimulating factor (CSF1) receptor
02
anchors CSC-derived CSF1, in the promotion of TAM survival

and activation (6); ii) indirect interaction: TAMs release

chemokines like chemokine (C–C motif) ligand 2 (CCL2),

interleukin-6 (IL-6), interleukin-12 (IL-12), tumor necrosis factor-

alpha (TNF-alpha), transforming growth factor-beta-1 (TGFB1)

(7); TAMs release exosomes containing microRNAs and proteins

that regulate CSC behavior by enhancing stemness and

chemoresistance; conversely, CSC-derived exosomes can polarize

TAM toward a tumor-promoting M2 phenotype (8, 9).

Overall, the interaction between CSCs and the surrounding

environmental cells is a complex and ever-evolving process. CSCs

arise in “ecological” niches in the TME. These niches, establishing

intense trafficking of factors, promote a stem-like and

chemoresistant phenotype in the CSCs (10). In this scenario,

emerging bioinformatics technologies, such as trajectory analysis

and spatial transcriptomics, shed light on unresolved biological

complexities. Particularly, these tools enable a deeper investigation

of the crosstalk between CSCs and TAMs dissecting unrevealed

aspects of their communication. Comprehending the intricate

symbiotic relationships between CSCs and TAMs could provide

valuable insights to identify an efficacious innovative therapeutic

approach. An overview of CSC hallmarks and how these

characteristics critically contribute to the complex interplay

between CSCs and TME components is illustrated in Figure 1.
From normal to CSCs endowed with
tumor-initiation and metastatic potential

In normal adult tissues stem cells are undifferentiated cells that

reside in a proper niche, where they are protected and can exert

their functions. Stem cells show the ability of self-renewal and

differentiation in adult cell tissue, maintaining tissue homeostasis.

Stem cell niche can be identified in several tissues such as the crypts

of the intestine, the bone marrow, the liver or lung tissues (11).
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After tissue injury, the niche transmits activation signals such as

adhesion molecules, matrix proteins, oxygen, growth factors or

cytokines to the stem cells for tissue regeneration. These signals are

factors that allow cell-cell interactions between stem cells and

neighboring differentiated cells (12).

In normal tissues stem cells remain in an undifferentiated state

throughout adult life. Stem cells reach a first stage by becoming

transient amplifying cells and highly proliferative cells then they

asymmetrically divide and finally reach the last stage of

differentiated cells, that leads them to build up and support

tissues (13). In both stem and differentiated cells, the potential

accumulation of intracellular pathways mutations can lead to a

tumor-type phenotype (14). When a critical mutation threshold is

reached, cells become CSCs, changing to a more aggressive behavior

(15). CSCs, as normal stem cells, have the ability of self-renewal and
Frontiers in Immunology 03
differentiation, while they create a niche that proliferates

independently of the surrounding tissue. These characteristics

contribute to tumor initiation, growth and maintenance (13).

Among the most deregulated intracellular pathways, wingless-

related integration site (WNT)/beta-catenin, NOTCH and Sonic

Hedgehog emerge, as they promote self-renewal and tissue

morphogenesis (16). In addition, cellular growth, migration,

differentiation and epithelial-mesenchymal transition (EMT) are

regulated by phosphatidylinositol 3-kinase/AKT serine/threonine

kinase 1/Phosphatase and tensin homolog (PI3K/AKT1/PTEN)

axis, one of the majors signaling pathways in CSCs (17). TGF,

SMAD, peroxisome proliferator-activated receptor (PPAR),

mitogen-activated protein kinases (MAPK) and Janus kinase/

signal transducers and activators of transcription (JAK-STAT) are

often deregulated in CSCs (18). CSCs are not only involved in the
FIGURE 1

Defining CSC features and hallmarks. (A) CSCs (cancer stem cells) display the ability of self-renewal and pluripotency, disrupting tissue homeostasis
and generating diverse lineages within the tumor. (B) CSCs create a niche in the tumor microenvironment (TME) with which they interact and that
proliferates independently of the surrounding tissue. (C) CSCs show the ability to initiate tumor growth in immunocompromised mice. (D) CSCs
represent the most aggressive tumor subpopulation able to spread and form metastases even at distant sites. (E) Among immune cells that create an
immunosuppressive milieu in CSC-associated TME, in this review we will focus on tumor-associated macrophages (TAMs) which play a critical role.
TAMs are macrophages characterized by both immunosuppressive and inflammatory phenotypes. Specifically, they produce a plethora of paracrine
factors (IL-6, IL-12, TNF-alpha, TGFB1, CCL2) inducing the acquisition of a stem-like, invasive and metastatic phenotype in CSCs. (F) Several
mechanisms contributing to therapy resistance in CSCs have been identified, including efficient DNA repair machinery, multidrug resistance
transporters, low levels of reactive oxygen species (ROS) and hypoxia. CSCs, cancer stem cell; TME, tumor microenvironment; TAMs, tumor-
associated macrophages; IL-6, interleukin-6; IL-12, interleukin-12; TNF-alpha, tumor necrosis factor-alpha, TGFB1, transforming growth factor-beta-
1, CCL2:C-C Motif Chemokine Ligand 2; ROS, reactive oxygen species.
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process of tumor initiation, growth and maintenance, but also in

metastasis (19). CSCs represent the most aggressive tumor

subpopulation able to spread and form metastases even at distant

sites. One of the key requisites for successful metastasis formation is

stemness. Indeed, depletion of various stemness markers such as

cluster of differentiation 44 (CD44) in breast CSCs (20) or octamer-

binding transcription factor 4 (OCT4) and SRY-Box Transcription

Factor 2 (SOX2) in colon CSCs, prevented tumor metastasis and

tumor growth (21). Beyond stemness markers, several studies have

been focused on the identification of cell-surface markers

specifically expressed in the subpopulation of CSCs endowed with

metastatic potential such as CD44v6, a CD44 variant isoform, in

colon CSCs (22). A broad and extensive description of CSCs

hallmarks and the methodologies used to characterize the CSC

state is reported in (23). In the next paragraphs, we will briefly

introduce how CSCs evade the immune system and resist

conventional therapies.
CSCs and immune evasion

Immunosurveillance is a set of immune-system related

processes aimed at controlling the development of normal cells

and detecting cancer cells. The innate and adaptive cells of the

immune system respond to stress conditions, caused by tumor

development, mainly by upregulating natural killer (NK) activator

ligands and stimulating a more specific T lymphocyte response

against cancer cells (24). NK cells are innate immune cells that

recognize cells lacking major histocompatibility class I complex

(MHC-I) and exert potent cytolytic activity releasing perforin and

granzyme against transformed cells (24). NK cells mediate the

tumor killing also triggering apoptotic pathways in tumor cells

through the production of TNF-alpha or via direct cell–cell contact

through activation of the Tumor necrosis factor (TNF)-related

apoptosis-inducing ligand (TRAIL) and FAS ligand (FASL)

pathways (24). Otherwise, T cells are the main component of the

adaptive immunity that orchestrate a protective effector immune

response, indeed, a high level of T cell infiltration in tumors is

associated with a favorable prognosis in cancer patients (24). CD8+

T and CD4+ T helper 1 cells are the most prominent anti-tumor T

cells, instead, through the exocytosis of perforin and granzyme

containing granules, the former, and secretion of high amounts of

proinflammatory cytokines, such as interleukin-2 (IL-2), TNF-

alpha, and interferon-gamma (IFNG), the latter, promote T cell

priming activation, cytotoxic T lymphocytes (CTL) cytotoxicity, but

also, the anti-tumoral activity of macrophages and NK cells (24).

T and NK cells destructive effect on cancer cells is regulated even

by TAMs, by increasing the number of active NKs, upregulating

inhibitory T cell receptors programmed cell death protein 1 (PD-1)

and Cytotoxic T lymphocyte associated protein 4 (CTLA-4), releasing

factors such as TRAIL and inducing apoptosis in cancer cells (25, 26).

However, during inflammation, TAMs can directly inhibit the

proliferation of CD8+ T cell lymphocytes by regulating their

metabolism or recruiting regulatory T cells (Tregs) (27). TAMs can

also inhibit dendritic cell (DC) maturation and the secretion of IL-12
Frontiers in Immunology 04
by DCs (28). TAMs and Tregs boost an immune-tolerant TME by

secretion of molecules such as interleukin-10 (IL-10), TGFB1, and

prostaglandins (28). Indeed, poor prognosis and reduced overall

survival in oncological patients is correlated with high-grade TAMs

(28). Tumor cells can evade the immune system by using different

strategies like losing surface antigens that prevent recognition by

cytotoxic T cells or downregulating cell surface NK activators,

becoming invisible to detection by NK cells (28). However, the

immune system can self-contribute to tumor development and

progression, orchestrating an immunosuppressive inflammatory

TME (24). This process is called “cancer immunoediting” and

proceeds through three phases: elimination, equilibrium and escape

(29). During the first phase the cytotoxic immune cells such as NK

and CD8+ T cells kill transformed cells, although rare tumor

subclones can survive (30, 31). These tumor subclones may enter

the second phase where their growth is limited and stalled over time

(30, 31). The steady pressure from the adaptive immune system and

the genetic instability of cancer cells can make tumor subclones

escaping immunosurveillance (30, 31). Cancer cells start proliferating

unconditionally and adopt many features to escape from the

immune system like downregulation of the antigen presentation

machinery or inducting inhibitory immune checkpoint molecules

(32). Moreover, cancer cells remodel the vasculature and

extracellular matrix and supports cancer progression as well as

therapy resistance (30, 31). This process can entail decreased IFN-

gamma secretion by T cells, loss of antigen presentation and

epigenetic changes (33).

Within the tumor CSCs control the immune system and regulate

the composition of TME through the release of cytokines,

chemokines, growth factors, metabolites and hormones playing an

immunomodulatory role (34). CSCs develop different

immunosuppressive strategies that promote tumor maintenance

and growth. Downregulation of MHC-I complexes and activation

of immune molecules such as cluster of differentiation 80 (CD80),

human leukocyte antigen (HLA) and major Histocompatibility

Complex Class I chain-related protein A/B (MICA/MICB), renders

CSCs more resistant to cytotoxic effects exerted by CTL (35). Of note,

the degree of tumor progression in the CSC niche has been attributed

to a reduced CD8+ T cell infiltration and to an increase in TAMs

(35). Moreover, CSCs interact through human leukocyte antigen G

(HLA-G) with killer cell immunoglobulin like receptor, two Ig

domains and long cytoplasmic tail 4 (KIR2DL4) and killer cell

lectin like receptor C1 (KLRC1) to suppress NK activity (34). CSCs

further drive recruitment and polarization Treg cells by secretion of

factors like Chemokine (C-C motif) ligand 1 (CCL1), IL-2,

interleukin-8 (IL-8), IL-10 and Transforming growth factor-beta-1

(TGFB1) (34). Moreover, Tregs produce TGFB1 and interleukin-17

(IL-17) to promote CSCs properties toward tumor progression and

invasion (34). CSCs immune evasion properties are influenced by

humoral factors: TGFB1, a cytokine that induces immune

suppression, EMT and stemness; IL-6, secreted by TAMs, that

induces and maintains CSCs, signal transducer and activator of

transcription 3 (STAT3), a transcription factor required for the

maintenance of pluripotency in stem cells or Chemokine (C-C

motif) ligand 20 (CCL20) and its receptor that recruits Tregs to
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promote tumor progression enhanced by immune evasion (34).

