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Regulatory immune cells are pivotal in maintaining immune homeostasis and

modulating immune responses to prevent pathologies. While T regulatory cells

(Tregs) are extensively recognized for their immunosuppressive roles, emerging

subsets of regulatory cells, including regulatory CD8+ cells (CD8+Tregs)

regulatory B cells (Bregs), myeloid-derived suppressor cells (MDSCs),

regulatory dendritic cells (DCregs), regulatory innate lymphoid cells (ILCregs),

and regulatory natural killer cells (NKregs), are garnering increased attention. This

review delves into the phenotypic characteristics, mechanisms of action, and

immune-regulatory functions of these lesser-known but crucial immune cell

subsets. The review provides a comprehensive examination of each cell type,

detailing their origins, unique functionalities, and contributions to immune

homeostasis. It emphasizes the complex interplay among these cells and how

their coordinated regulatory activities influence immune responses in diverse

pathological and therapeutic contexts, including autoimmunity, cancer

immunotherapy, chronic inflammation, and transplant tolerance. By unraveling

these mechanisms, the review outlines novel therapeutic avenues, such as

targeting these regulatory cells to modulate immune activity and enhance

precision medicine approaches. The future of immunotherapy and immune

modulation lies in leveraging the expanded knowledge of these regulatory

immune cells, presenting challenges and opportunities in clinical applications.
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Introduction

Recent advancements in immunology have underscored the pivotal role of regulatory

immune cells in orchestrating immune responses and maintaining immune homeostasis

(1–5). These specialized subsets of immune cells possess unique immunoregulatory

functions, modulating the activity of various immune effectors to prevent autoimmunity,

limit inflammation, and facilitate tissue repair (2, 6–9). Understanding the intricate

interplay between regulatory immune cells and the broader immune system is
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paramount for deciphering the pathogenesis of immune-related

disorders and devising novel therapeutic strategies.

T regulatory cells (Tregs) represent a cornerstone in the realm

of regulatory immune cells. Initially identified for their role in

immune tolerance and prevention of autoimmunity, Tregs have

garnered substantial attention due to their diverse functional

repertoire and plasticity (10–12). Historic discoveries elucidating

the crucial function of Tregs in maintaining immune balance have

been complemented by recent insights into their heterogeneity,

tissue-specific localization, and crosstalk with other immune cell

subsets. The evolving landscape of Tregs biology continues to

unravel novel mechanisms underlying immune regulation and

their implications in health and disease (13).

Beyond Tregs, a myriad of other regulatory immune cell

populations has emerged as key players in immune modulation.

CD8+ Tregs are a specialized subset of T lymphocytes expressing

the CD8 co-receptor and they suppress immune responses through

mechanisms such as targeted cytotoxicity against activated immune

cells, secretion of anti-inflammatory cytokines (e.g., IL-10, TGF-b),
and direct inhibition of effector T cells, uniquely regulating CD8+ T

cell-driven immunity while maintaining peripheral tolerance (14).

Regulatory B cells, characterized by their ability to produce anti-

inflammatory cytokines and induce T cell tolerance, represent a

burgeoning field of study with implications in autoimmune diseases

and cancer immunotherapy (15). The Treg-of-B cells are a unique

subset of regulatory T cells generated by B cells, notable for their

lack of FOXP3 (Forkhead box P3) expression, setting them apart

from conventional regulatory T cells (16). These cells are

characterized by markers such as LAG3 (Lymphocyte-activation

gene 3), ICOS (Inducible T-cell co-stimulator), PD1 (Programmed

cell death protein 1), GITR(Glucocorticoid-induced TNFR-related

protein), and CTLA4 (Cytotoxic T-lymphocyte-associated protein

4) and primarily exert their regulatory function through cell-cell

contact mechanisms, rather than cytokines like IL-10 (Interleukin-

10). While they do produce IL-10, it is not essential for their

suppressive activity, which operates through both IL-10-

dependent and independent pathways. This unique profile

suggests that Treg-of-B cells contribute to immune tolerance

through mechanisms distinct from conventional Tregs (17, 18).

MDSCs, DCregs, ILCregs, and NKregs collectively contribute to the

intricate network of immune regulation, each exerting unique

suppressive functions and immune-modulating properties in

diverse pathological contexts (19–23).

