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neutrophil extracellular
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and Xinmei Zhao1*

1Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of
Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical
University, Guangzhou, China, 2Department of Radiology, The First Affiliated Hospital of Guangdong
Pharmaceutical University, Guangzhou, China
Background: Neutrophil extracellular traps (NET) play a pivotal role in the

pathogenesis of ulcerative colitis (UC) and may contribute to the impaired

response to anti-tumor necrosis factor alpha (TNF-a) therapies. However, the

functional implications of NET-associated genes in UC remain poorly understood.

This study aims to identify key NET-associated molecular signatures in UC, develop

diagnostic models based on NET-related biomarkers, and construct predictive

models for response to anti-TNF-a therapies (infliximab and golimumab).

Methods: NET-associated genes were obtained from the Kyoto Encyclopedia of

Genes and Genomes, whereas UC-related gene expression datasets were retrieved

from the Gene Expression Omnibus. Unsupervised consensus clustering based on

NET-related genes was used to stratify patients with UC into molecular subtypes.

The CIBERSORT algorithm and gene set variation analysis were employed to

characterize immune cell infiltration and biological pathway activity across

clusters. Hub genes were identified using weighted gene co-expression network

analysis and machine learning algorithms. Spearman correlation analyses were

performed to assess associations between hub genes, immune cell infiltration, and

clinical disease activity. A diagnostic model for UC and a prognostic model for anti-

TNF-a treatment response were developed using hub genes identified through least

absolute shrinkage and selection operator regression.

Results: Based on 33 NET-associated genes, patients with UC were stratified into

two distinct molecular clusters (C1 and C2). Cluster C1 exhibited a pronounced

NET signature, characterized by significantly elevated neutrophil infiltration (p <

0.001) and activation of inflammatory signaling pathways, including IL-2/STAT5,

TNF-a/NF-kB, and IL-6/JAK/STAT3. Notably, C1 was associated with a

significantly higher rate of non-response to anti-TNF-a therapy (57.4% vs.

22.0% in C2, p = 0.003). A diagnostic model for UC was constructed using five

hub genes (FCGR3B, IL1RN, CXCL8, S100A8, and S100A9) derived from C1.

Moreover, a predictive model for anti-TNF-a non-responsiveness, based on two

hub genes (FCGR3B and IL1RN), was developed using a golimumab dataset and

validated in two independent infliximab datasets.
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Conclusion: A distinct NET-associated cluster was identified among patients

with UC, exhibiting non-responsiveness to anti-TNF-a treatment. Diagnostic and

prognostic models based on NET-associated genes hold promise for guiding

clinical treatment strategies.
KEYWORDS

ulcerative colitis, neutrophil extracellular traps, anti-TNF-a, machine learning,
predictive model
1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory disorder that

affects the rectum and colon to varying degrees throughout a

patient’s lifetime. As of 2023, an estimated five million cases exist

globally, with incidence rates continuing to rise—particularly in

developing regions, including Asia, where UC was once considered

rare (1, 2). Although its etiology remains incompletely understood,

genetic predisposition, immune dysregulation, and alterations in

the gut microbiota are implicated in its pathogenesis (3). Current

treatments range from 5-aminosalicylic acid (5-ASA) to biologic

therapies, with anti-TNF agents (e.g., infliximab and golimumab)

being a cornerstone of management. However, up to 40% of

patients exhibit primary non-response to anti-TNF therapy, and

many responders eventually develop secondary resistance (4). The

mechanisms underlying treatment failure remain unclear,

highlighting the need for molecular subtyping to stratify

responders, identify novel targets, and guide personalized therapy.

Neutrophil extracellular traps (NET)—web-like structures released

by activated neutrophils during inflammation— have been implicated

in UC pathogenesis (5–7). Notably, successful anti-TNF therapy

correlates with downregulation of NET-associated proteins and

reduced NET formation (8). Recent studies from Chinese

inflammatory bowel disease (IBD) centers further demonstrated an

inverse relationship between NET levels, tissue infliximab

concentrations, and mucosal healing (9, 10). However, the role of

NET-associated genes in UC heterogeneity and anti-TNF resistance is

poorly characterized.