CTLA-4 and PD-1/programmed death-ligand 1 (PD-L1) represent

two of the major immune checkpoints (34). Immunosuppressive

myeloid cells, including macrophages and monocytic myeloid-

derived suppressor cells (MDSCs) represent an additional layer of

regulation of T cell activity and partially depend on secretion of

factors like CSF1, CCL2, Chemokine (C-C motif) ligand 5 (CCL5),

TGFB1 and prostaglandin E2 (PGE2), by CSCs (34). Collectively, all

these interactions reshape the tumor microenvironment and create a

habitat where immune cells support and are suppressed by CSCs (34).
Therapy resistance in CSCs

Conventional therapies developed for cancer treatment are

based on the following approaches such as chemotherapy,

radiation therapy and surgical excision (36, 37). Chemotherapy is

the most widely used and effective treatment for cancer; however,

cancer cells as well as CSCs often elaborate simultaneous resistance

to many drugs, even if they are structurally and functionally quite

different (36, 37). This phenomenon is called multidrug resistance

(MDR) or multifactorial pleiotropic drug resistance (36, 37). Many

in vivo and in vitro studies demonstrated that administering

chemotherapeutic drugs led to an enrichment in CSCs (36, 37).

Drug resistance is caused by regular administration of

chemotherapy drugs, that are dose- or time-dependent. The

multiple mechanisms underlying MDR can be listed as follows:

increased drug efflux and reduced drug uptake, efficient DNA repair

mechanisms, reduced presence of reactive oxygen species (ROS),

apoptosis evasion, hypoxia, vasculogenic mimicry (VM) activation,

increased autophagy and decreased ferroptosis (38).
Frontiers in Immunology 05
Mechanisms responsible for therapy resistance in CSCs are

summarized in Figure 2.
Multidrug resistance transporters

Several studies demonstrated that many chemotherapeutic

agents in clinical use are susceptible to ATP-binding cassette

transporters-mediated efflux (ABC), such as microtubule-

targeting, alkaloids, taxanes, topoisomerase inhibitors, DNA-

damaging anthracyclines and tyrosine kinase inhibitors (38, 39).

This subfamily of transporters is mainly localized in human tissues

of the brain, lung, breast, kidneys, liver, ovaries, prostate, placenta

and pancreas (40).

CSCs express higher levels of MDR transporters than cancer

cells or healthy cells (41). ABCB1, ABCG2 and ABCB5 are

overexpressed respectively in ovarian CSCs (41), breast CSCs (42)

and malignant melanoma initiating cells (MMIC) (43). Inhibitors of

the ABC transporters are currently used in clinical settings,

although side-effects and high toxicity have been reported in

patients (44).
DNA repair mechanisms

Efficient DNA repair mechanisms in CSCs are thought to be a

major contributing factor in counteracting treatment-induced DNA

damage (45). Efficient DNA damage repair system and the CSC

long permanence in a quiescent G0 phase greatly reduce potential

exogenous and endogenous DNA damage that could occur during

DNA replication (45). Evidence demonstrates that DNA damage
FIGURE 2

Mechanisms of therapy resistance in CSCs. Many CSCs strategies have been identified to resist to therapy: multidrug resistance transporters, efficient
DNA repair mechanisms, lower Reactive Oxygen Species (ROS) levels, evading cell death or “anoikis” and promote metastasis, hypoxia, providing
sufficient blood supply through vasculogenic mimicry (VM), increased autophagy and decreased ferroptosis.
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response (DDR) sensor proteins are upregulated in CSCs rather

than tumor bulk cancer cells in monolayer cultures, thus conferring

radio and chemotherapy resistance (46). Enhanced expression of

DNA polymerase nu (POLN) contributes to chemoresistance in

ovarian stem cells (47). Thus, cytotoxicity by chemotherapeutic

drugs or radiotherapy-induced can be attenuated in CSCs based on

an efficient DNA damage repair system (26).
ROS levels

CSCs show low intracellular levels of ROS, a group of highly

reactive molecules, containing oxygen, that can promote DNA

damage and influence the DDR machinery (48). Therefore, CSCs

can dampen the entity of exogenous DNA damage induced by

conventional therapy by expressing low levels of ROS, which

production is mainly determined by the slow division rate of

CSCs (48). Lower levels of ROS in CSCs result crucial in

maintaining a stem cell-like phenotype, along with conferring

resistance to radiation therapy and/or chemotherapy (49).
Anoikis

The ability of CSCs to metastasize and reach other organs

should be reduced as cells undergo programmed cell death or

apoptosis, where they lose contact with their extracellular matrix

or neighboring cells (“anoikis”) (50). However, CSCs were reported

to be anoikis resistant (50). Indeed, CSCs endowed with metastatic

potential evade anoikis mechanism, therefore surviving and

promoting the formation of metastatic lesions at a distant site

(51). Notably, co-culturing CSCs with non-CSCs conferred anoikis

resistance to non-stem cells in breast cancer (51). CSC-like cells

protected non-stem cells from anoikis and promoted tumor

growth (51).
Hypoxia

Oxygen is necessary for metabolism and cellular energy

production. In many tumors, oxygen levels are usually between

0% and 2% compared to normal physiological levels that can reach

up to 9% and therefore the high metabolic demand requires the

activation of hypoxia-inducible factors (HIFs) (52, 53). HIFs are

heterodimers consisting of two subunits a and b that can translocate

in the nucleus and interact with specific sequences leading to

activation or repression of gene expression (52, 53). There are

three different genes encoding for HIF subunits: hypoxia inducible

factor 1 subunit alpha (HIF1A), hypoxia inducible factor 2 subunit

alpha (HIF2A), and hypoxia inducible factor 3 subunit alpha

(HIF3A) (52, 53). All three heterodimerize with the hypoxia

inducible factor 1 subunit beta (HIF1B) subunit and are subject

to posttranslational regulation that is dependent on oxygen levels in

the environment (52–54). HIF1A and HIF2A through the
Frontiers in Immunology 06
upregulation of regulators such as SOX2, Nanog homeobox

(NANOG), OCT4, KLF Transcription Factor 4 (KLF4), and the

transcription factor MYC proto-oncogene protein (MYC), have

been shown to promote stemness and CSC phenotype (55).

Upregulation of HIF-1 induces the expression of genes involved

in angiogenesis, cell survival, and metabolism, conferring a selective

advantage to CSCs (56). It has been demonstrated that breast cancer

cells lines, MCF-7 and MDA-MB-231, display increased

subpopulations of tumor cells with stem-like characteristics (56).

Hypoxia is a hallmark of the CSCs environment that is essential for

CSCs development, maintenance, tumor growth and resistance to

therapy (57). Evidence suggests that the hypoxic niche in colon

cancer protects CSCs from chemotherapy (58). Moreover, in

ovarian cancer stem cell lines, SK-OV-3 and HO-8910, it has

been demonstrated that chemotherapy treatment, under hypoxia

conditions, induced CSC-like properties (59). The mechanisms

through which hypoxia exerts its function are complex but can be

summarized in shifting the metabolism toward aerobic glycolysis,

reduced expression of pro-apoptotic factors, dysregulation of ROS

and redox mechanisms, increasing genomic instability and aberrant

cell cycling (48).
Vasculogenic mimicry

Vascularization plays an important role during carcinogenesis

and metastasis. VM can provide sufficient blood supply for tumor

growth, independently of endothelial cells (60, 61). VM is a process

of blood vessel formation that cancer cells and CSCs employ to

increase the blood supply of angiogenesis (60, 61). It is a mimicry

process whereby malignant cells mimic the function of endothelial

cells to form blood vessels by reshaping the extracellular matrix (60,

61). CSC VM has been observed in many tumors such as breast

cancer and melanoma (62). Evidence shows that vasculogenic

mimicry is mostly present at the early stages of tumor

development when blood supply is most needed, as the tumor

grows where the vessels created by endothelial cells are established

(63). Studies also show that the early stage of CSC serves as tumor

vasculogenic stem/progenitor cells that can differentiate into tumor

vasculogenic endothelial cells (64, 65). New vessel formation, and

particularly VM, makes the eradication of the tumor even more

complex and unsuccessful, giving the tumor the ability to

metastasize (64, 65).
Autophagy

Autophagy is a catabolic process that degrades and recycles

cellular components and exhibits both protective and destructive

roles in the TME under physiological stress conditions such as

nutrient deprivation and hypoxia (66). The activation of autophagy

may lead to an arrest of tumor development, but at the same time it

can support CSC self-renewal and resistance to therapy (66). In CSCs,

autophagy contributes to maintain self-renewal and proliferation
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1529847
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Verona et al. 10.3389/fimmu.2025.1529847
properties, avoiding senescence (67). Evidence suggests that

autophagy is involved in mechanisms that mediate resistance to

therapy, in renal carcinoma and breast cancer (68, 69). Experiments

carried out to inhibit autophagy have shown increasing sensitivity to

radio- and chemotherapy in nasopharyngeal and breast CSCs,

respectively (70, 71). In addition, the upregulation of signaling

pathways mediating autophagy, such as SOX2- beta-catenin/

BECLIN1, determines resistance to chemotherapy (72).
Ferroptosis

Iron is an essential cofactor for several metabolic reactions and

contributes to the formation of ROS (73). Ferroptosis can be defined

as a form of iron-catalyzed necrosis and occurs through the

intracellular accumulation of ROS, induced by lipid peroxidation

(74). Current studies demonstrate that during tumor development

the levels of iron and its transporters increase in CSCs compared to

cancer cells (74). Although iron accumulation promotes ferroptosis,

CSCs maintain a balance that prevents toxic lipid peroxidation (75).

Chemotherapeutic drugs generate ROS that can induce oxidative

damage and apoptosis (75). However, CSC ability to control

ferroptosis reduces the harmful effect of ROS species conferring

chemotherapeutic resistance (75). Inducing high levels of
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ferroptosis is indeed currently used as an innovative approach to

revert chemotherapy resistance, specifically in the CSC

population (76).
TME as a key player in promoting CSC
stemness and cancer development

Several studies have shown that various types of cells embedded

in the TME contribute to maintain and sustain CSCs stemness

properties. These findings prove that a crucial role in tumor

progression is played by the specific TME surrounding tumor

bulk cells and CSCs, which create the ideal conditions for tumor

initiation. A detailed description of the key components present in

the TME is reported in Figure 3.

TME includes various host healthy cells which enfold the

tumor, and by producing cytokines and hormones they can

promote its growth and behavior (77). As the core of the TME,

tumor cells exploit cellular and non-cellular components for their

own advantage by the installation of a complex signaling network

(78). The host healthy cells, like fibroblasts or immune cells, as well

as the extracellular matrix, undergo a tumor-mediated

reprogramming able to convert the host cells into tumor

associated ones such as cancer-associated fibroblasts (CAFs) and
FIGURE 3

Tumor microenvironment (TME) key components. TME is a highly complex player composed of cellular components and non-cellular components,
where cancer stem cells (CSCs) engage in communications with diverse immune cells, playing a critical role in cancer progression. CSCs have the
ability of self-renewal (in yellow) and differentiation (in dark pink) in adult cell tissue, disrupting tissue homeostasis. Cellular components include:
heterogenous cancer cells, diverse immune cells (e.g., T lymphocytes, regulatory T cell or Treg, tumor-associated macrophages or TAMs and
myeloid-derived suppressor cells or MDSCs), stromal cells (e.g. cancer‐associated fibroblasts or CAFs and mesenchymal stromal cells or MSCs) and
endothelial cells. Noncellular components include extracellular matrix (ECM) molecules (e.g., collagen, fibronectin, laminin and hyaluronan)
biochemical and biophysical cues. Immune cells largely determine TME secretome composed of IL-6, IFN-gamma, TNF-alpha, TGFB1, IL-12,
CXCL12, CCL1, CCL18 and several others. TME, tumor microenvironment; CSCs, cancer stem cells; TAMs, tumor associated macrophages; MDSCs,
myeloid-derived suppressor cells; NK, natural killer; Treg, regulatory T cell; CAFs, cancer-associated fibroblasts; MSCs, mesenchymal stromal cells;
ECM, extracellular matrix; IL-6, interleukin-6; IFNG, interferon-gamma; TNF-alpha, tumor necrosis factor-alpha; TGFB1, transforming growth factor-
beta-1; IL-12, interleukin-12; CXCL12, C-X-C motif chemokine ligand 12; CCL1, chemokine (C-C motif) ligand 1; CCL18, C-C motif chemokine
ligand 18.
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TAMs. Following the conversion, the tumor-associated cells start to

sustain and promote tumor growth in different ways. Hereinafter,

an overview of the main cells which compose TME and their

contribution to tumor progression will be provided.
Stromal cells and ECM

CAFs are highly heterogeneous stromal cells which represent

the major modifiers of TME by the synthesis of soluble factors that

promote tumor progression, stemness and angiogenesis in several

cancers including prostate, gastric and non-small cell lung cancer

(79–81). CAFs also contribute to tumor immune evasion both

directly and indirectly. Different studies prove that CAFs are

associated with T cells impairment, preventing their activation by

secretion of C-X-C motif chemokine ligand 12 (CXCL12) and

TGFB1 (82, 83). The primary role of CAFs is the establishment

and apposition of the extracellular matrix (ECM) (84). ECM

composes the scaffold for tissues and organs and facilitates cells

crosstalk, both in healthy and malignant conditions. Jachetti et al.

demonstrated that ECM proteins inhibit T cell proliferation and

effector function (85). In addition, ECM can improve drug

resistance by acting as a physical barrier. Besides, it has been

shown that collagen, one of the most abundant proteins in ECM,

can promotes stemness through the activation of an integrin/PI3K/

AKT1/SNAIL signaling pathway (86).