As research into regulatory immune cells advances, several

challenges and opportunities lie ahead. Unraveling the

complexities of regulatory cell subsets, deciphering their precise

mechanisms of action, and elucidating their crosstalk within the

immune microenvironment pose formidable tasks. Moreover,

translating fundamental insights into clinical applications

necessitates overcoming hurdles related to cell-based therapies,

biomarker identification, and patient stratification. Nonetheless,

the burgeoning field of regulatory immune cells holds promise for

revolutionizing immunotherapy and ushering in a new era of

precision medicine in immune-mediated disorders.
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Advancements in understanding
regulatory immune cells

In recent years, significant strides have been made in elucidating

the intricate roles of regulatory immune cells in modulating

immune responses and maintaining immune homeostasis. These

advancements have revolutionized our understanding of the

immune system and its regulatory mechanisms, shedding light on

diverse cell populations beyond Tregs. Research efforts have

uncovered a myriad of regulatory immune cell subsets, each

endowed with distinct functions and regulatory capacities. From

the discovery of regulatory B cells to the emerging insights into the

regulatory potential of innate lymphoid cells, our comprehension of

these cells continues to evolve rapidly (24). We will provide an

overview of the recent advancements in understanding regulatory

immune cells, highlighting their diverse functions, regulatory

mechanisms, and implications for immune-related diseases and

therapeutic interventions. In exploring the landscape of regulatory

immune cells, one cannot ignore the significant contributions and

insights derived from Treg research, which continue to shape our

understanding of immune regulation.
Regulatory T cells

Although Tregs are not the central theme here, their pivotal role

in the broader context of regulatory cells cannot be overlooked in

any comprehensive research of immune regulation.

Conventional Tregs have long been recognized for their pivotal

role in maintaining immune homeostasis by suppressing

inappropriate immune responses (25). This capacity to modulate

immune responses is critical not only in preventing autoimmune

diseases but also in controlling inflammation and promoting

tolerance across various biological systems (13) (Figure 1). Recent

studies have expanded our understanding of Tregs functions

beyond their traditional roles (31). These cells are now known to

engage in several non-immune functions that are crucial for

maintaining tissue homeostasis. For instance, Tregs have been

implicated in metabolic regulation, particularly in adipose tissues

where they influence insulin sensitivity and lipid metabolism (32).

Tregs are alos influenced by lipid metabolism, particularly through

the PPAR-g (Peroxisome proliferator-activated receptor-g)
receptor, which is sensitive to lipid interactions that can impair

Tregs functionality (33). Moreover, Tregs contribute to the

maintenance of stem cell niches, such as those found in the bone

marrow, skin, and intestines (34, 35). By modulating the local

microenvironment, Tregs can protect stem cells from oxidative

stress and promote their quiescence, which is crucial for long-term

tissue regeneration (36). This interaction also highlights the broader

role of Tregs in tissue repair and regeneration, where they can

directly affect tissue cells to promote healing and restoration after

injury. Furthermore, Tregs have been shown to facilitate tissue

repair by producing growth factors and cytokines that directly
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interact with tissue cells. These molecules help in the proliferation

and function of cells involved in tissue repair, such as epithelial cells

in the skin and lung, and satellite cells in muscle tissue (2, 37).

In the context of clinical applications, the expanded

understanding of Treg functions opens new avenues for therapeutic

interventions aimed at modulating Treg activity. By targeting the

non-canonical functions of Tregs, it is possible to develop

treatments that enhance their regulatory capabilities, thereby

improving outcomes in diseases characterized by inflammation,

autoimmunity, or impaired tissue repair. These insights into the

multifaceted roles of Tregs underscore their importance not only in

immune regulation but also in broader physiological processes,

making them a key target for future research and therapeutic

development (1, 38).

When discussing regulatory T cells, it is increasingly imperative not

to overlook the presence and significance of CD8+ Tregs. These cells

represent a unique subset of T cells with critical implications in

maintaining immunological tolerance and modulating the immune

environment in various diseases, including cancer (39–41). They

exhibit a capacity to suppress immune responses, which is pivotal in

preventing autoimmunity but can also facilitate tumor immune

evasion by weakening antitumor immune attacks (42). Research has

elucidated distinct properties and mechanisms of CD8+ Tregs that

differentiate them from their CD4+ counterparts (43). Predominantly,

CD8+ Tregs exert their regulatory functions through the expression of

molecules like Foxp3, CTLA-4, and others which are shared with CD4

+ Tregs, yet they also display unique markers such as CD122 and
Frontiers in Immunology 03
CD28⁻, reflecting their distinct regulatory pathways (44). These cells

are found elevated in various cancers, where they contribute to an

immunosuppressive microenvironment that promotes tumor growth

and survival by inhibiting effective immune surveillance and clearance.

Interestingly, these cells not only modulate immune responses through

direct cell-cell interactions but also through the secretion of

immunosuppressive cytokines and metabolic disruption of effector

cells (45–48). The induction of these Tregs can be driven by the

tumor-derived factors and by the tumor microenvironment itself,

which alters T cell metabolism and differentiation paths, skewing

them towards a regulatory phenotype. The profound impact of CD8

+ Tregs in cancer suggests that they could serve as a potential target for

therapeutic intervention (49). Modulating the function or abundance

of these cells could enhance the efficacy of cancer immunotherapies,

providing new avenues to improve patient outcomes in oncological

treatments. Understanding and manipulating the balance of Treg

activity in the tumor context is therefore crucial for developing more

effective cancer immunotherapies (50).
Regulatory B cells

Bregs (Regulatory B cells) are a specialized subset of B

lymphocytes that play a crucial role in immune regulation and

maintaining immune homeostasis. They are known for their ability

to suppress immune responses and promote immune tolerance.