This study demonstrates a notable correlation between NETs

and the heterogeneity of treatment response among patients with

UC. By analyzing NET-associated gene expression profiles, patients

with UC were classified into two distinct clusters: C1 and C2. The

C1 cluster exhibited enhanced NET-related features, severe immune

phenotype, heightened activation of immune pathways, along with

a greater likelihood of non-response to anti-TNF-a therapy.

Subsequently, machine learning was employed to identify five hub

genes (FCGR3B, IL1RN, CXCL8, S100A8, and S100A9) implicated

in disease onset, progression, and neutrophil extracellular trap

formation. Finally, we developed models for diagnosing UC and

predicting non-response to anti-TNF therapy. These models may

assist in the diagnosis and treatment of UC.
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2 Methods

2.1 NET-associated genes from the Kyoto
Encyclopedia of Genes and Genomes
database

NET-associated gene data were retrieved from the Kyoto

Encyclopedia of Genes and Genomes Database, a comprehensive

database that integrates genomic, chemical, and systemic functional

information. It helps researchers understand biological processes

and interactions by providing detailed pathways and networks

involving various molecules (11). A total of 192 NET-associated

genes (hsa04613) were obtained for analysis.
2.2 Data collection from the Gene
Expression Omnibus database

Figure 1 depicts the flowchart of our project, which draws on the

methodology of Zheng et al. (12). Relevant datasets of intestinal

mucosal biopsies from patients diagnosed with UC were sourced

from the Gene Expression Omnibus database. The datasets

encompassed GSE87466 (87 UC samples, 21 healthy controls),

GSE206285 (551 UC samples, 18 controls), GSE92415 (61 UC

samples with positive response to golimumab treatment, 48 with

no response), GSE12251 (12 UC samples with a favorable response to

infliximab, 11 with no response), and GSE16879 (16 UC samples with

a favorable response to infliximab, 32 with no response).
2.3 Analysis of differential expression and
co-expression patterns of NET-associated
genes

The Mann-Whitney U test was utilized to examine the

variations in NET-associated genes between patients with UC (87

samples) and healthy controls (21 samples) within the GSE87466,

using a significance level of p < 0.0001 as the threshold.

Subsequently, the “cor” function was utilized to calculate the

Pearson correlation coefficients for the identified NET-

associated genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1530508
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ou et al. 10.3389/fimmu.2025.1530508
2.4 Consensus clustering

Using the R package “ConsensusClusterPlus” (13), we performed

consensus clustering to distinguish NET-associated subtypes based

on the 33 differentially expressed genes. The optimal cluster number

was determined beforehand. To test the quality of clustering, we used

the R package “FactoMineR” to visualize differences among the

clusters via principal component analysis.
Frontiers in Immunology 03
2.5 Gene set variant analysis

To characterize the molecular biological differences between the

two UC clusters, we applied the “clusterProfiler” (14) package to

compute signaling pathway variation scores for each gene set

sourced from the Molecular Signatures Database (MSigDB). The

“limma” (14) was used to identify the differential signatures among

various groups.
FIGURE 1

Study flowchart.
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2.6 Immune infiltration analysis

CIBERSORT (15) was employed to measure the levels of 22

immune cell types present in the colonic mucosa of individuals with

UC and healthy individuals for comparison. To validate the

distinctions between the two groups, we employed Student’s t-test,

with the findings illustrated using the “ggboxplot” function in R.
2.7 Weighted gene co-expression network
analysis for identifying NET-associated UC
hub genes

To investigate NET-associated genes in UC, we applied the

“WGCNA” R package (16) to conduct a WGCNA. As the initial

clustering of UC samples was based on NET-associated genes, the

module exhibiting the strongest association with UC was designated as

the NET-associated module. To identify differentially expressed genes

in patients with UC and controls, we applied the “limma” package to

the GSE87466 dataset. A log fold change (logFC) threshold with an

absolute value of 2 and a p-value threshold of 0.05 were set for this

analysis. By finding the intersection of genes differentially expressed

and those within the NET-associated module, we identified the

differentially expressed NET-associated module genes. These genes

hold important value for future research as they are implicated in the

pathogenesis of UC and associated with NET.