Mesenchymal stromal cells (MSCs) are a substantial component

of TME, recruited and re-educated by tumor cells in order to sustain

tumorigenesis (87). Indeed, tumor associated-MSCs are crucial

promoters of cancer hallmarks. It is shown that IL-6 produced by

MSCs increases endothelin 1 (ET-1) expression in colorectal cancer

(CRC) cells, resulting in the activation of AKT1 and ERK in

endothelial cells which lead to tumor neo-angiogenesis

enhancement (88). Several studies demonstrated that MSCs

contribute also to tumor invasiveness and progression by

regulating EMT regulators, like Twist, Snail and Zinc finger E-

box binding homeobox 1 (ZEB1) (89–92). Finally, MSCs interact

and suppress TME-embedded immune cells, either directly or

through the release of factors like TGFB1, IL-2 and IL-10 (93)

and, moreover, play a crucial role in enhancing stemness of cancer

cells. Indeed, in physiological conditions, MSCs shape and support

tissues and promote stemness features of the stem cell niches.

Similarly, MSCs interact and promote CSC stemness in tumors

via soluble factors (52).
Immune cells

Although immune cells should prevent and resolve tumor

progression, they act as promoters of cancer development under

the pressure of TME signalosome (94). MDSCs are regulators of

immune homeostasis (95). Cancer cells exploit MDSCs activity to

escape immune surveillance, indeed MDSCs are commonly present
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in TME for their capability to facilitate tumor progression by

establishing immune-suppressive conditions in different ways

(96). ROS, IL-10 and TGFB1 produced by MDSCs negatively

regulates CD8+ T cells activity against cancer cells (96).

Moreover, MDCSs up-regulate PD-L1 expression, resulting in

suppression of the immune response against tumors (97). MDSCs

also regulate indirectly the immune response exacerbating TME by

factors essential for T lymphocytes functions, such as L-arginine,

which is crucial for T cells proliferation and activity (98, 99).

MDSCs promote CSC stemness by miRNAs able to trigger CSCs

stemness program (100).

Tregs are spontaneously attracted by immunosuppressive

cytokines produced by tumor and tumor-associated cells (101).

As well as MDSCs, Tregs promote tumors immune evasion by

releasing cytokines able to suppress the activation of the immune

response effectors (102, 103). Recent evidence suggests that Tregs

are important regulators of CSCs stemness. Indeed, in several

cancers, Tregs promote stemness-related pathways (104), facilitate

EMT (105) and angiogenesis (101).

Tumor cells and TME not only re-educate and exploit MDSCs

and Tregs but also induce depletion of tumor killing activity exerted

by immune response effectors cells, NK cells and lymphocytic cells

(106, 107). Although in the early stages of tumorigenesis NK cells

are lethal for tumor cells, they slowly exhausted their killing

function under the pressure of TME factors (108). Indeed, TGF-

beta produced by CSCs, MDSCs and Tregs, impairs NK cells

cytotoxicity, inhibits the release of IFNG and reduces the

expression levels of killer cell lectin like receptor K1 (KLRK1)

receptor in several tumors (109–111). Also, TME hypoxia

conditions inhibit NK cells by downregulating expression of

NKp46, NKp30, NKp44, KLRK1, perforin (PRF1), and granzyme

B (GZMB) (112). Finally, lactate produced by tumor cells leads to

the acidification of TME which induces apoptosis of NK cells (113).

The same conditions which inhibit NK cells affect also lymphocytic

cells activity, the most potent immune weapons against tumor cells

(114, 115). Besides, downregulation of MHC-I, along with the up-

regulation of immune checkpoints, (i.e. PD-L1) allows tumor cells

to ensure themselves immune evasion (116, 117). Among the

immune cells present in the TME, a focus on TAMs and their

hallmarks will be provided in the next paragraphs.

Recently, CSCs-TME interplay gained interest in cancer research

as a potential therapeutic target against tumors. TME promotes a

stem-like state in CSCs supporting their self-renewal, survival, and

therapeutic resistance through different molecular mechanisms (118).

CAFs, the most represented cells in TME, release cytokines like IL-6,

able to sustain the expression of stemness-related genes like SOX2,

NANOG and OCT4 in CSCs (119). On the other hand, CSCs drive

TME immunosuppressive polarization and persistence (35). CSCs

can regulate immune system activity through the release of

immunosuppressive secretome (i.e. IL-10, TGFB1) showing a more

efficient capability to recruit immune cells with pro-tumoral activity

(Tregs, MDSCs and especially TAMs) which sustain CSCs stemness

by releasing factors like platelet-derived growth factor (PDGF), IL-8,

CXCL12 (120, 121).
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The TAMS story

As tissue-resident immune cells, macrophages represent an anti-

cancer first line of defense thanks to their capability to recognize and

phagocyte malignant cells, but they are also the first allies of tumor

initiation and development. After malignant transformation, TAMs

are the result of the exploitation of macrophages plasticity (M1-M2

dichotomy), by cancer cells (122, 123). TAMs play a pivotal role in

vascularization, inflammation, EMT and intravasation in different

cancer models (124–127). This review aims to shed new light on the

important role of macrophages in cancer development and the close

link with TME modulation, the role of macrophages and monocytes,

in relation with CSCs stemness and support.
TAMs Hallmarks

The hallmarks of cancer, initially introduced by Hanahan and

Weinberg (128) mirror the complex and fundamental biological

mechanisms that drive cancer cells to malignancy. In this context,

TAMs have emerged as crucial players, within the TME, in cancer

progression showing ability in tumor growth and metastasis

processes (129). Particularly, TAMs originate from circulating

monocytes, in the bloodstream, that migrate to tumor sites where

they become macrophages (130). Macrophages are characterized by
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a peculiar plastic phenotype and can differentiate in wide spectrum

of subclasses finely driven by super-enhancers activity (131, 132).

Usually, they are classified as M1 or M2, which display pro-

inflammatory and immunosuppressive phenotypes respectively.

In cancer contexts, TAMs mainly display an M2-like state, which

is correlated to oncogenic features such as cancer cell proliferation,

immunosuppression, chemoresistance, angiogenesis and metastasis

(133). Overall, the acquisition of an M2-like state is critical to create

a microenvironment that supports both the survival and

progression of cancer cells (134). Moreover, an enrichment of

TAMs infiltration, in the context of TME is linked to a worse

prognosis in several cancers (135–137).

The most significant TAMs hallmarks, which promote tumor

progression are shown in Figure 4 and detailed below.
Cancer cell proliferation

A key hallmark of cancer is the ability to engage in an intricate

communication with tumor cells and by activating proliferative

signaling programs (138). TAMs positively support the cancer cell-

cycle state by secreting various growth factors and cytokines.

Among TAMs released factors, IL-6, IL-10 and IL-8 foster

signaling pathways directly involved in stimulating cancer cell

proliferation and tumor growth (139–142).
FIGURE 4

TAMs Hallmarks. Scheme showing TAMs properties in tumor progression. TAMs predominantly show an M2-like state which is mainly linked to pro-
tumoral programs. TAMs are involved in many aspects of tumor cell biology such as T lymphocytes immunosuppression and increasing T reg
recruitment, supporting tumor angiogenesis through pro-angiogenic factor production, inducing epithelial mesenchymal transition (EMT) and
metastasis and promoting resistance to therapy activating pro-survival programs. TAMs, tumor-associated macrophages; IL-6, interleukin-6; IL-10,
interleukin-10; IL-8, interleukin-8; Tregs, regulatory T cells; PGE2, prostaglandin E2; TGFB1, transforming growth factor-beta-1; VEGF, vascular
endothelial growth factor; FGF, fibroblast growth factor; EMT, epithelial-mesenchymal transition; MMPs, matrix metalloproteinases; TNF-alpha,
tumor necrosis factor-alpha.
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Immunosuppression

TAMs predominantly display an immunosuppressive M2 state

in TME (130). M2 TAMs unbalance the immune surveillance role

of T cells and favor the promotion of cancer cells escape from the

immune system (130). More in detail, TAMs produce a plethora of

molecules, such as TGFB1, IL-10, and PGE2 that act on T cells,

disrupting the anti-tumoral role both CD4+ and CD8+ subtypes,

and increasing the recruitment of Tregs, that enhance the pro-

tumoral immune depletion (130, 143).
Chemoresistance

Chemoresistance is another cancer hallmark. TAMs play a crucial

role in the acquisition of a cancer chemoresistant phenotype, through

the secretion of inflammatory cytokines such as IL-6 and TNF-alpha

which activate pro-survival programs (144, 145). Moreover, TAMs

can enhance the efflux of chemotherapeutic drugs from cancer cells,

reducing their therapeutic efficacy (146).
Neo-angiogenesis

TAMs promote neo-angiogenesis, vital for both tumor growth

and metastasis. Accordingly, TAMs release pro-angiogenic factors

such as vascular endothelial growth factor (VEGF) and fibroblast

growth factor (FGF), which drive the activation of new blood vessels

formation signaling pathways (147, 148). The neo-angiogenesis not

only is essential to feed cancer cells with nutrients and oxygen, but

also it is critical for tumor mass growth and to guide metastatic

spreading process (147).
EMT and metastasis

The pro-invasiveness and pro-metastatic role of TAMs is well-

documented in literature (5, 149). Accordingly, TAMs can induce

EMT in tumor cells toward a more mesenchymal phenotype,

enhancing their more malignant invasive phenotype (149).

Furthermore, TAMs can secrete matrix metalloproteinases

through which they digest the extracellular matrix components,

allowing cancer cells to reach the surrounding tissues (150).

In summary, TAMs significantly impact multiple hallmarks of

cancer. Through their roles in sustaining proliferative signaling,

immunosuppression, chemoresistance angiogenesis and metastasis,

TAMs represent a critical player in all stages of cancer progression,

from early to late ones.
CSCs and TAMs crosstalk and its impact on
metastatic niche

One of the major drawbacks in counteracting cancer spread and

resistance consists of the capacity of CSCs to migrate into secondary

sites and avoid immune surveillance (2). Given their plastic
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behavior, their self-renewal capacity and treatment resistance,

CSCs can foster metastasis formation from the primary tumor

environment by disseminating into further districts, establishing the

metastatic niche (151). In this context, a model that explains the

architecture of the niche has been proposed by Lyden et al., in which

the CSCs by migrating, reach a permissive and suitable

microenvironment, the pre-metastatic niche, and by becoming

disseminated tumor cells (DTCs), they can colonize and

proliferate (152) through direct competition with normal stem

cells for the niche occupation and establishment (153).