Researchers have made significant progress in identifying and
FIGURE 1

Variable mechanisms involved in the immunosuppressive activities mediated by Tregs. Tregs employ a diverse array of strategies to maintain immune
homeostasis and suppress overactive immune responses. One primary mechanism involves the secretion of immunosuppressive cytokines such as
IL-10, TGF-b, and IL-35, which directly inhibit the activation and proliferation of effector T cells (13). Additionally, Tregs modulate immune responses
through cell surface interactions, notably via the expression of CTLA-4, which competes with CD28 for CD80/86 on dendritic cells, dampening their
ability to activate effector T cells (26). Tregs also exert influence through metabolic disruption, utilizing CD39 and CD73 to convert extracellular ATP
to adenosine, further suppressing effector cell function via adenosine receptor signaling (27, 28). Furthermore, Tregs can release cytotoxic molecules
like Galectin-1, Perforin, and granzyme B, contributing to the direct elimination of pathologically active cells (29, 30). Through these complex and
coordinated actions, Tregs play a critical role in preventing autoimmune diseases, controlling chronic inflammation, and promoting tolerance to self-
antigens and transplanted tissues.
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characterizing Bregs. They have identified specific cell surface

markers and functional properties that distinguish Bregs from

other B cell subsets, which helps in understanding their unique

regulatory functions (51).

Establishing the existence of one or multiple subsets of Bregs

has been challenging due to the absence of specific markers that are

analogous to the Treg marker FoxP3 (51, 52). The presence of

multiple reported phenotypes for Bregs suggests the potential

existence of distinct subsets. However, there are common surface

markers shared among the proposed Breg subsets, which suggests

the possibility that all Bregs originate from a common

precursor (53, 54). The observed differences in phenotype could

be attributed to the activation of this common Breg precursor in

different microenvironments.

Specific markers for Bregs include (1). CD19: It is important to

note that CD19 expression alone is not specific to Bregs, as it is also

present on other B cell subsets. It is typically used in combination

with other markers to define and isolate regulatory B cell subsets

more precisely (51). (2). CD1d: CD1d, a molecule involved in lipid

antigen presentation, plays a significant role in the context of Bregs.

CD1d allows Bregs to directly interact with NKT cells through the

presentation of lipid antigens via CD1d. Then Bregs can influence

the function and activity of NKT cells (55). (3). CD5: In some

studies, CD5 expression on B cells is commonly associated with B1

cells, a subset of B cells involved in innate-like immune responses

and regulatory functions (56). CD5+ Bregs can produce regulatory

cytokines such as IL-10 and could suppress immune responses and

promote immune tolerance. While CD5+ Bregs have been well-

characterized in mice, their presence and significance in human

Bregs are still under investigation (57). (4). CD24: High expression

of CD24 is often used as a defining feature and a marker for

identifying Bregs in various contexts. CD24+ Bregs have been

shown to possess potent immunosuppressive properties, including

the production of regulatory cytokines such as IL-10 and the ability

to suppress excessive immune responses. Modulating the function

or increasing the numbers of CD24+ Bregs could be explored as a

strategy for treating immune-related disorders, including

autoimmune diseases and transplantation rejection (58). (5).

CD38: Bregs with regulatory properties have been found to

exhibit higher levels of CD38 compared to other B cell subsets.

This suggests that CD38 can be used as a phenotypic marker to

identify Bregs with immunosuppressive potential. CD38-expressing

Bregs have been implicated in various disease contexts (59–61). For

example, in autoimmune diseases like RA and SLE (systemic lupus

erythematosus), decreased numbers or impaired function of CD38+

Bregs have been observed (62, 63). This suggests that CD38-

expressing Bregs may play a role in maintaining immune

tolerance and preventing excessive inflammatory responses (58).

(6). CD27: The relationship between CD27 expression and Bregs is

complex and can vary depending on the context and species

studied. These CD27+ Bregs are believed to possess regulatory

functions and contribute to immune tolerance. CD27 expression on

Bregs has been associated with enhanced suppressive activity and

the production of anti-inflammatory cytokines such as IL-10 and

TGF-b. Some memory B cells with regulatory functions have been
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identified within the CD27+ B cell subset. These memory Bregs

have been implicated in the regulation of immune responses and the

maintenance of immune homeostasis (52).