Machine learning algorithms (17) automatically evaluates the

regulatory weights between genes through model training and thus

are widely used in identifying hub genes. To determine which

algorithm exhibits superior classification performance, we used

three machine learning algorithms: the generalized linear model

(GLM), support vector machine (SVM), and random forest (RF).

The receiver operating characteristic curve was used to evaluate the

classification performance of machine learning. Subsequently, the

feature plot was utilized to identify hub genes associated with the

onset and progression of UC, as well as those associated with NET.
2.8 Building and evaluating the diagnosis
of UC

The GSE87466 dataset was split into a training set, comprising

70% of the data, and a validation set, consisting of 30%, based on

these five genes. A diagnostic model for ulcerative colitis was then

constructed using the training data and evaluated using the

independent GSE206285 dataset. Model performance was

visualized using a nomogram.
2.9 Correlation analysis between hub
genes and immune cell abundance and
disease activity index

To further explore the impacts of hub genes, we analyzed their

associations with immune cell infiltration and Mayo scores using
Frontiers in Immunology 04
the Spearman correlation analysis method. The Mayo score, a

clinically relevant system for evaluating UC severity, integrates

endoscopic observations and clinical symptoms (18).
2.10 Developing a predictive model for
identifying non-responders to anti-TNF-a
therapy

To examine the effectiveness of golimumab treatment across

different UC subgroups, we stratified patients in the GSE92415

dataset into two distinct clusters: C1 and C2, according to the five

hub genes associated with NET. The chi-square test was used to

examine whether there is a difference in the ineffectiveness of

golimumab treatment between the two clusters. To further

elucidate the genetic markers associated with diverse responses to

anti-TNF-a therapies, we conducted least absolute shrinkage and

selection operator regression analysis, using the previously

identified hub genes. Thus, we developed a predictive model

capable of identifying patients who may not respond to

golimumab. The R package “glmnet” was employed. Additionally,

we created a nomogram using the R package “rms” to facilitate

clinical application of our model. The model’s predictive prowess

was gauged using the area under the curve (AUC), with its reliability

validated using the GSE12251 dataset.
3 Results

3.1 Differential expression analysis
identifies 33 NET-associated genes in UC

To explore the involvement of NET in the onset and

progression of UC, we retrieved 192 genes from the database of

Kyoto Encyclopedia of Genes and Genomes. These genes were then

compared between the mucosal tissues of the colon in patients with

UC and those of healthy controls. Of these, 33 genes exhibited

statistically significant differential expression (p < 0.0001): Fc

fragment of IgG receptor IIIb (FCGR3B), spleen associated tyrosine

kinase (SYK), mitogen-activated protein kinase 1 (MAPK1),

mitogen-activated protein kinase 3 (MAPK3), cytochrome b-245

beta chain (CYBB), cytochrome b-245 alpha chain (CYBA),

neutrophil cytosolic factor 2 (NCF2), neutrophil cytosolic factor 4

(NCF4), rac family small GTPase 2 (RAC2), voltage dependent anion

channel 1 (VDAC1), volute carrier family 25 member 4 (SLC25A4),

solute carrier family 25 member 5 (SLC25A5), Fc fragment of IgG

receptor Ia (FCGR1A), integrin subunit beta 2 (ITGB2), integrin

subunit alpha L (ITGAL), protein kinase C beta (PRKCB), formyl

peptide receptor 2 (FPR2), phosphoinositide-3-kinase catalytic delta

(PIK3CD), phosphoinositide-3-kinase regulatory subunit 3

(PIK3R3), AKT serine/threonine kinase 3 (AKT3), RELA proto-

oncogene (NF-kB subunit) (RELA), complement C3 (C3),

complement C5a receptor 1 (C5AR1), toll-like receptor 2 (TLR2),

toll-like receptor 4 (TLR4), Von Willebrand factor (VWF), selectin P

(SELP), selectin P ligand (SELPLG), caspase 4 (CASP4), caspase 1
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(CASP1), H2A clustered histone 8 (H2AC8), H2A histone family

member J (H2AJ), andH2B clustered histone 5 (H2BC5) (Figure 2A).