The metastatic niche characteristics vary depending on the

specific components considered: the interacting cell types, ECM

proteins, survival and self-renewal signals, but mostly the secondary

site locations, that can either sustain and foster the metastatic niche,

or set a hostile environment for the DTCs (154). The DTCs have to

face several issues when colonizing a secondary site, including the

lack of growth and extracellular matrix remodeling factors, that can

hamper their survival and proliferation, thus adjusting into the new

niche and metastasize (155). The disseminated cells will shape their

surroundings to build a supportive metastatic niche and exploit the

functions of both CSCs and metastatic stromal cells (2). However,

studies analyzing human colorectal cancer samples displayed that

metastatic occurrence arises from primary tumor cells, that are

resistant to chemotherapy and might stay quiescent for a prolonged

time (156).

Notwithstanding, little evidence investigating the genetic

profiling of the tissue-derived and metastatic CSCs emerged, in

the consideration of the metastasis signature mutations occurrence

at the level of the primary tumor. This process can represent the

first tool of selection in the CSCs population to direct a pool toward

migration and extravasation into secondary sites (151). With this

premises, the most accredited option relies on the fact that

metastasis-driving alterat ions are present within the

heterogeneous CSCs profile, and their expression selects the

DTCs that will acquire a plastic and resistant profile (157).

Nevertheless, further evaluations need to be carried out,

especially in the context of EMT pathways, and stem-like features

involved in both the primary tumoral site and in the metastatic

environment, highlighting similarities and differences among CSCs

and DTCs (158).

Historically, the metastatic niche has been described as a cell-

enriched environment constituted mostly by immune and stromal

cells which secrete proteins and factors that sustain growth and self-

renewal of CSCs, that consequentially stimulate the activation of

angiogenic pathways aimed to the promotion of tumor invasion and

metastatization (154, 159).

CSCs form the primary tumor can favor the diffusion of pro-

tumorigenic and proangiogenic factors such as VEGF-A, TGFB1,

TNF-alpha and lysyl oxidase (LOX) that induce the expression of

S100A (a Ca2+ binding protein involved in endothelial remodeling)

in the metastatic area (2). In the metastatic site the vasculature

system boosts the recruitment of metastatic cancer stem cells

(MetCSCs) by producing fibronectin and vascular endothelial cell

adhesion molecule (VCAM). Consistently, it has been observed that

the CCL2-CCR2 (C-C chemokine receptor type 2) axis promotes

the establishment of inflammatory monocytes to the metastatic site,
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where they will transition into metastatic-associated macrophages

(MAMs) and will enhance the extravasation and survival of

metastasis-resident cancer cells (160).

Another important lead of metastasis formation is depicted by

TAMs. Principally, TAMs promote tumor cell invasion and

dissemination, and through their ability to release cytokines and

factors that support growth and ECM-shaping (MMP-2, MMP-9),

milk fat globule-EGF factor 8 (MFGE8), IL-6 are correlated with

tumor progression and metastasis (161). TAMs derive from

circulating Ly6C+CCR2+ inflammatory monocytes that are

produced by hematopoietic stem cells (HSCs) in the bone

marrow, that, when interacting with tumor tissue, are addressed

toward a more cancerous-like profile (161, 162).

TAMs and CSCs crosstalk has been widely described in the last

years, investigating whether their interaction may be direct or

indirect, and which may be the effects on CSCs in the primary

tumor, including chemoresistance, differentiation and proliferation

(163). TAMs are essential in supporting metastasis establishment

once CSCs migration has occurred. More specifically, studies

conducted on lung and liver metastatic murine models, showed

how inhibiting TAM recruitment in metastatic niches resulted in a

reduced burden, indicating its paramount role in the onset and

maintenance of metastasis by supporting both extravasation and

intravasation in secondary sites of CSCs (164, 165).

One accredited metastasis hypothesis linking the role of TAMs

in facilitating CSCs metastatization relies on the ability of metastatic

cells to occupy niches in which are present CSCs (166). More in

detail, it is thought that TAMs and CSCs derive from cell hybrids

and set metastasis in further sites (166). The theory was proposed by

John Pawelek in 2006, and he explained that myeloid and tumoral

cells could perform a genomic hybridization (167). TAMs due to

their migratory ability and the tissue-repair feature could transport

the CSCs spheroids through either bloodstream or lymphatic

circulation, and permit a favorable environment for metastatic

initiation (168). Within the metastatic microenvironment, TAMs

play a crucial role in shaping the behavior of CSCs, especially

regarding tumor advancement and the colonization of cancer cells

at secondary sites (169). A crucial aspect of TAMs is their role in

promoting EMT, which is a vital process in the morphological

alterations of cancer cells and contributes to the enhancement of

their malignant traits (170). In triple-negative breast cancer, CCL2

secreted by TAMs activates AKT signaling pathways, resulting in

heightened beta-catenin activity in CSCs (171). This pathway is

essential for facilitating EMT and sustaining the properties of CSCs

within the TME (172). In oral squamous cell carcinoma (OSCC),

high levels of TAM-derived IL-6, promote EMT and enhance the

expression of genes associated with stemness, via the IL-6/STAT3/

thrombospondin 1 (THBS1) signaling pathway (173).

To sustain CSCs in pancreatic ductal adenocarcinoma (PDAC),

TAMs utilize a critical mechanism involving the interferon-

stimulated gene 15 (ISG15) signaling pathway (174). By releasing

the ISG15, TAMs enhance the self-renewal, invasive potential and

tumorigenic capabilities of CSCs (175). Among the several ways in

which TAMs support CSCs behavior, the creation of an

immunosuppressive microenvironment exerts a key function.

Within the TME, TAMs predominantly display a M2 phenotype,
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which is known for its role in promoting immunosuppression

(176). This phenotype fosters a protective microenvironment that

shields CSCs from immune system attacks. By releasing

immunosuppressive cytokines like IL-10 and TGFB1, TAMs

effectively suppress the function of cytotoxic T cells and other

immune cells, allowing CSCs to remain undetected and avoid

destruction (177). TAMs influence the growth of CSCs through

both direct contact and secretory mechanisms. In highly metastatic

breast cancer, CSCs express hyaluronan synthase 2 (HAS2), which

is crucial for creating a pro-metastatic microenvironment (177).

This expression facilitates interactions between CSCs and TAMs,

leading to the secretion of platelet-derived growth factor-B subunits

(PDGFB) by TAMs (177).

PDGFB subsequently stimulates bone stromal cells to secrete

fibroblast growth factors 7 and 9 (FGF7 and FGF9), which support

CSC proliferation and survival (178). Moreover, in breast cancer,

the EMT enhances the expression of cluster of differentiation 90

(CD90) and ephrin type-a receptor 4 (EPHA4), facilitating direct

physical interactions between CSCs and TAMs through the binding

with their respective receptors. When the EPHA4 receptor on

carcinoma cells is activated, it triggers the sarcoma SRC proto-

oncogene, non-receptor tyrosine kinase (SRC) and nuclear factor-

kappa B (NF-kappa-B) signaling pathways. This activation leads to

NF-kappa-B in CSCs induction of the secretion of various cytokines

that help maintaining the stem cell state (179).

By preserving the stem-like properties of CSCs and boosting

their migratory and invasive abilities, TAMs facilitate the

detachment of CSCs from the primary tumor, enabling the

formation of secondary tumors in distant organs (149).

Once malignant cells escape from the primary tumor, they

intravasate and disseminate through the lymphatic and/or

circulatory system, eventually establishing secondary tumors at

distant sites. Research into lung metastasis reveals that when

tumor cells reach their target location, they form micro-clots in

conjunction with platelets, resulting in their entrapment within the

blood vessels of the target tissue (180). Once arrested, the tumor

cells secrete CCL2, which creates a gradient that attracts Ly6C

monocytes (181). These recruited monocytes undergo

differentiation into MAMs, which play a pivotal role in

facilitating the extravasation of tumor cells by releasing VEGF, a

factor known to enhance vascular permeability (182). Under the

influence of CSF1, the primary lineage regulator for most

macrophage populations, MAMs support the survival of tumor

cells and contribute to their sustained growth through processes

related to angiogenesis (183).

Recent studies conducted on CRC evidenced the interaction of

CRC cells and TAM. Of note, a paramount interaction between

CRC cells and M2 macrophages in the promotion of colorectal liver

metastasis (CRLM) emerged (184). To date, CRLM is mediated by

interactions between tumor cells and the TME in the liver and is

considered one of the most common secondary liver cancers (185).

Nevertheless, the mechanisms involved in the cancer cell-derived

activation of M2 macrophages need further investigations in both

CRC and CRLM. Notably, exosomes derived from tumors can

polarize macrophages toward a M2 cellular profile, which in turn

promotes metastasis (186, 187). Zhao et al, demonstrated that
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exosomes derived from CRC cells displayed a role in inducing M2

polarization through the secretion of microRNA-934 (miR-934)

and the downregulation of PTEN expression, and activation of

PI3K/AKT signaling cascade. Finally, miR-394 activated polarized

M2 macrophages which promoted CRLM through C-X-C motif

chemokine ligand 5 and 13 (CXCL5)/(CXCL13)/NF-kappa-B/p65/

miR-394 positive feedback mechanism (188).

Another study (189) conducted on glioblastoma investigated

the role of glioblastoma stem cells (GSCs) and TAMs in tumor

progression and metastatic potential. The authors screened GSCs

factors that could polarize macrophages, and they evaluated a

potential group of proteins produced by GSCs with the ability of

behaving as TAMs chemoattractant (189). Periostin (POSTN)

emerged as a valuable factor expressed by the stem cells (189). It

plays a role in the PI3K/AKT and WNT signaling pathways, which

are involved in tumorigenesis (190, 191). In particular, evidence

highlighted that CSCs profited from the POSTN-induced WNT

augmented signaling, supporting a favorable metastatic

colonization in breast cancer setting (192). Additionally, when

silencing POSTN, TAM density was sensibly reduced, thus

reinforcing the idea that GSCs can recruit TAMs and foster

tumor growth by secreting POSTN. Consistently, GSCs

established in the tumoral area, where they exploited the

surrounding microenvironment by attracting TAMs from the

peripheral circulation to set a more beneficial space for the

reciprocal survival and growth of the resident populations and

enhancing the metastatic CSCs potential. These observations need

further investigation and open new scenarios regarding the

involvement of TAMs, the role of CSCs, and their complex

interplay in affecting the metastatic niche.
TAMs influence on tumor behavior,
oncogenic pathways, immune inhibitory
responses and therapy resistance

TAMs represent a cellular immune system subpopulation

directly involved in the tumor formation and progression through

the activation of several pro-tumoral signaling pathways within the

CSCs, thus providing the creation of a tumor niche necessary for

CSCs survival and expansion. Cellular matrix elements represent

critical components for the tumor niche structure maintenance

which help the direct crosstalk between CSCs and the surrounding

cells, including TAMs. The intricate bi-directional communication

between TAMs and CSCs is increasingly recognized as a critical

factor in tumor biology. This interaction is underscored by a

growing list of factors, ligands/receptors, shown in Table 1,

derived from both TAMs and CSCs that are implicated in the

mutual co-dependent maintenance of CSC stemness and the

supportive actions of TAMs. The complex network of signaling

molecules and pathways involved in this crosstalk not only

influences tumor progression but also impacts therapeutic

resistance, making it a focal point for cancer research.

In breast cancer stem cells (BCSCs) the overexpression of the

HAS2 is implicated in the new synthesis of hyaluronic acid, a major

polysaccharide component of the ECM which drives the physical
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interaction to TAMs, via CD44 receptor expressed on their surface.