Bregs employ various mechanisms to suppress immune

responses and promote immune tolerance (Figure 2). Initially,

Bregs are known to produce immunosuppressive cytokines, such

as IL-10 and TGF-b. These cytokines play a crucial role in

dampening immune responses by inhibiting the activation and

function of effector immune cells. IL-10, in particular, is a potent

anti-inflammatory cytokine that can inhibit pro-inflammatory

cytokine production and immune cell activation (65, 66).

Furthermore, Bregs can act as APCs and present antigens to T

cells. However, instead of inducing T cell activation, Bregs often

promote tolerance by inducing T cell anergy or Treg differentiation

(67, 68). Moreover, Bregs have been shown to interact with and

promote the generation and function of Tregs which are key

mediators of immune tolerance and can suppress immune

responses. Bregs can induce the differentiation and expansion of

Tregs through cell-cell contact and the production of regulatory

cytokines like IL-10 and TGF-b (65, 69, 70). Additionally, Bregs can

exert suppressive effects through direct contact with immune cells.

For example, Bregs can engage with and inhibit the activation of

APCs such as DCs, thereby reducing their ability to stimulate

immune responses. Bregs also directly interact with and suppress

the function of effector T cells (71). Finally, Bregs can regulate

immune responses by modulating the expression of co-stimulatory

molecules. They can downregulate the expression of co-stimulatory

molecules on APCs, which is essential for efficient T cell activation.

By dampening the co-stimulatory signals, Bregs contribute to the

suppression of immune responses (72, 73). Apart from IL-10 and

TGF-b, Bregs can secrete other anti-inflammatory factors such as

IL-35 and granulocyte-macrophage colony-stimulating factor (GM-

CSF). These factors can suppress the activity of immune cells and

promote immunosuppression (74, 75).
Myeloid-derived suppressor cells

MDSCs are a heterogeneous population of immature myeloid

cells with potent immunosuppressive capabilities. They play a crucial

role in regulating immune responses in various pathological

conditions, including cancer, infections, autoimmune diseases, and

chronic inflammation (76–81). MDSCs are characterized by their

myeloid origin, early differentiation stage, and ability to suppress

immune responses through multiple mechanisms.

MDSCs arise from myeloid progenitor cells in the bone marrow.

Under certain pathological conditions, such as cancer or

inflammation, the differentiation of these cells is disrupted, leading

to the accumulation of immature myeloid cells with suppressive

functions in peripheral tissues (82, 83). MDSCs lack mature markers

of myeloid cells and often express a combination of markers

associated with early myeloid progenitors, including CD11b and

Gr-1 in mice (84, 85). In humans, MDSCs are commonly identified

by the expression of CD11b and CD33, as well as the lack of markers

associated with mature immune cells, such as HLA-DR (86, 87).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1530301
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2025.1530301
However, it is essential to note that MDSC phenotypes can vary

depending on the context and the specific tissue involved.

MDSCs suppress immune responses through various

mechanisms, contributing to immune evasion in cancer and other

diseases. To begin with, MDSCs can secrete factors like IL-10, IL-6,

IL-1b, TGF-b, and arginase-1, which dramatically increase the rate of

accumulation and T cell suppressive activity of MDSC (88–92).

Furthermore, MDSCs can trigger apoptosis in activated T cells

through the production of reactive oxygen species (ROS) and other

pro-apoptotic factors (93–95). Additionally, MDSCs consume and

deplete essential nutrients such as arginine, tryptophan and cysteine,

restricting their availability for T cell function (96–99). Moreover,

MDSCs can impair the function of dendritic cells and macrophages,

leading to decreased antigen presentation and diminished T cell

activation (100–102) (Figure 3).

MDSCs can be further classified into two main subsets based on

their phenotype in mice: Granulocytic MDSCs (G-MDSCs) express

high levels of Ly6G and Ly6C and are morphologically similar to

neutrophils (103, 104). Monocytic MDSCs (M-MDSCs) cells are

characterized by high expression of Ly6C and low expression of

Ly6G in mice, resembling monocytes (105, 106). In humans, the

classification of MDSC subsets is more complex and remains an

area of ongoing research.

MDSCs play a critical role in promoting tumor progression and

immune evasion in cancer. Their accumulation is associated with

poor prognosis in cancer patients (107–110). Moreover, MDSCs
Frontiers in Immunology 05
have been implicated in the pathogenesis of various inflammatory

and autoimmune diseases, contributing to the dysregulation of

immune responses (111–119).
Regulatory DC cells

DCs (dendritic cells) are specialized antigen-presenting cells

derived from the bone marrow that play a crucial role in initiating

and regulating innate and adaptive immune responses. Regulatory

or “tolerogenic” DCs are particularly important especially in the

context of maintaining self-tolerance in a healthy state. These

Dcregs employ various mechanisms to suppress or redirect the

responses of naïve or memory T cells. In animal models of

autoimmune diseases and transplant rejection, DCregs have

demonstrated the ability to induce or restore T cell tolerance

(120–124). Moreover, there is compelling evidence indicating that

the transfer of DCregs can effectively modulate T cell responses not

only in non-human primates but also in human subjects (120, 125).