These differentially expressed NET-associated genes were

subsequently utilized for co-expression analysis. The findings

uncovered regulatory interactions among the NET-associated

genes, with the majority displaying positive regulation (Figure 2B).
3.2 Cluster C1 identification as a NET-
associated subtype

To better understand the role of NET in UC, we categorized UC

samples into two different clusters: C1 and C2, based on differentially

expressed NET-associated genes (Figure 3A). The principal component

analysis (PCA) plot demonstrates the clear separation between the two

clusters, suggesting that these groups exhibit distinct characteristics

(Figure 3B). The optimal number of subtypes was set at 2, based on the

objective of the research, consensus matrix diagrams, cumulative

distribution function (CDF) charts, percentage changes in areas

beneath the CDF curve, and trajectory plots (Figures 3C–E). Then,

we compared the expression levels of the differentially expressed NET-

associated genes between the two clusters. CASP1, VDAC1, SLC25A5,

SLC25A4, H2AJ,MAPK3, H2AC8, and H2BC5 were downregulated in

cluster C1, whereas the expression of other NET-associated genes,

linked to the positive modulation of NET, was upregulated (Figure 3F).

Thus, C1 was identified as a NET-associated cluster.
3.3 Immune cell infiltration signatures and
gene set variation analysis of NET-
associated cluster C1

Immune cell infiltration analysis reveals that cluster C1 was

enriched in neutrophils, activated dendritic cells, M0 macrophages,

memory B cells, activated memory CD4+ T cells, and gamma delta

cells. Conversely, cluster C2 exhibited higher levels of M2

macrophages, resting NK cells, resting dendritic cells, plasma cells,

CD8+ T cells, and resting mast cells (Figures 4A, B). To uncover the

molecular basis for the differential immune infiltration patterns

observed between the two clusters, we conducted gene set variant

enrichment analysis between the two clusters. We found that

epithelial-mesenchymal transition, inflammatory response, and

angiogenesis exhibited enhanced activity within the C1 cluster.

Meanwhile, the C2 cluster was correlated with metabolic pathways

encompassing peroxisome activity, oxidative phosphorylation, and

fatty acid catabolism (Figure 4C).
3.4 WGCNA analysis for identifying
differentially expressed NET-associated
module genes

WGCNA was conducted on data from patients with UC,

revealing that the brown module “ME brown2” exhibited the

strongest association with the C1 cluster (Figure 5A,
Frontiers in Immunology 05
Supplementary Figures 1A–C). This indicated that the ME

brown2 module was the characteristic module of the NET-

associated cluster C1. In other words, the genes included in this

module were the most distinguishing factors between the C1 and C2

clusters. As C1 and C2 clusters were differentiated based on

differences in NET-associated genes, this suggested a correlation

between the genes in the ME brown2 module and NET. Therefore,

we designated this brown2-module as the NET-associated module.

Figure 5B shows that by setting the threshold at an absolute logFC

value of 2 and a p-value of 0.05, we obtained 175 differentially

expressed genes. By overlapping the genes in the NET-associated

module with differentially expressed genes, we identified 56 module

genes specifically associated with NETs that are also differentially

expressed (Figure 5C). These genes were associated with NETs and

implicated in the progression of the disease, leading to their

definition as differentially expressed NET-associated module genes.
3.5 Identifying hub genes and developing a
model for diagnosing UC