The hyaluronic acid/CD44 interaction stimulates TAMs to release the

growth factor PDGFB, which induces CSC self-renewal (178, 193). In

addition, TAMs/CSCs in vitro co-culture confirmed the oncogenic

role of hyaluronic acid-expressing CSCs/CD44-TAMs interaction in

the activation of different signaling pathways such as PI3K–Eukaryotic

Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1)–SOX2,

implicated in CSCs pool maintenance (194, 195). Interestingly, it has

been found that BCSCs cooperate directly with TAMs through cluster

of differentiation 11b (CD11b) and CD90 binding. This anchoring

stimulates EPHA4 receptor-mediated induction of both the NF-

kappa-B and SRC signaling pathways ensuring CSCs pool stemness

state (196). Similarly, in a triple negative breast cancer (TNBC) model,

the butyrophilin subfamily member A3 (BTN3A3) receptor enhances

cancer stemness markers (i.e. NANOG, OCT4, SOX2) via juxtacrine

interaction with its ligand, liver and lymph node sinusoidal endothelial

cell C-type lectin (LSECtin), a transmembrane protein expressed on

TAMs surface (197). Furthermore, CSCs engage a juxtacrine signaling

pathway with the TAMs via GPI-anchored protein CD90/CD11b.

Specifically, CSCs express the membrane GPI-anchored protein CD90

and EPHA4. Mechanistically, CD90 creates a bridge to bind the

integrin CD11b on TAM surface, whereas the receptor EPHA4

interacts with its ligand, Ephrin, expressed by TAMs, inducing the

expression of both SRC and NF-kappa-B driving tumor progression

and metastatic dissemination (196). In pancreatic cancer,

immunomodulatory cationic antimicrobial peptide 18/LL-37

(hCAP-18/LL-37) on TAM, anchors the formyl peptide receptor 2

(FPR2) and the P2X purinoceptor 7 receptor (P2X7R) expressed on

pancreatic cancer cells, which lead to the activation of stemness genes

(i.e. KLF4, SOX2, OCT3/4 and NANOG) driving CSC self-renewal,

invasion, tumorigenicity (198).

Different studies showed that an indirect paracrine interaction

between TAMs and CSCs, driven by a plethora of inflammatory

molecules including cytokines, chemokines, growth factors, was

also crucial in the determination of CSCs fate and behavior.

Particularly, IL-6 is one of the most representative pro-

inflammatory cytokines in the context of TME. It is critically

upregulated in many tumors, underlying the strong correlation

between inflammatory stimuli and tumor progression by affecting

multiple cancer signaling pathways (199). IL-6 derived from TAMs

induces the proliferation of CD44+ Human Hepatocellular

Carcinoma Stem Cells (HHCSCs) via STAT3 pathway induction

(139). In addition, TAMs secrete high levels of IL-6 increasing

stemness markers (i.e. SOX2, OCT3/4 and NANOG) and

consequently CSCs expansion in breast cancer cells via STAT3

pathway supporting tumor cells migration and angiogenesis (125).

Paracrine communication mechanisms between TAM and

CSCs are driven by several molecules. TAMs can enhance the

CSC-like phenotype via TGFB1, which induces EMT program

activation in a hepatocellular carcinoma (HCC) (120). Similarly,

TAMs induce stemness, EMT and chemoresistance in HCC by

realizing TNF-alpha via the WNT/b-catenin axis (200). It has been

discovered that TAMs can produce Chemokine (C-C motif) ligand

18 (CCL18). In squamous cell carcinoma of the head and neck

model (SCCHN), CCL18 produced by TAMs regulates metastasis

through the activation of EMT program and cancer stemness (201).
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TAMs releasing CCL2 is correlated with worse prognosis in breast

cancer. Particularly, TAM-produced CCL2 in the context of breast

cancer microenvironment activates AKT/beta-catenin signaling

resulting in EMT and CSC properties in TNBC (172).

Exosomes derived from TAMs have shown unrevealed aspects

about the role of TAMs in the support of cancer progression.

Specifically, it has been found that annexin A3 (ANXA3)-loaded

exosomes derived from TAMs impaired ferroptosis process in

laryngeal cancer cells supporting lymphatic metastasis. More in

detail, ANXA3 in exosomes regulates negatively the ubiquitination

of activating transcription factor 2 (ATF2), a transcription

factor that induces ChaC Glutathione Specific Gamma-

Glutamylcyclotransferase 1 (CHAC1) expression, thus blocking

ferroptosis in lung squamous cell carcinoma (LSCC) cells (202).

Moreover, CD163+ TAMs release exosomes that are absorbed by

epithelial ovarian cancer cells (EOCCs) (203, 204).

During the tumor progression, TAMs can create an

immunosuppressive TME facilitating the immune escape of CSCs.

The creation of an immunosuppressive milieu depends on a fine

balance between the inhibition of pro-inflammatory immune cells

and the activation of immunosuppressive TAMs-dependent

counterparts. Accordingly, TAMs promote the upregulation of

cluster of differentiation 47 (CD47) ligand on different cancers

stem cells (including pancreatic, HCC and leukemia), which

interacts to signal-regulatory protein alpha (SIRPA) on immune

cells inhibiting phagocytic process (205–207). Parallelly, TAMs can

also inhibit the adaptive immune system. Particularly, TAMs boost

both inhibitor immune checkpoints expression PD-1 and its ligand

PD-L1 in T cells and CSCs, respectively (208). The concomitant

expression of PD-L1 and PD-1 impedes the cytotoxicity in T-

cells (208).

Overall, some evidence showed how TAM-derived factors and

TAM-CSCs physical interactions drive the activation of a great

number of pathways in CSCs that are responsible of the

maintenance of stemness in different cancer histotypes. These

stemness-related hallmark pathways include Sonic hedgehog

(SHH), STAT3, NOTCH, PI3K/AKT, WNT/beta-catenin, and

NANOG (18). Particularly, TAMs induce STAT3 pathway

regulating the expression of stemness genes, via NF-kappa-B

activation, in CSCs in different malignancies including breast

cancer, liver cancer, prostate cancer, pancreatic cancer and colon

cancer (139, 209–213). TAMs activate WNT/beta-catenin and SHH

pathways, in CSCs, by leading transcriptional activation of stemness

related genes in liver cancer, prostate cancer and lymphoma after

secreting TNF-alpha, CCL5, pleiotrophin respectively (200, 211, 214).

Furthermore, TAMs support cancer stemness through the direct

activation of SHH pathway or through the induction of stemness-

related alternative pathways (196, 213, 215–217). Specifically, TAMs

sustain stemness via direct activation of SHH pathway in colon

cancer (213), meanwhile SHH alternative signaling pathways are

TAM-induced in pancreatic cancer (TGFB1/SMAD2/SMAD3/

NANOG pathway) (215), in liver cancer (via the NOTCH

pathway) (216), breast cancer (via the SRC Proto-Oncogene, Non-

Receptor Tyrosine Kinase (SRC) pathway) (196), and in glioma via

extracellular regulated kinase 1/2 (ERK1/2) pathway (217).
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Innovative studies indicate that the complex communication

between CSCs and TAMs has a critical pivotal role in the

acquisition of a chemoresistant phenotype refractory to

anticancer therapies. In OSCC TAMs influence positively the

formation of CSC-like cells, via the induction of stemness

markers of the SOX2, OCT4, and NANOG genes, leading to a

strong reduction of the percentage of apoptosis in OSCC,

supporting cell migration and chemoresistance to vincristine

(218). Similarly, TAMs release Pleiotrophin (PTN), which

interacts with the protein tyrosine phosphatase receptor type Z1

(PTPRZ1) receptor on the surface of CSCs, in OSCC model. The

ligand/receptor interaction activates the FYN proto-oncogene

(FYN)-AKT pathway, sustaining both the expression of stemness

characteristics in CSCs and chemoresistance in tumor cells (219).

Furthermore, MFGE8 in cooperation with IL-6, from TAMs

induces both STAT3 and SHH signaling pathways in non-small

cel l lung cancer stem cells (NSCLCCSCs) leading to

chemoresistance (213). Despite a growing body of research that

has elucidated various molecular mechanisms underlying the

interactions between TAMs and CSCs, significant gaps in our

understanding remain. The intricate crosstalk between these two

cellular populations is a complex phenomenon that has not yet been

fully characterized.

An overview of the most significant mechanisms of indirect and

direct interaction between TAMs and CSCs are shown in Figure 5.
Therapeutic strategies targeting the
interactions between CSCS and TAMS
to improve cancer
treatment outcomes

The innovative targeting of the crosstalk between TAMs and

CSCs represents a promising frontier in cancer therapy, although

several strategies have been already developed to specifically target

the CSC subpopulation including differentiative agents, chimeric

antigen receptor T cell (CAR-T) therapy, natural compounds and

epigenetic inhibitors (56, 220–225). This interaction is crucial as

TAMs can enhance the stemness and survival of CSCs, contributing

to tumor progression and resistance to conventional treatments

(163). Nowadays the aim is to disrupt this communication, for the

development of more effective therapeutic strategies that could

potentially improve cancer patient prognosis. A therapeutic

strategy could be represented by the disruption of CSC-TAM

communication centers by blocking soluble factors that

reciprocally support each cell type.

IL-6 is an important regulator in paracrine communication

between TAMs and CSCs (125, 139). The IL-6 downstream

pathway can be unpaired by both anti-IL-6, interleukin-6 receptor

(IL-6R) antibodies and by STAT3 inhibitor pathway. Inhibitors

against TGF-beta pathway are crucial to target CSCs (226, 227).

Additionally, it has been discovered that IL-6 inhibition can impair

MFGE8 functionality, which sustains CSC phenotype and cancer

chemoresistance (213). Notably, the anti-IL-6R, tocilizumab, has
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been approved by the FDA for treating rheumatoid arthritis (228).

It is currently in phase II clinical study for the treatment of

unresectable late-stage melanoma in combination with the anti

PD-1 and anti CTLA-4 immune checkpoint inhibitors nivolumab

and ipilimumab (NCT03999749) (229). IL-8 is another important

TAM-secreted regulator in cancer stemness (230). Reparixin is an

anti-IL-8 receptor (IL-8R), known as CXCR1, that reduces CSC

population in breast cancer setting (231). Phase I clinical trial study

NCT02001974 showed that Reparixin provides a synergistic effect

in combination with paclitaxel (231). The inhibition of the

glioblastoma multiforme (GBM) CSC-released POSTN has shown

a significant reduction in TAMs recruitment in pre-clinical

glioblastoma model xenografts (189). In addition, Huang et al.

demonstrated that TAMs-secreted CCL5 inhibition could impair

stemness and metastasis formation in in pre-clinical prostate model

xenografts (211). An alternative targeting strategy is to re-educate

the biological role of TAMs toward an anti-tumor phenotype.

Specifically, it has been demonstrated that dasatinib inhibitors,

directed against SRC, drive the reprogramming from TAMs to

M1 anti-tumor macrophages affecting the SRC/cluster of
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differentiation 155 (CD155)/macrophage inhibitory factor (MIF)

signaling (232). This leads to downregulation of stemness markers,

NOTCH1 and beta-catenin in cisplatin-resistant lung cancer

cells (232).

The reactivation of phagocytic activity in anti-tumoral

macrophages toward dead tumor cells represents a really

important resource for obtaining cancer cells antigens to boost T

cell-mediated immune responses. Accordingly, macrophage

phagocytosis can be restored via anti- CD47 administration in

immunodeficient pre-clinical xenograft models (233–236).

Particularly, anti-CD47 antibodies are currently being designed in

clinical trials (NCT02216409, NCT02367196) to overcome the

phagocytosis-driven CD47+ TAMs/SIRPA+ CSCs inhibition with

promising results (235, 237).