Building upon insights gained from in vitro experiments and animal

models, efforts have been made to develop clinical-grade DCregs for

the treatment of autoimmune diseases (120, 126–128). Clinical

trials in Phase I evaluating the use of regulatory dendritic cell

therapy in type-1 diabetes, rheumatoid arthritis and Crohn’s disease

have shown promising results, demonstrating the feasibility and

safety of this approach (129–132).
FIGURE 2

Regulatory B Cells: Orchestrators of Immune Suppression and Modulation. Bregs play a critical role in immune regulation by exerting suppressive
effects on various immune cell types. They promote the proliferation and FoxP3 expression of Tregs, enhancing their immunosuppressive functions.
Bregs also impact the tumor microenvironment by increasing ROS and NOS levels in MDSCs, which can aid tumor progression (55, 64). Additionally,
Bregs inhibit the effector functions of NK cells and monocytes, reducing cytokine production and thus dampening inflammatory responses.
Furthermore, Bregs decrease the activation of CD8+ T cells and Th1/Th17 cells, which are crucial for mediating autoimmune and inflammatory
reactions. This multifunctional regulatory capacity makes Bregs a target of interest in developing therapies for autoimmune diseases and cancer
immunotherapy (55).
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DCregs possess unique suppressive mechanisms that allow

them to actively regulate immune responses and promote

immune tolerance (see Figure 4).
Induction of Tregs
DCregs could induce the differentiation and expansion of Tregs,

particularly Foxp3+ Tregs. By presenting antigens in a tolerogenic

manner and providing co-stimulatory signals, DCregs promote the

development of Tregs that suppress immune responses and

maintain self-tolerance (133–138).

Immune checkpoint molecules
Similar to conventional DCs, DCregs express immune checkpoint

molecules such as PD-L1and CTLA-4. The engagement of these
Frontiers in Immunology 06
molecules with their respective receptors on T cells inhibits their

activation and proliferation, thereby suppressing immune responses.

Production of immunomodulatory cytokines
DCregs secrete immunomodulatory cytokines such as IL-10 and

TGF-b (139, 140). These cytokines have potent immunosuppressive

effects, including the inhibition of pro-inflammatory cytokine

production, suppression of effector T cell responses, and promotion

of regulatory T cell function.

Indoleamine 2,3-dioxygenase expression
DCregs express the enzyme IDO, which catabolizes tryptophan,

an essential amino acid required for T cell proliferation. By

depleting tryptophan and generating tryptophan metabolites,
FIGURE 3

The complex mechanisms by which MDSCs influence immune suppression. (1). MDSCs also contribute to immune suppression by the impairment of
T-cell homing to lymphoid tissues via interactions with selectins and cellular adhesion molecules like CD44 and CD62L. This impairment is facilitated
by NO which alters T-cell migration, impacting immune surveillance and response. (2). MDSCs express ARG1 which depletes L-arginine, a critical
molecule for T-cell receptor (TCR) expression and T-cell function. MDSCs can lead to reduced protein synthesis and glutathione production in T-
cells, weakening the immune response. (4). Adenosine production is regulated by CD39 and CD73 ectoenzymes on MDSCs, which convert ATP to
adenosine under hypoxic conditions. This adenosine then inhibits T-cell activation via suppression of kinase pathways, further contributing to the
immunosuppressive microenvironment. (5). MDSCs contribute to immune suppression by producing IL-10 and IFN-g. In addition, MDSCs
downregulate pro-inflammatory cytokines like IL-6 and TNF-a in M2 macrophages, reinforcing a suppressive environment. (6). Free radicals,
particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS), are produced by MDSCs through enzymes like arginase-1 (ARG1),
NOX2, and NOS2. These radicals inhibit T-cell function by inducing T-cell energy loss and promoting apoptosis, further contributing to
immunosuppression. (7). MDSCs and Tregs express and activate inhibitory molecules like PD-L1, CTLA-4, and B7, which interact with PD-1 and
CD28 on T cells to inhibit their activation and induce apoptosis.
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DCregs induce a state of tryptophan starvation that inhibits T cell

activation and promotes the differentiation of regulatory T cells

(139, 141, 142).
Modulation of co-stimulatory molecules
DCregs exhibit reduced expression of co-stimulatory molecules

such as CD80 and CD86, resulting in impaired T cell activation.

This modulation of co-stimulatory signals contributes to the

induction of T cell anergy or tolerance (143).
Antigen presentation in lymphoid organs
DCregs preferentially migrate to lymphoid organs and present

antigens to T cells in a tolerogenic manner. This leads to the

induction of antigen-specific tolerance and suppression of

immune responses (144).