Machine learning algorithms are widely used in identifying hub

genes. According to the differentially expressed NET-associated

module genes, the RF algorithm demonstrated a higher efficiency in

distinguishing patients with UC (Figure 5D). Moreover, using the RF

algorithm, we identified interleukin 1 receptor antagonist (IL1RN), Fc

fragment of IgG receptor IIIb (FCGR3B), S100 calcium binding protein

A9 (S100A9), S100 calcium binding protein A8 (S100A8), C-X-Cmotif

chemokine ligand 8 (CXCL8) as the five most prominent hub genes

(Figure 5E). In the GSE87466 and GSE206285 datasets (Figures 6A, B),

these five hub genes were upregulated in patients with UC. Using these

identified hub genes as a foundation, a diagnostic nomogram for UC

was developed (Figure 6C). The model’s exceptional performance was

demonstrated in GSE87466 and was further externally confirmed in

GSE206285 (Figures 6D, E).
3.6 The hub genes are associated with pro-
inflammatory immune cell infiltration and
severe disease activity

The hub genes, namely IL1RN, FCGR3B, S100A9, S100A8, and

CXCL8, exhibited a positive correlation with the abundance of

neutrophils, activated mast and dendritic cells, M1 macrophages, M0

macrophages, activated CD4+ memory T cells, follicular helper T cells,

and naïve B cells. Conversely, these hub genes exhibited a negative

correlation with the abundance of resting mast cells, M2 macrophages,

resting dendritic cells, activated NK cells, regulatory T cells (Tregs),

CD+ T cells, and plasma cells (Figure 7A). Among the detected hub

genes, S100A8 demonstrated the most pronounced positive correlation

with neutrophils, whereas FCGR3B displayed the most significant

negative association with M2 macrophages (Figure 7A). Analysis of

the correlation between expression levels of hub genes and clinical

severity showed that these genes demonstrated a positive association

with Mayo scores (Figures 7B–F).
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3.7 Construction and validation of
predictive model for anti-TNF-a non-
response based on hub genes

To investigate potential differences in golimumab response

among distinct UC clusters, we classified patients in the

GSE92415 dataset into two separate clusters: C1 and C2, using

five hub genes. Our analysis revealed that 29 individuals with UC
Frontiers in Immunology 06
showed a positive response to golimumab treatment, whereas 39

individuals with UC did not respond in cluster C1. Conversely,

within the C2 cluster, 32 patients responded positively to the

treatment, whereas 9 patients did not respond (Chi-square test, p

= 0.0003) (Figure 8A). This suggested a greater probability of

patients in the C1 cluster not responding to golimumab

treatment. To identify the genetic factors associated with

differential responses to golimumab, we conducted least absolute
FIGURE 2

Analysis of expression and correlation of neutrophil extracellular traps (NET)-associated genes in ulcerative colitis (UC) dataset GSE87466. (A) Expression
difference of NET-associated genes in patients with UC and healthy controls (HC). (B) Correlation of differentially expressed NET-associated genes. Red
hues denote positive correlations (r > 0), whereas blue hues indicate negative correlations (r < 0), and the color depth represents correlation strength.
The gradient from red to blue illustrates the transition from positive to negative correlation values. **** indicates p < 0.001.
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FIGURE 3

Identifying different clusters of ulcerative colitis (UC). (A) Consensus matrix of UC samples in GSE87466 (k = 2). (B) Principal Component Analysis
plot exhibiting the degree of distinction between different UC clusters (C1 and C2). (C) Consensus cumulative distribution function (CDF) plot
showing the area under the curve for k = 2–9. (D) Relative change in the area under the CDF curve. (E) Tracking plot exhibiting the sample subtypes
for different values of (k). The color block represents the subtype number of the sample. (F) Heatmap showing the expression of neutrophil
extracellular traps (NET)-associated genes between two UC clusters (C1 and C2).
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shrinkage and selection operator regression analysis (Figures 8B, C).