Interestingly, pre-clinical models showed a strong synergism

between anti-CD47 and chemotherapies (i.e. paclitaxel,

cyclophosphamide) in triggering T cell responses in immunogenic

colon and lymphoma tumors (238). ALX148, a CD47 blocking

protein, displayed high efficacy in combination with anti-PD-1,

anti-human epidermal growth factor 2 (HER-2), anti-vascular

endothelial growth factor receptor 2 (VEGFR-2) and anti-CD20

antibodies (known as pembrolizumab, trastuzumab, ramucirumab,

rituximab respectively) and conventional chemotherapy (Paclitaxel,

fluorouracil, cisplatin) in patients with malignant solid tumor and

Non-Hodgkin Lymphoma (NCT03013218) (239).

Humanized IgG4 antibody (Hu5F9-G4), an anti-CD47

antibody, showed combinatorial effect with chemotherapy

azacitidine in leukemia stem cells (NCT03248479) (240).

Zoledronic acid represents a double effects drug affecting both

TAMs in liver cancer infiltration and decreasing tumor growth in

CSCs-derived cervical cancer (241, 242). Zoledronic acid has been

chosen for phase III clinical trials aiming at the prevention of bone

metastasis in late-stage lung cancer patients (NCT02622607).

Of note, another innovative target is represented by myeloid-

epithelial-reproductive tyrosine kinase (MERTK), a tyrosine kinase

receptor discovered both in TAMs and several malignancies.

MERTK, on TAMs surface, binds to the “eat-me” signal

presented on apoptotic cells, activating a biological process

known as “efferocytosis”. It drives the shift of macrophages to the

pro-tumoral immunosuppressive M2 phenotype (243). MERTK is

also overexpressed in cancer cells and is directly correlated to CSC

maintenance in glioblastoma multiforme (244). The block of the

MERTK signaling pathway represents a promising therapeutic

strategy able to have a bidirectional effect both on TAMs and

CSCs. Additionally, the administration of the agonist anti-CD40

regulates the activation of the TAM receptor CD40. Anti-CD40

mimics the homonymous ligand physiologically produced by T

cells, and it leads to the reprogram of TAMs into anti-cancer

macrophages with the establishment of immune surveillance

(179, 245, 246). Accordingly, NG-350A, an adenoviral vector

encoding for an anti-CD40 monoclonal antibody directed against

tumor cells has been used to remodel the immunosuppressive TME.

Interestingly, an ongoing phase I trial is investigating its systemic

intravenous infusion alone or as a combinatorial treatment with

pembrolizumab (NCT05165433) or chemoradiotherapy/

radiotherapy (NCT06459869) in patients with advanced epithelial
FIGURE 5

Indirect and direct interactions between CSCs and TAMs. Scheme
showing the indirect (left) and the direct (right) mechanisms of
crosstalk between tumor associated macrophages (TAMs) and
cancer stem cells (CSCs). CSCs directly regulate TAMs activity to
improve their own stemness conditions through different ligand/
receptor interactions (hylaronic acids/CD44, BTN3A3r/LSECtin,
CD11b/CD90, Ephrin/EPHA4. TAMs secretome including cytokines
(IL-6, TGF- b, TNF-alpha, CCL18, CCL2) or exosomes cargo (ANXA3,
microRNA-221-3p or miR-221-3p) promotes, indirectly, CSCs stem-
like state by activating CSCs stemness programs. TAMs, tumor-
associated macrophages; CSCs, cancer stem cells; CD44, cluster of
differentiation 44; BTN3A3, butyrophilin subfamily member A3;
LSECtin, liver and lymph node sinusoidal endothelial cell C-type
lectin; OCT4, octamer-binding transcription factor 4; SOX2, SRY-
Box transcription factor 2; CD90, cluster of differentiation 90;
CD11b, cluster of differentiation 11b; EPHA4, ephrin type-a receptor
4; Src SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase; NF-
kappa-B, nuclear factor-kappa B; IL-6, interleukin 6; TGFB1,
transforming growth factor-beta-1; TNF-alpha, tumor necrosis
factor-alpha; CCL18, chemokine (C-C motif) ligand 18; CCL2,
chemokine (C-C motif) ligand 2; ANXA3, annexin A3.
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tumors, in particular locally advanced rectal cancer (LARC) (247).

Lastly, TAMs reprogramming involves different specific biological

sensors for ectopic nucleic acids such as (stimulator of interferon

response cGAMP interactor (STING) and some members of toll-

like receptors family (TLRs), such as TLR3, TLR7 and TLR8. The

design of several synthetic compounds, which regulate these

receptors on TAMs endosomal compartments, induces the

activation of NF-kappa-B signaling and the consequent release of

several immunostimulatory cytokines, including type I interferon

(IFN-1), the master regulator of anti-cancer immunity (248–250).

As discussed above, TAMs can create an immunosuppressive

TME to facilitate CSCs spreading and progression. Accordingly, the

specific TAMs Inhibitor of DNA Binding 1 (ID1) + subpopulation

can interact with STAT1 to localize it in the cytoplasm and
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inhibiting its nuclear translocation for Plasminogen activator

inhibitor 2 (SERPINB2) and CCL4 transcription (251). These two

factors are responsible for cancer stemness inhibition and CD8+ T

cell recruitment (251). Shang et al. demonstrated that ML323

administration reduced ID1 affecting CSCs and increasing CD8+

T cells infiltration (251). In addiction ML323 treatment showed a

synergistic effect with both anti-CTLA-4 antibody and 5-

fluorouracil (5-FU) alone and in combination, in a colon cancer

preclinical model (251). Despite the efforts made in researching

therapeutic treatments to address the complex communication

between TAMs and CSCs, much remains unresolved and requires

further investigation and studies. The main preclinical models and

clinical trials targeting CSCs-TAMs axis are summarized in

Tables 2, 3, respectively.
TABLE 3 Clinical trials targeting CSCs-TAMs interactions.

Target
molecule

Target cell
Drug
name

Combinational
treatment

Cancer subtype Clinical trial Phase Reference

IL-6R CSCs Tocilizumab Nivolumab/Ipilimumab
Unresectable late-
stage melanoma

NCT03999749 II (229)

IL-8R (CXCR1) CSCs Reparixin Paclitaxel Breast cancer NCT02001974 Ib (231)

CD47 CSCs Hu5F9-G4 Single agent
Advanced

solid tumors
NCT02216409 I (235)

CD47 CSCs CC-90002 Rituximab
Advanced solid and

Hematological cancers
NCT02367196 I (237)

CD47 CSCs
Evorpacept
(ALX148)

Pembrolizumab,
Trastuzumab, Rituximab,
Ramucirumab+ Paclitaxel,

5-FU+Cisplatin

Advanced solid
tumors and lymphoma

NCT03013218 I (239)

CD47 CSCs
Magrolimab
(Hu5F9-G4)

Azacitidine
Hematological
malignancies

NCT03248479 I (240)

CD40
TAMs
CSCs

NG-350A Pembrolizumab Metastatic epithelial NCT05165433 Ia/Ib (247)

CD40
TAMs
CSCs

NG-350A Capecitabine, radiotherapy
Locally advanced

rectal cancer (LARC)
NCT06459869 Ib (247)
Table summarizing the most recent clinical trials developed to target the CSCs-TAMs crosstalk.
TAMs, tumor-associated macrophages; CSCs, cancer stem cells; IL-6R, interleukin 6 receptor; IL-8R, interleukin 8 receptor; CD47, cluster of differentiation 47; CD40, cluster of differentiation 40;
Hu5F9-G4 (5F9), humanized IgG4 antibody; 5-FU, 5-fluorouracil; LARC, Locally advanced rectal cancer.
TABLE 2 Preclinical studies targeting CSCs-TAMs interactions.

Target Target cell Drug name or shRNA Cancer subtype Pre-clinical model Reference

POSTN CSCs shRNA GBM xenograft (189)

CCL5 TAMs shRNA Prostate xenograft (211)

SRC/CD155/MIF TAMs Dasanitib NSCLC xenograft (232)

CD47 CSCs B6H12 Solid tumors xenograft (233)

CD47 CSCs B6H12+ paclitaxel, cyclophosphamide Solid tumors xenograft (238)

MEK1-2 AKT1 CSCs Zoledronic acid Cervical cancer xenograft (241)

ID1 TAMs ML323 + 5-FU (and/or ipilimumab) Colorectal cancer syngeneic (251)
Table summarizing the most recent pre-clinical studies investigating the interaction between CSCs and TAM in different cancer subtypes.
TAMs, tumor-associated macrophages; CSCs, cancer stem cells; POSTN, Periostin; shRNA, short hairpin RNA; CCL5, Chemokine (C-C motif) ligand 5; GBM; glioblastoma multiforme; SRC,
SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase; CD155, cluster of differentiation 155; MIF, macrophage inhibitory factor; NSCLC, Non-Small Cell Lung Cancer; CD47, cluster of
differentiation 47; MEK1-2, MAPK/ERK Kinase 1-2; AKT1, AKT serine/threonine kinase 1; 5-FU, 5-fluorouracil; ID1, Inhibitor of DNA Binding 1.
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Advanced bioinformatics techniques
based on single-cell and spatial
transcriptomics focused on dissecting
the role of TAMS

In the next paragraphs we summarize recent discoveries, enabled

by advanced bioinformatics techniques including single-cell RNA-

sequencing (scRNA-seq), spatial transcriptomics and trajectories

analyses, to study TAMs in cancer progression (252). These

techniques have provided crucial insights into the interactions in the

TME, highlighting the pivotal role of TAMs in promoting cancer

progression, influencing tumor growth, metastasis, and modulating

therapeutic responses (252). TAMs exhibit functional plasticity,

adopting pro- or anti-tumorigenic roles depending on environmental

cues (252). The integration of scRNA-seq and spatial transcriptomics,

has facilitated the dissection of TAM trajectories, signaling pathways,

and their interactions with other TME components, including CSCs

the dissection of TAM trajectories, signaling pathways, and their

interactions with other TME components, including CSCs (252).

Recent advances have revealed the dynamic interplay between TAMs

and CSCs (253). The plasticity of TAMs, influenced by factors such as

cytokines, chemokines, and direct cellular interactions, plays a key role

in tumor dynamics (252). This review focuses on the transformative

impact of bioinformatics in understanding TAM trajectories and

signaling within the TME, with an emphasis on their potential for

novel therapeutic interventions (252). These bioinformatics techniques

are great tools for analyzing all kinds of cells, but in this review, we will

focus on applications and studies for the role of TAMs. An overview

regarding the bioinformatic tools to specifically study TAMs is reported

in Table 4.
Single cell RNA-seq

scRNA-seq has emerged as a pivotal tool for dissecting the

heterogeneity of TAMs within the TME. This technology allows the

analysis of gene expression at the resolution of individual cells,

providing unprecedented insights into the distinct subpopulations

of TAMs and their functional states. Numerous studies have

highlighted significant variations in the transcriptional profiles of

TAMs across different tumor types, underscoring their role in

modulating the immunosuppressive landscape of the TME (133).

The application of scRNA-seq in cancer research has revealed the

coexistence of TAMs with pro-tumor (M2-like) and anti-tumor

(M1-like) phenotypes within tumors. This duality emphasizes

the functional plasticity of TAMs in cancer progression.

Recent advancements have utilized scRNA-seq to trace the

developmental trajectories of TAMs, identifying key signaling

pathways that regulate their polarization and function. Valdes-

Mora et al. demonstrated the utility of high-throughput scRNA-

seq for analyzing thousands of tumor cells, including TAMs,

revealing transcriptional programs associated with different TAM

states, further elucidating their roles within the TME (254).

To fully leverage scRNA-seq for TAM characterization, several

bioinformatics methodologies are employed (252):
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Quality Control and Filtering: Tools such as Seurat (255) and

Scanpy (https://scanpy.readthedocs.io/en/stable/) are commonly

used to filter low-quality cells based on the number of detected

genes and mitochondrial content.

Normalization: Normalization of scRNA-seq data is essential

for accurate downstream analysis. Techniques like Scran or DESeq2

(256) provide effective approaches for normalization.