The extensive data significantly enhances our present

comprehension of different subsets of DCregs in the regulation of

different conditions. Nevertheless, the primary challenge at present

is how to translate our knowledge of DCregs in mouse models to

manipulation of human immune system and reveal therapeutic

potential of DCregs in human diseases. Promisingly, several

research have initiated investigations into the characteristics of

DCregs in patients with autoimmune and inflammatory diseases.

These studies aim to explore the therapeutic potential of DCregs in
Frontiers in Immunology 07
the treatment of AID, offering an exciting avenue for further

research and potential clinical applications.

The initial investigation on tolerogenic dendritic cells in

humans was conducted by Ralph Steinman’s laboratory. Their

study involved the subcutaneous administration of antigen-loaded

immature dendritic cells to study subjects, with a dosage of 2×106

cells per subject. The treatment was well tolerated by the

participants, and the findings showed that the therapy could

effectively suppress antigen-specific CD8+ T cell responses for a

duration of up to 6 months (145, 146). In a more recent clinical trial,

10 individuals with type 1 diabetes participated, and each subject

received four intradermal administrations of 1 × 107 autologous

dendritic cells at 2-week intervals. The dendritic cells used in the

treatment were modified through the transduction of anti-sense

oligonucleotides, which aimed to silence the expression of co-

stimulatory molecules such as CD40, CD80, and CD86. However,

no specific data regarding the efficacy of the silencing process was

reported in the study (129).

The researchers had previously established their silencing

protocols in a mouse model of type 1 diabetes (147–149). They

demonstrated that the dendritic cell treatments, which involved the

silencing of co-stimulatory molecules, had resulted in statistically

significant, albeit modest, effects in sparing the progression of the

disease in the mouse model (150, 151). Similar to the earlier study

conducted by Steinman, no adverse events associated with the
FIGURE 4

Mechanisms of immunosuppressive and tolerogenic activities of DCregs. DCregs express a variety of surface markers that are critical for their
interaction with T cells and other immune cells. Markers like CD95L, CCR7, PD-L1, CD80, and CD86 are differentially expressed to modulate the
immune response. The increased expression of CD95L and PD-L1, for example, enhances the ability of DCregs to induce apoptosis and anergy in T
cells. These cells also show an elevated secretion of immunoregulatory cytokines such as IL-10 and TGF-b, which are known to promote Treg
expansion and contribute to the suppression of effector T cell functions. In addition,DCregs produce various molecules like prostaglandin E2 (PGE2),
nitric oxide (NO), and IDO (Indoleamine 2,3-dioxygenase), all of which have profound effects on the immune environment. PGE2 and NO contribute
to the overall suppressive milieu, while IDO activity leads to metabolic depletion that inhibits effector T cell functions and supports Treg cell
maintenance. Moreover, DCregs interact with Tregs to enhance their suppressive function and stability through mechanisms such as the expression
of IDO. They also directly inhibit the activation and proliferation of CD8+ T cells and Th1/Th17 cells, pivotal in controlling inflammation
and autoimmunity.
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dendritic cell treatments were reported in this subsequent study

(152–154). However, there were limited or no detectable

immunological signs of tolerance that could be attributed to the

dendritic cell treatments. In conclusion, the study highlights that

dendritic cells can acquire a tolerogenic phenotype through

various mediators, and these play a significant role in shaping

interactions between dendritic cells and naive or effector T cells.

Tolerogenic dendritic cells utilize both secreted molecules like IL-10

and retinoic acid, as well as inhibitory receptors, to promote the

induction of regulatory T cells (155, 156). Additionally, they provide

supplementary signals such as integrins to guide the localization of

these developing regulatory T cells to the appropriate anatomical

sites. A major challenge in the future application of tolerogenic

dendritic cells in immunotherapy will be to carefully select or

optimize the specific type(s) of tolerogenic dendritic cells to be

used, considering the clinical targets and desired outcomes.

Regulatory innate lymphoid cells

ILCregs are a subset of innate lymphoid cells that possess

immunosuppressive functions and play a crucial role in

maintaining immune homeostasis. While the concept of ILCregs is
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still relatively new and evolving, their importance in immune

regulation is becoming increasingly recognized (see Figure 5).

ILCregs have been identified in various tissues and organs,

including kidneys and intestines (21, 157). They are characterized

by their ability to produce immuno-suppressive cytokines such as IL-

10 and TGF-b, which help dampen excessive immune responses and

promote tolerance (21). Similar to other ILC subsets, ILCregs can be

classified based on the expression of specific transcription factors and

surface markers. Though they lacked expression of the Treg

transcription factor Foxp3, ILCregs exert their immune-suppressive

effects through multiple mechanisms. In addition to secreting

immunosuppressive cytokines, they can interact with other

immune cells, such as dendritic cells and T cells to modulate their

functions (158). ILCregs can inhibit dendritic cell maturation and

antigen presentation, leading to decreased activation of effector T

cells. They can also directly interact with T cells, promoting the

development of regulatory T cells and suppressing the activity of pro-

inflammatory T cell subsets (157) (Figure 6).