This analysis revealed that IL1RN and FCGR3B were associated

with non-response to golimumab. Both genes exhibited strong

predictive capabilities: IL1RN attained an AUC of 0.716, and

FCGR3B achieved an AUC of 0.724 (Figure 8D). Utilizing IL1RN

and FCGR3B, we constructed a model for identifying non-

responders to golimumab, which achieved an AUC of 0.741. To

confirm the robustness of our findings, we validated the results in

two independent cohorts: GSE12251 and GSE16879. The diagnostic

performance of our model for predicting non-response to
Frontiers in Immunology 08
infliximab achieved AUCs of 0.962 (GSE12251) and 0.801

(GSE16879) (Figures 8E, F). Finally, we presented this model as a

nomogram for ease of interpretation (Figure 8G).
4 Discussion

UC is a complex, chronic inflammatory condition of the

intestinal tract, in which establishing a definitive diagnosis

remains challenging due to its heterogeneous clinical
FIGURE 4

Immunological and pathway differences among different clusters of ulcerative colitis (UC). (A, B) Immune infiltration abundance in UC clusters (C1
and C2). (C) Gene set variation enrichment analysis of C1 and C2 clusters in UC (C2 cluster as control). *,**,**** indicate p < 0.05, p < 0.01, and
p < 0.001.
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manifestations and the need to differentiate it from other

gastrointestinal diseases (19). Furthermore, up to 40% of patients

with UC do not respond to anti-TNF therapy (4). This high rate of

therapeutic failure reflects the underlying gap in our comprehensive
Frontiers in Immunology 09
understanding of UC pathogenesis. Thus, it is imperative to

investigate treatment responses—particularly to anti-TNF-a
therapy—from diverse pathophysiological perspectives and to

identify patients at risk of non-response. Molecular subtyping of
FIGURE 5

Identification of genes involved in the development of ulcerative colitis (UC) and neutrophil extracellular traps (NET). (A) Weighted gene co-
expression network analysis (WGCNA) module trait for C1 and C2 clusters. (B) Volcano plot displaying gene expression differences between UC
samples and healthy control samples. (C) Intersection of differentially expressed genes between UC samples (differentially expressed genes) and
control samples with characteristic module genes of UC clusters (Module). (D) Receiver operating characteristic (ROC) curves showing the high
diagnostic performance of three deep learning models for UC: Random forest (RF), Generalized linear model (GLM), and Support vector machine
(SVM). (E) Top five significant genes (IL1RN, FCGR3B, S100A8, S100A9, CXCL8) as hub genes identified using the Random Forest (RF) algorithm.
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UC offers a promising strategy to stratify non-responders and

facilitate the development of novel therapeutic approaches.

In this study, we identified distinct expression profiles of

multiple NET-associated genes in UC, using a stringent

significance threshold of p = 0.0001 to prioritize genes of high

relevance. Several of these genes, including CASP1 (20) and TLR4

(21), have been previously implicated in the initiation and

progression of UC. Based on NET-associated gene expression, we

classified patients into two molecular clusters.
Frontiers in Immunology 10
Immune cell infiltration analysis revealed that the C1 cluster

exhibited higher abundances of neutrophils, activated dendritic

cells, M0 macrophages, memory B cells, activated memory CD4+

T cells, and gamma delta T cells. In comparison to C2, the C1

cluster also showed increased activation of several key immune

pathways, including IL-2/STAT5, TNF-a/NF-kB, and IL-6/JAK/

STAT3. Each of these pathways has been mechanistically linked to

NET formation: IL-2 induces reactive oxygen species production

and autophagy, thereby promoting NET formation (22); TNF-a
FIGURE 6

Identifying hub genes and constructing diagnostic models. (A, B) Differential expression of hub genes between patients with UC and healthy controls
in GSE87466 (A) and GSE206285 (B). (C) Nomogram for the diagnosis of UC. (D, E) The diagnostic ability of hub genes in GSE87466 (D) and
GSE206285 (E). **** indicates p < 0.001.
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directly stimulates NET release from neutrophils (8); and IL-6–

mediated JAK/STAT3 signaling prolongs neutrophil survival and

enhances functional capacity, indirectly facilitating NET formation

(23). Taken together, these findings indicate that the C1 cluster

represents a hyperinflammatory UC subtype with elevated NET

activity, which may underlie its more severe immune phenotype

and higher likelihood of resistance to anti-TNF-a therapy.