Clustering: To identify distinct cell populations, clustering

algorithms like Louvain or Leiden are employed, allowing for

robust community detection in high-dimensional datasets (257).

Differential Expression Analysis: To uncover differences in gene

expression across TAM subpopulations, tools such as edgeR (258),

DESeq2 (256), or MAST (259) are frequently used, depending on

the analysis framework.

scRNA-seq has provided groundbreaking insights into the

transcriptional diversity and functional heterogeneity of TAMs

across various cancer types (260). This approach has enabled the

identification of distinct TAM subtypes, each contributing
TABLE 4 Bioinformatic tools to study TAMs.

Single-cell RNA sequencing: TAM heterogeneity and
functional states

Step Best Tools

Quality Control and Filtering Seurat, Scanpy

Normalization Scran, DESeq2

Clustering Louvain, Leiden

Differential Expression Analysis edgeR, DESeq2, MAST

Trajectory Inference Monocle, Slingshot

Spatial transcriptomics: spatial organization and
interactions within TME

Step Best Tools

Data Preprocessing Space Ranger, SAW, starfish

Comprehensive Analysis
Seurat, Scanpy, Giotto,
STUtility, Squidpy

Dimensionality Reduction
and Clustering

PCA, t-SNE, UMAP, BayesSpace, SC-
MEB, SpaGCN, STAGATE

Deconvolution and Cell Typing RCTD, SPOTlight

Spatial Data Integration
Regression-based models, deep
learning approaches

Functional Analysis and Visualization Seurat, Scanpy, Giotto, Squidpy

Signaling pathway analysis: TAM signaling pathways

Step Best Tools

Intercellular
Communication Networks CellChat, CellPhoneDB
Table summarizing the most innovative bioinformatic technologies employed to study TAMs
and CSCs communication in different cancer histotypes. The tools in bold are selected based
on the tool performance in terms of accuracy, speed, and community adoption. However, the
best choice might vary depending on specific project needs and data characteristics.
TAMs, tumor-associated macrophages; CSCs, cancer stem cells; t-SNE, t-distributed
stochastic neighbor embedding; PCA, principal component analysis; UMAP, uniform
manifold approximation and projection.
The tools in bold are selected based on the tool performance in terms of accuracy, speed, and
community adoption.
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differently to tumor immunity and progression. Specifically, studies

in breast cancer have delineated M1-like and M2-like TAM

populations, revealing their unique roles in promoting or

inhibiting tumor growth (261, 262). This emerging knowledge is

crucial for the development of targeted therapies aimed at

reprogramming TAMs to a more anti-tumor state, offering new

avenues for therapeutic intervention in cancer. scRNA-seq

represents a transformative approach in TAM research, providing

high-resolution profiling of individual TAMs and enabling the

identification of diverse subpopulations based on their gene

expression profiles. By combining scRNA-seq with advanced

bioinformatics tools, researchers can uncover the full spectrum of

TAM heterogeneity and its implications for cancer progression and

therapy. This method excels at revealing transcriptional

heterogeneity and elucidating the cellular and molecular

mechanisms underlying TAM function within the TME.

However, it requires tissue dissociation, which disrupts the spatial

organization of the tumor microenvironment and leads to a loss of

spatial information. This limitation prevents a direct understanding

of TAM interactions within their native tissue context, which is

crucial for fully characterizing TAM functionality in relation to

the TME.
Spatial transcriptomics for TAM trajectories

While scRNA-seq has provided significant insights into the

heterogeneity of TAMs, it lacks spatial resolution, which is crucial

for understanding their interactions within the TME. Spatial

transcriptomics bridges this gap by integrating gene expression data

with spatial information, allowing for the precise mapping of TAM

distribution and organization within tumor tissues. This spatial

context is essential for capturing the complexity of TAM

interactions with other cell types and their influence on tumor

progression. Spatial transcriptomics has been extensively applied to

study the spatial dynamics of TAMs across various cancer types. It

has been demonstrated that TAMs located within the tumor stroma

and at invasive tumor margins exhibit distinct gene expression

profiles and functional states, which play a pivotal role in driving

tumor progression and metastasis (263). By integrating spatial

transcriptomics with scRNA-seq data, researchers can gain a more

comprehensive understanding of TAM trajectories and their

interactions with other cells in the TME. Recent developments in

bioinformatics have facilitated the analysis of spatial transcriptomics

data, from preprocessing to functional interpretation.

These advancements include:

Data Preprocessing: The initial steps of spatial transcriptomics

analysis involve generating a gene expression matrix along with

spatial coordinates. Tools such as Space Ranger (10X Genomics),

SAW (Stereo-seq), and starfish (ISS/ISH) are widely used for data

preprocessing, depending on the platform and methodology

employed (264).

Comprehensive Analysis Tools: Seurat (255) and Scanpy

(https://scanpy.readthedocs.io/en/stable/) are versatile tools
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frequently used for both scRNA-seq and spatial transcriptomics

analysis. These platforms offer functionalities for filtering,

normalization, and various downstream analyses. For more

specialized spatial transcriptomics tasks, Giotto (265), STUtility

(266), and Squidpy (267) provide extended capabilities, including

advanced spatial analyses (264).

Dimensionality Reduction and Clustering: Techniques such as

principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE), and uniform manifold

approximation and projection (UMAP) are widely employed for

dimensionality reduction (268). In addition, spatial-specific

algorithms like BayesSpace, SC-MEB, SpaGCN, and STAGATE

leverage spatial information to enhance clustering accuracy and

identify spatial features (264).

Deconvolution and Cell Typing: Since sequencing data often

represents aggregate signals from multiple cell types, deconvolution

techniques are required to resolve individual cell-type

contributions. Tools such as RCTD and SPOTlight facilitate

accurate cell type identification in spatial datasets by leveraging

scRNA-seq data for reference (269).

-Spatial Data Integration: Integrating scRNA-seq data with

spatial transcriptomics enables comprehensive spatial

characterization of gene expression patterns. Regression-based

models and deep learning approaches are commonly used to

reconstruct missing spatial features and enhance gene expression

data (263).

Functional Analysis and Visualization: Tools like Seurat and

Scanpy provide robust visualization capabilities for spatial

transcriptomics data, while specialized platforms like Giotto and

Squidpy allow for more detailed analyses of cellular interactions,

spatial neighborhood graphs, and trajectory inference (264).

The integration of spatial transcriptomics with advanced

bioinformatics tools has significantly enhanced our understanding

of the spatial organization of TAMs within the TME. These

methods enable the comprehensive analysis of spatial gene

expression patterns, providing valuable insights into the

architecture of tumor tissues and the interactions between TAMs

and other cell types. These advancements are critical for identifying

novel diagnostic markers and therapeutic targets, furthering our

ability to design effective cancer therapies (264).

Spatial transcriptomics complements scRNA-seq by offering

spatial context to gene expression data, allowing researchers to

visualize TAM localization and their interactions with other cell

types in situ. This approach has been utilized to map TAM

heterogeneity across lung cancer subtypes, revealing distinct

macrophage compositions that correlate with specific tumor

characteristics (270). By preserving tissue architecture, spatial

transcriptomics facilitates a comprehensive analysis of cellular

communication and the organization of the TME, which is

essential for elucidating the functional roles of TAMs in cancer

progression. However, compared to scRNA-seq, spatial

transcriptomics typically offers reduced sensitivity and lower

coverage, particularly for detecting genes expressed at low levels,

which can limit the depth of transcriptomic insights.
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Trajectory analysis

scRNA-seq has become an essential tool for studying cellular

heterogeneity within tumors, enabling the characterization of

distinct cell populations, including TAMs. By applying trajectory

inference methods to scRNA-seq data, researchers can reconstruct

the developmental pathways of individual cells based on their gene

expression profiles, providing critical insights into cellular

differentiation and function within the TME.

Pseudotime analysis is a widely used approach to order cells

along a developmental trajectory, providing insights into their

differentiation states. In the context of TAMs, pseudotime

analysis has been employed to reveal the dynamic transitions of

these cells as they interact with tumor cells and other components of

the TME. Wang et al. elucidated the TAMs transition from pro-

inflammatory to immunosuppressive phenotypes during breast

cancer progression, demonstrating the utility of pseudotime

analysis in understanding TAM functional changes over time (271).

Trajectory inference tools such as Monocle (272) and Slingshot

(273) are commonly used to identify genes that are differentially

expressed along inferred cellular trajectories. These techniques have

proven valuable in uncovering key molecular pathways involved in

TAM function and tumor progression. Yang et al. discovered that

TAMs regulate BCSCs through a paracrine signaling pathway

involving epidermal growth factor receptor (EGFR), STAT3, and

SOX2, highlighting the relevance of trajectory analysis in

elucidating cell-cell interactions within the TME (274).

Trajectory analysis aims to reconstruct the differentiation

pathways and developmental trajectories of cells over time,
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offering a temporal perspective on how TAMs transition between

distinct functional states. Applying trajectory inference to TAM

scRNA-seq data has enabled researchers to discern how these

macrophages evolve in response to tumor signals and alterations

in the TME. Saelens et al. utilized trajectory analysis to gain insights

into the temporal dynamics of TAM polarization during cancer

progression, identifying key transitions from pro-inflammatory to

immunosuppressive states (275).

The interactions between TAMs and CSCs are critical for

driving tumor progression and metastasis. TAMs secrete various

factors that enhance CSC properties, promoting tumor growth and

resistance to therapy. Valdes-Mora et al. showed that TAM-derived

cytokines, such as IL-6 and IL-10, help maintain the stemness of

CSCs in breast cancer, underscoring the importance of TAM-CSC

crosstalk in the TME (254).

In a glioblastoma study the authors used Monocle to trace the

differentiation trajectories of TAMs, revealing changes in their

functional states in response to tumor-derived signals (276).

Furthermore, the integration of spatial transcriptomics with

scRNA-seq allows for a more nuanced understanding of TAM

interactions with other immune and tumor cells, providing a spatial

and temporal view of TAM dynamics within the TME (277).
Signaling pathways in TAMs

Advanced bioinformatics techniques have significantly

enhanced the ability to identify critical signaling pathways that

regulate the functions of TAMs and their impact on cancer
TABLE 5 Discoveries in TAMs-CSCs axis research by bioinformatic approaches.