Unlike the previously described ILCregs, there is also

evidence that ILC2s have the capacity to produce IL-10 and

may have immunoinhibitory potential (159). Additionally,

several pieces of evidence suggest that ILC3s are plastic and
FIGURE 5

Phenotypical and functional properties of NK cells. NK cells are categorized based on their phenotypic and functional traits, linked to specific
receptors like adhesion molecules (CD56, CD57), activating receptors (CD16, NCR, KIR, NKG2C), and inhibitory receptors (NKG2A). These
classifications lead to distinct NK cell subsets with regulatory, cytotoxic, or memory functions, each showing unique operational characteristics.
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can become ILCregs (160). Indeed, the recent findings reveal a

regulatory plasticity within all ILC subtypes, and potential

crosstalk between DCs and ILCs which should be further

investigated in future research.

The study of ILCregs is still in its early stages, and further

research is needed to fully understand their ontogeny, functional

diversity, and specific roles in different immune contexts. However,

their potential as therapeutic targets for immune-mediated diseases

and their ability to regulate immune responses make them an

exciting area of investigation in immunology.

Regulatory nature kill cells

While NK cells were initially classified as a uniform population of

innate lymphocytes, emerging evidence suggests that NK cells
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comprise diverse subsets with varying functions, distributions, and

developmental origins. Human NK cells in peripheral blood can be

categorized into at least two functional subsets based on their

expression of CD56 and CD16 (161) (Figure 7). CD56dimCD16+ NK

cells make up approximately 90% of the total NK cells present in the

blood. These cells are highly efficient in killing target cells and secrete

lower levels of cytokines. On the other hand, regulatory NK cells,

namely CD56bright CD16- NK cells, account for less than 10% of total

blood NK cells but are enriched in secondary lymphoid tissues (162).

NK cells have been recognized for their ability to carry out

effector functions through both direct cytotoxicity and the release of

IFN-g. However, a study conducted by Perona-Wright and

colleagues has shed light on an additional role of NK cells in

attenuating inflammatory processes (163). They demonstrated

that NK cells can dampen inflammation by producing IL-10.
FIGURE 6

Development of IL-10+ ILCs in the Lung and Colon of Humans. In human lung and colon development, exposure to the fungus Alternaria alternata
initiates a sequence of immunological responses starting with activation of the airway epithelium. This activation leads to the release of cytokines
such as TSLP (thymic stromal lymphopoietin) and IL-33, which in turn activate type 2 innate lymphoid cells (ILC2s). These cells respond by producing
IL-5 and IL-13, contributing to eosinophil recruitment and goblet cell hyperplasia, respectively. Additionally, TSLP is implicated in reducing
corticosteroid responsiveness. IL-13 also stimulates the release of retinoic acid (RA) from the epithelium, which facilitates the transformation of ILC2s
into a subtype producing IL-10 (ILC210s). These ILC210s play a critical role in dampening type 2 inflammatory responses and enhancing epithelial
barrier integrity by reducing IL-6 and IL-8 levels, thereby inhibiting neutrophil migration. Concurrently, Tregs develop and secrete transforming
growth factor-beta (TGF-b) to further regulate inflammation and influence the activity of ILC210s. In the colon, CD103+ myeloid dendritic cells
(mDCs) release RA and IL-23A, which promote the transformation of CD127+ ILC1s into ILC3s. Tregs support this transition by releasing TGF-b,
further promoting the formation of ILCregs.
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Therefore, NK cells possess the capacity to not only exert their

cytotoxic and pro-inflammatory activities but also contribute to the

regulation and resolution of immune responses. Some of the key

functions of regulatory NK cells include: (1). Immunomodulation:

Regulatory NK cells can interact with other immune cells, such as T

cells and dendritic cells, and modulate their activation and function.

They can suppress the proliferation and activation of T cells,

thereby regulating the adaptive immune response (164–166). (2).

Cytokine Production: Regulatory NK cells produce various

immunomodulatory cytokines, including IL-10 and TGF-b (167–

171). These cytokines have anti-inflammatory properties and can

suppress immune responses. (3). Interaction with Dendritic Cells:

Regulatory NK cells can interact with dendritic cells and influence

their maturation and antigen presentation. This interaction can

impact the activation and differentiation of other immune cells,

such as T cells (163, 169). (4). Induction of Tolerance: Regulatory

NK cells contribute to the induction of immune tolerance,

particularly in the context of transplantation and autoimmunity.