Further analysis revealed that the C1 cluster, which is closely

linked to NET, exhibited a significantly higher non-response rate to

golimumab treatment, suggesting a potential role of NET in

mediating therapeutic resistance. There are two reasons why

golimumab was chosen for further analysis. Firstly, it has been
Frontiers in Immunology 11
observed that NET are associated with other anti-TNF agents, such

as infliximab and adalimumab (24). The selection of golimumab for

further analysis can enhance the comprehensive understanding of

the relationship between NET and anti-TNF therapy. Secondly, due

to practical reasons, GSE92415 is the only dataset we could find that

includes both disease activity scores and anti-TNF-a treatment

healing data before anti-TNF therapy. Evaluating the correlation

between the selected NET-related hub genes and disease activity, as

well as assessing the responsiveness of hub genes from different

clusters to anti-TNF-a therapy, can strengthen the credibility of the

conclusions and reinforce the connection between NET and the

efficacy of anti-TNF treatment. Similar to our results, a study by
FIGURE 7

Correlation between hub genes, immune infiltration, and clinical severity. (A) Correlation between hub genes and the abundance of immune cell
infiltration. (B–F) Correlation of five hub genes with Mayo scores.
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Monteleone et al. reported that successful infliximab treatment in

patients with UC correlated with the downregulation of NET-

associated proteins and suppression of NET formation (8).

Similarly, two studies from Chinese inflammatory bowel disease

centers demonstrated that NET levels were inversely correlated with

tissue infliximab concentrations and mucosal healing outcomes in

Crohn’s disease, an IBD subtype with pathophysiological

similarities to UC. These findings collectively support a potential

mechanistic link between NET activity and reduced therapeutic

efficacy of anti-TNF agents in UC.
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One proposed mechanism involves elevated neutrophil elastase

activity within the UC mucosa, which may proteolytically degrade

anti-TNF biologics, contributing to treatment failure (24).

Moreover, NET are known to upregulate proteolytic enzymes

such as matrix metalloproteinases, which further facilitate the

degradation of anti-TNF-a agents and compromise therapeutic

effectiveness (24).

During our investigation of NET-associated gene expression, we

observed upregulation of IL1RN, FCGR3B, S100A9, S100A8, and

CXCL8 in patients with UC. Among these, IL1RN and FCGR3B
FIGURE 8

Construction and validation of the predictive model for anti-tumor necrosis factor alpha (anti-TNF-a) non-response. (A) Treatment response to
golimumab among patients with ulcerative colitis (UC) in the GSE92415 dataset. (B, C) Cross-validation for optimal parameter tuning using least
absolute shrinkage and selection operator regression analysis. (D) Receiver operating characteristic (ROC) curves evaluating the predictive
performance of IL1RN, FCGR3B, and the nomogram for identifying golimumab non-responders in GSE92415. (E, F) ROC curves assessing the ability
of IL1RN, FCGR3B, and the nomogram to predict infliximab non-response in external validation datasets GSE12251 and GSE16879. (G) Nomogram
for predicting anti-TNF-a non-response in patients.
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emerged as strong predictors of non-response to golimumab. This

association was further validated in an infliximab non-response

dataset, reinforcing the link between NET activity and resistance to

anti-TNF therapy.

FCGR3B encodes a low-affinity receptor for the Fc portion of IgG

and is expressed almost exclusively on neutrophils (25). It plays a critical

role in NET activation (26). Genome-wide association studies have

identified FCGR3B copy number variations as being associated with UC

susceptibility in Japanese populations (27). Additionally, proteome-wide

Mendelian randomization analysis has shown that circulating FCGR3B

levels are associated with UC risk (28). Our findings further support that

FCGR3B expression correlates positively with UC disease activity and is

linked to non-responsiveness to golimumab and infliximab. Therefore,

FCGR3B holds potential as a diagnostic biomarker and a therapeutic

target in UC.

IL1RN, a member of the interleukin 1 cytokine family, functions

to suppress the activity of interleukin 1 alpha (IL1A) and interleukin

1 beta (IL1B), thereby modulating a broad range of interleukin 1-

mediated immune responses and promoting NET formation (7, 29).