Technique Main Discovery Cancer Type Focus Reference

single-cell RNA sequencing,
spatial transcriptomics

The co-location of CSCs and SPP1+ macrophages in a hypoxic region
correlates with poor prognosis in HCC.

hepatocellular
carcinoma

CSC (283)

single-cell RNA sequencing,
spatial transcriptomics

A distinct glioma stem cell population was identified, characterized by high
proliferative potential and an enrichment of E2F1, E2F2, E2F7, and BRCA1
regulons, with implications for tumor growth and patient outcomes.

glioma TAMs (284)

single-cell RNA sequencing
scRNAseq allows for a detailed characterization of the TME in HNSCC,
enhancing understanding of cancer biology and treatment responses.

head and neck
squamous
cell carcinoma

CSC (285)

single-cell RNA sequencing
scRNA-seq provides insights into the tumor microenvironment and
intratumor heterogeneity in gastric cancer, revealing the roles of various
immune cells and their interactions.

gastric cancer TAMs (286)

single-cell RNA sequencing,
spatial transcriptomics

POSTN + cancer-associated fibroblasts are associated with immune
suppression and poor prognosis in non-small cell lung cancer.

non-small cell
lung cancer

CSC (287)

single-cell RNA sequencing,
spatial transcriptomics

GSDensity allows pathway-centric interpretation and dissection of single-cell
and spatial transcriptomics data, revealing novel cell-pathway associations and
creating a pan-cancer ST map.

various tumor types CSC (288)

single-cell RNA sequencing
Macrophage-naive CD4 + T cell interaction significantly affects the cancerous
state in liver carcinoma.

liver carcinoma TAMs (289)

single-cell RNA sequencing,
spatial transcriptomics

Defines the cellular composition and architecture of cutaneous squamous cell
carcinoma (cSCC), identifying tumor subpopulations and their
spatial interactions.

cutaneous squamous
cell carcinoma

TAMs (290)
Table summarizing the most important discoveries made about the CSCs-TAMs axis by advanced bioinformatic technologies in different cancer histotypes.
TAMs, tumor-associated macrophages; CSCs, cancer stem cells; SPP1, secreted phosphoprotein 1; POSTN, periostin; HNSCC, head and neck squamous cell carcinoma; BRCA1, BRCA1 DNA
repair associated; HCC, hepatocellular carcinoma; TME, tumor microenvironment; E2F1, E2F transcription factor 1; E2F2, E2F transcription factor 2; E2F7, E2F transcription factor 7.
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progression. Jin et al. utilized spatial transcriptomics to uncover

spatially regulated biomarkers and signaling pathways within TAM

populations, providing valuable insights into their roles and

functional states within the TME (264). These approaches have

also elucidated specific signaling pathways that govern TAM

polarization and their pro- or anti-tumoral activities. The CCL2-

CCR2 signaling axis has been shown to play a pivotal role in

recruiting and polarizing TAMs toward a pro-tumorigenic

phenotype (278). Importantly, the inhibition of this pathway

holds therapeutic potential by reprogramming TAMs toward an

anti-tumor phenotype, thereby enhancing the effectiveness of

cancer treatments (278). This underscores the significance of

targeting TAM-specific pathways in therapeutic strategies aimed

at modulating the TME.

TAMs influence a wide array of signaling pathways within the

TME, directly interacting with tumor cells and other TME

components to drive cancer progression. Pathways such as WNT,

NOTCH, and TGF-beta, which are crucial for maintaining CSC

properties and promoting tumor aggressiveness, are modulated by

TAM activity (279). These pathways are critical for the survival and

function of CSCs, further supporting the tumor’s growth

and metastasis.

Recent studies have leveraged computational models to

simulate the effects of TAMs on tumor growth, shedding light on

the importance of cell-cell communication in the TME. Zhao et al.

demonstrated that TAMs secrete cytokines and chemokines that

enhance CSC survival and drive tumor progression (138). These

computational insights highlight the complex interactions within

the TME that are essential for tumor evolution. Emerging

bioinformatics tools such as CellChat (https://github.com/sqjin/

CellChat) or CellPhoneDB (280) have proven effective in

analyzing intercellular communication networks, providing a

deeper understanding of ligand-receptor interactions that regulate

TAM and CSC dynamics. Through the application of such tools,

researchers have been able to map intricate communication

networks between TAMs and other cells in the TME. These

findings offer opportunities to identify novel therapeutic targets

aimed at reprogramming TAMs toward an anti-tumor phenotype,

potentially improving cancer treatment outcomes (281). Overall,

integrating bioinformatics approaches with experimental data has

been pivotal in uncovering the signaling pathways that govern TAM

activity. These insights offer potential strategies for therapeutic

interventions aimed at altering TAM function and modulating

the TME to halt tumor progression. An overview of the most

important discoveries made about the CSCs-TAMs axis by

advanced bioinformatic technologies in different cancer histotypes

is summarized in Table 5.
Concluding remarks

The direct and indirect mechanisms of interaction between TAMs

and CSCs are crucial for cancer development, for the regulation of the

metastatic niche, and ultimately for the formation of metastatic lesions.

TAMs can establish with CSCs an intricate complex communication in
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fueling different aspects of cancer progression: i) direct ligand-receptor

interaction; ii) indirect: TAMs-secreted chemokines/cytokines/

exosomes foster CSC stemness, metastatization and chemoresistance

respectively; CSC-derived exosomes reprogram TAM toward M2

immunosuppressive phenotype.

Both scRNA-seq and spatial transcriptomics offer unique

advantages and limitations in the study of TAMs, with the choice

between these techniques largely dependent on the specific research

question. In summary, scRNA-seq is advantageous for detailed

molecular profiling and understanding TAM heterogeneity, while

spatial transcriptomics is better suited for exploring TAM spatial

distribution and interactions within the TME. An integrated

approach combining both methods would provide a more

comprehensive understanding of TAM biology by capturing both

transcriptional diversity and spatial dynamics.

The cutting-edge single cell-based and spatial transcriptomics

technologies may shed new lights on the specific role of TAMs in

promoting CSCs and cancer development and may help to design

innovative therapeutic approaches aimed at disrupting this cross talk.
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5-FU 5-fluorouracil
Frontiers in Immunol
ABC ATP-binding cassette
ADAMTS6 ADAM metallopeptidase with thrombospondin type 1

motif 6
ANXA3 annexin A3
AKT1 AKT serine/threonine kinase 1
ATF2 activating transcription factor 2
BCSCs breast cancer stem cells
BRCA1 BRCA1 DNA repair associated
BTN3A3 butyrophilin subfamily member A3
CAFs cancer-associated fibroblasts
CAR-T chimeric antigen receptor T cell
CCL1 chemokine (C-C motif) ligand 1
CCL2 chemokine (C-C motif) ligand 2
CCL5 chemokine (C-C motif) ligand 5
CCL18 chemokine (C-C motif) ligand 18
CCL20 chemokine (C-C motif) ligand 20
CCR2 C-C chemokine receptor type 2
CD11b cluster of differentiation 11b
CD44 cluster of differentiation 44
CD47 cluster of differentiation 47
CD80 cluster of differentiation 80
CD90 cluster of differentiation 90
CD155 cluster of differentiation 155
CHAC1 ChaC Glutathione Specific Gamma-Glutamylcyclotransferase 1
CRC colorectal cancer
CRLM colorectal liver metastasis
CSCs cancer stem cells
CSF1 colony stimulating factor 1
CTL cytotoxic T lymphocytes
CTLA-4 cytotoxic T lymphocyte associated protein 4
CXCL5 C-X-C motif chemokine ligand 5
CXCL12 C-X-C motif chemokine ligand 12
CXCL13 C-X-C motif chemokine ligand 13
DC dendritic cell
DDR DNA damage response
DTCs Disseminated tumor cells
E2F1 E2F transcription factor 1
E2F2 E2F transcription factor 2
E2F7 E2F transcription factor 7
ECM extracellular matrix
EIF4EBP1 Eukaryotic translation initiation factor 4E-binding protein 1
EGFR epidermal growth factor receptor
EMT epithelial-mesenchymal transition
EOCCs epithelial ovarian cancer cells
EPHA4 ephrin type-a receptor 4
ERK1/2 extracellular regulated kinase 1/2
ogy 28
ET-1 endothelin 1
FASL FAS ligand
FGF fibroblast growth factor
FGF7 fibroblast growth factor 7
FGF9 fibroblast growth factor 9
FPR2 formyl peptide receptor 2
FYN FYN proto-oncogene
GBM glioblastoma multiforme
GZMB granzyme B
GSCs glioblastoma stem cells
HAS2 enzyme hyaluronan synthase 2
hCAP-18/LL-37 immunomodulatory cationic antimicrobial peptide 18
HCC hepatocellular carcinoma
HER-2 human epidermal growth factor 2
HHCSCs human hepatocellular carcinoma stem cells
HIFs inducing factors of hypoxia
HIF1A hypoxia inducible factor 1 subunit alpha
HIF1B hypoxia inducible factor 1 subunit beta
HIF2A hypoxia inducible factor 2 subunit alpha
HIF3A hypoxia inducible factor 3 subunit alpha
HLA human leukocyte antigen
HLA-G human leukocyte antigen G
NANOG homeobox protein NANOG
HNSCC head and neck squamous cell carcinoma
HSCs hematopoietic stem cells
Hu5F9-G4 (5F9) humanized IgG4 antibody
ID1 Inhibitor of DNA Binding 1
IFN-1 type I interferon
IFNG interferon-gamma
IL-2 interleukin-2
IL-6 interleukin-6
IL-8 interleukin-8
IL-10 interleukin-10
IL-12 interleukin-12
IL-17 interleukin-17
IL-6R interleukin-6 receptor
IL-8R interleukin-8 receptor
ISG15 Interferon-stimulated gene 15
JAK-STAT Janus k inase / s igna l t ransducer s and ac t iva tors

of transcription
KIR2DL4 killer cell immunoglobulin like receptor, two Ig domains and

long cytoplasmic tail 4
KLF4 KLF transcription factor 4
LARC Locally advanced rectal cancer
LOX Lysyl oxidase
LSCC lung squamos cell carcinoma
LSECtin liver and lymph node sinusoidal endothelial cell C-type lectin
MAMs metastasis-associated macrophages
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MAPK mitogen-activated protein kinase
Frontiers in Immunol
MDR multidrug resistance
MDSCs myeloid-derived suppressor cells
MEK1-2 MAPK/ERK kinase 1-2
MERTK myeloid-epithelial-reproductive tyrosine kinase
MetCSCs metastatic cancer stem cells
MFGE8 milk fat globule-EGF factor 8
MHC-I major Histocompatibility Complex Class I
MICA major Histocompatibility Complex Class I chain-related

protein A
MICB major Histocompatibility Complex Class I chain-related

protein B
MIF macrophage inhibitory factor
miR-221-3p microRNA-221-3p
miR-934 microRNA-934
MMIC malignant melanoma initiating cells
MMP-2 matrix metalloproteinases 2
MMP-9 matrix metalloproteinases 9
MTOR mammalian target of rapamycin
MSCs mesenchymal stromal cells
MYC MYC proto-oncogene protein
NF-kappa-B nuclear factor-kappa B
NK natural killer cells
KLRC1 killer cell lectin like receptor C1
KLRK1 killer cell lectin like receptor K1
NSCLC non small cell lung cancer
NSCLCCSCs non-small cell lung cancer stem cells
OCT4 octamer-binding transcription factor 4
OSCC oral squamous cell carcinoma
P2X7R P2X purinoceptor 7 receptor
PCA principal component analysis
PD-1 programmed death protein 1
PD-L1 programmed death-ligand 1
PDAC pancreatic ductal adenocarcinoma
PDGF platelet-derived growth factor
PDGFB platelet-derived growth factor B subunits
PGE2 prostaglandin E2
ogy 29
PI3K phosphatidylinositol 3-kinase
POLN DNA polymerase nu
POSTN periostin
PPAR peroxisome proliferator-activated receptor
PRF1 perforin 1
PTEN phosphatase and tensin homolog
PTN pleiotrophin
PTPRZ1 tyrosine phosphatase receptor type Z1
ROS reactive oxygen species
SCCHN squamous cell carcinoma of head and neck
scRNA-seq single-cell RNA-sequencing
SERPINB2 Plasminogen activator inhibitor 2
SHH Sonic hedgehog
SIRPA signal-regulatory protein alpha
SOX2 SRY-Box transcription factor 2
SPP1 secreted phosphoprotein 1
SRC SRC proto-oncogene, non-receptor tyrosine kinase
STAT3 signal transducer and activator of transcription 3
STING stimulator of interferon response cGAMP interactor 1
t-SNE t-distributed stochastic neighbor embedding
TAMs tumor-associated macrophages
TGFB1 transforming growth factor-beta-1
THBS1 thrombospondin 1
TLRs toll-like receptors
TME tumor microenvironment
TNBC triple negative breast cancer
TNF-alpha tumor necrosis factor-alpha
TRAIL TNF-related apoptosis-inducing ligand
Tregs regulatory T cells
UMAP uniform manifold approximation and projection
VCAM vascular endothelial cell adhesion molecule
VEGF vascular endothelial growth factor
VEGFR-2 vascular endothelial growth factor receptor 2
VM vasculogenic mimicry
WNT wingless-related integration site
ZEB1 Zinc finger E-box binding homeobox 1
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