They can suppress excessive immune responses and promote

immune tolerance to self-antigens (172, 173).

Although regulatory NK cells are a relatively less studied subset

compared to conventional NK cells, their role in immune regulation

is increasingly recognized. Further research is needed to fully

understand their precise mechanisms and contribution to immune

tolerance and regulation. It’s important to note that regulatory NK

cells are still an area of active research, and their clinical applications

are being explored in various ongoing studies and clinical trials. As

our understanding of their functions and therapeutic potential

advances, regulatory NK cells may become an integral part of

personalized and targeted immunotherapies in the future.
Conclusion

In the realm of regulatory immune cells, Tregs, Bregs, MDSCs,

DCregs, NKregs, and ILCregs demonstrate their importance in

maintaining immune homeostasis and preventing immune-related

diseases (13, 49). The interactions and functional overlaps among

these cells are manifested in several aspects: First, all these

regulatory cells can modulate immune responses by secreting

anti-inflammatory and immunosuppressive cytokines like IL-10

and TGF-b. For example, Tregs suppress effector T cells and

inflammatory responses by secreting these cytokines, while Bregs

similarly use them to suppress excessive humoral responses and

promote immune tolerance (13, 28, 49). Moreover, regulatory cells

can interact through molecules on their surfaces to jointly suppress

immune responses. For instance, Bregs can interact with Tregs or

other cells through expressing CD40, CD80, and CD86, thus

regulating T cell activation and differentiation (174). DCregs can

modulate T cells by engaging PD-1 through expressed PDL-1 (175).

Furthermore, regulatory cells can directly or indirectly affect the

function of effector cells, such as effector T cells and B cells. Tregs

can directly interact with effector T cells to inhibit their activation

and proliferation. Similarly, Bregs and DCregs can regulate humoral
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responses by inhibiting the differentiation and IgG production of

effector B cells (128, 176). Additionally, in various disease models,

these regulatory cells exhibit similar roles, such as in cancer,

autoimmune diseases, and transplantation tolerance. For instance,

MDSCs promote tumor immune escape by inhibiting NK and CD8

+ T cell activity in the tumor microenvironment, a function

similarly exhibited by Tregs (177, 178). Finally, these regulatory

cells share signaling pathways in cytokine networks, such as STAT3

and NF-kB, which play key roles in regulating immune responses

(179–181). Through these pathways, regulatory cells collaboratively

maintain immune homeostasis and prevent overactivation of the

immune system. Not only do regulatory immune cells overlap in

function, but they also interact through various mechanisms to

collectively maintain immune homeostasis and tolerance. A deeper

understanding of these cells and their interactions is crucial for

developing new immunoregulatory therapeutic strategies.

The expanding research into regulatory immune cells offers a

promising frontier for developing novel therapeutic strategies. These

diverse roles of immune cells in immune modulation present both

opportunities and challenges in translating their functions into

effective treatments (182). The clinical applications of regulatory

immune cells are vast, ranging from enhancing cancer

immunotherapy to preventing autoimmune diseases and improving

transplant outcomes (183, 184). As we delve deeper into

understanding these cells’ mechanisms and interactions, the

potential for innovative treatments grows. These types of cells are

pivotal in modulating immune homeostasis, where they prevent

autoimmune diseases, mitigate chronic inflammation, and enhance

graft tolerance. Therapeutic potential of these cells extends across

various domains, including cancer treatment, where manipulation of

their numbers and functions can improve outcomes. It underscores

the ongoing research into their regulatory mechanisms and their

application in treating a wide array of immune-related conditions,

necessitating sophisticated strategies to harness their full potential

while maintaining the delicate balance of immune responses.

However, the clinical application of regulatory immune cells faces

significant challenges, including ensuring specificity and selectivity in

immune modulation to avoid global immunosuppression, managing

long-term safety concerns such as potential chronic infections or

oncogenic transformation, and maintaining rigorous standardization

and quality control in cell production (49, 185, 186). Ethical and

regulatory considerations also play a crucial role, requiring careful

management of patient-derived cell manipulations. To overcome

these challenges, strategies such as developing targeted therapies

that home to specific tissues, leveraging synthetic biology to

enhance cell functionality, and optimizing cell preparation and

infusion protocols are essential (186, 187). Collaborative efforts

across disciplines are required to refine these therapies, ensuring

they are safe, effective, and ethically developed. These concerted

actions will be pivotal in harnessing the full therapeutic potential of

regulatory immune cells, offering innovative treatments for a range of

immune-mediated diseases. Future research needs to focus on

refining the specificity and safety of therapies that modulate

regulatory immune cells, ensuring that they can be integrated
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effectively into patient care (188–192). This ongoing exploration

holds the key to unlocking the full potential of immune regulation

in treating a wide array of diseases, potentially revolutionizing our

approach to immunotherapy and transplantation medicine.
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