Knockout studies have shown that Il1rn-deficient mice

spontaneously develop colitis with high mortality. However, in

our study, increased expression of IL1RN was positively

correlated with UC severity. A possible explanation for this

discrepancy is that genetic variations may impair IL1RN

functionality, such that even elevated expression levels fail to

suppress inflammation effectively (30, 31).

CXCL8, which encodes interleukin-8 (IL-8), is a key chemokine

involved in the recruitment of neutrophils to inflammatory sites

through chemotactic signaling (32). In our analysis, CXCL8

expression was positively correlated with UC disease activity. This

finding aligns with a study by Skrzypczak-Zielińska et al., which

reported that the CXCL8 c.91T allelic variant adversely affects disease

progression in patients with IBD (32). CXCL8/IL-8 has been shown to

promote NET formation, impair wound healing in type 2 diabetes (33),

and contribute to enhanced neutrophil infiltration and NET

production in the synovium of rheumatoid arthritis (34). Moreover,

therapeutic targeting of CXCL8 reduces neutrophil infiltration,

suppresses NET formation, and inhibits tumor progression (35).

These findings suggest that CXCL8 exacerbates UC by promoting

NET formation. However, the specific mechanisms through which

CXCL8 drives NET formation in colitis remain unresolved and warrant

further investigation.

S100A8 and S100A9 are calcium- and zinc-binding proteins that

primarily function as the heterodimer calprotectin (S100A8/A9). This

complex mediates neutrophil chemotaxis and adhesion and plays a

crucial role in regulating inflammatory responses (36). Our study

demonstrated a strong positive correlation between S100A8/A9

expression in colonic tissue and UC disease activity. Similarly, fecal

S100A8/A9 levels are well-established, noninvasive biomarkers for

monitoring intestinal inflammation in UC (36). Peptides targeting

S100A8/A9 at the intestinal mucosa have been shown to ameliorate

colitis in murine models (37). S100A8/A9 also contributes to NET

formation by enhancing intracellular reactive oxygen species

production in neutrophils, which in turn accelerates peptidylarginine

deiminase 4 (PAD4)-mediated NET formation, thereby exacerbating
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neuroinflammation (38). Therefore, S100A8/A9 may likewise

contribute to UC pathogenesis via NET promotion. Nonetheless,

further studies are needed to elucidate the precise mechanisms by

which CXCL8 and S100A8/A9 drive NET formation in colitis.

To better apply our research findings to clinical practice, we

constructed two nomograms (39). The first nomogram, designed for

diagnostic purposes, incorporates the expression levels of IL1RN,

FCGR3B, S100A9, S100A8, and CXCL8 to effectively distinguish

patients with UC from healthy individuals. The second nomogram

integrates IL1RN and FCGR3B expression levels to improve predictive

accuracy in assessing the likelihood of non-response to anti-TNF-a
therapies, including golimumab and infliximab. Although multiple

models have been developed to predict the therapeutic response to

infliximab, relatively few have focused on golimumab. Our model

demonstrates high predictive performance for golimumab response,

underscoring its clinical relevance. Although both drugs target TNF-a,
differences in their manufacturing processes may account for the

observed discrepancies in model performance.

Notably, the predictive accuracy of our model varied across

international UC cohorts (GSE12251, U.S. cohort; GSE16879,

Belgian cohort) treated with infliximab, suggesting that ethnic or

regional differences may influence treatment outcomes.

Despite the promising diagnostic and prognostic potential of

NET-associated genes in UC, several limitations warrant

consideration. The models were developed exclusively using

retrospective datasets; thus, prospective validation studies are

essential to confirm the reliability. Although we observed strong

correlations between NET-associated hub genes and anti-TNF-a
treatment failure, further mechanistic studies are required to

elucidate how these genes contribute to therapeutic resistance.

In conclusion, NET-associated UC clusters exhibited

differential responses to anti-TNF-a therapy. Increased expression

of five hub genes was closely associated with disease severity and

poor prognosis. Using these genes, we developed a predictive model

for identifying patients with UC at risk of non-response to anti-

TNF-a treatment. These findings offer valuable insights for

improving clinical management and guiding therapeutic decision-

making in UC.
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