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Biological mechanisms of
pulmonary inflammation and its
association with seropositive
rheumatoid arthritis
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Beijing, China, 2Department of Emergency, Suzhou Hospital of Traditional Chinese Medicine,
Suzhou, China
Although the pathogenesis of seropositive rheumatoid arthritis (RA) remains

unclear, studies suggest that pulmonary inflammation-related biological

mechanisms play a significant role in its development. This review thoroughly

explores the mechanisms underlying early pulmonary lesions in seropositive RA,

focusing on the mucosal barrier hypothesis, neutrophil extracellular traps,

pathogenic microbial infections like COVID-19, Vitamin D, the microbiome and

gut-lung axis, inhalation exposures and chronic pulmonary diseases. This study

seeks to provide novel insights and theoretical foundations for the prevention

and treatment of seropositive rheumatoid arthritis.
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1 Introduction

Rheumatoid Arthritis (RA) is a systemic autoimmune disease manifesting as chronic

inflammatory polyarthritis, which can ultimately lead to joint deformity and loss of

workforce productivity (1). Abnormal protein citrullination and the formation of anti-

citrullinated protein antibodies (ACPA) are critical pathogenic mechanisms in RA and are

associated with severe joint lesions and extra-articular organ damage (2–4). Rheumatoid

factor (RF) is an autoantibody that primarily targets the Fc fragment of IgG antibodies (5).

Seropositive RA refers to rheumatoid arthritis where patients exhibit the presence of RF or

ACPA, often involving early damage to lung tissue (6). Inflammation-related mechanisms

in the lungs are crucial in the onset and progression of seropositive RA, involving the

mucosal barrier hypothesis, neutrophil extracellular traps, pathogenic infections like

COVID-19, Vitamin D, the microbiome and gut-lung axis, inhalation exposures and

chronic pulmonary diseases (7–10).

Therefore, exploring the role of pulmonary inflammation-related biological mechanisms in

the pathogenesis of seropositive RA holds significant clinical implications. This review explores

how pulmonary inflammation influences the onset and progression of seropositive RA, offering

insights and theoretical foundations for its early detection, diagnosis, and treatment.
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2 Seropositive rheumatoid arthritis

The global prevalence of RA has remained approximately 0.46%

over the last 40 years (11). RA is an autoimmune disease mainly

characterized by synovitis, with pulmonary involvement frequently

examined as an extra-articular manifestation (12). RA is categorized

into seropositive and seronegative types based on the presence of RF

and ACPA, showing notable differences in risk factors, clinical

features, and prognosis (13). The diagnosis of seropositive RA relies

on the detection of key biomarkers, such as RF and ACPA (14, 15).

However, many studies have shown that seropositive RA

patients may exhibit RA-specific biomarkers in the blood for

years without meeting the clinical or histological criteria for joint

pathology (16–18). The occurrence of ACPA or RF serological

markers prior to joint pathology suggests that joint involvement

may not be the initial site of disease manifestation in seropositive

RA patients. Although this hypothesis is yet to be systematically

validated or supported by sufficient evidence, the possibility of

pulmonary inflammatory lesions serving as the initial autoimmune

site in seropositive RA is gaining increasing attention (19).

Therefore, this study provides a comprehensive review of the

potential link between pulmonary inflammation-related biological

mechanisms and seropositive RA.
3 Biological mechanisms of
pulmonary inflammation and
seropositive rheumatoid arthritis

3.1 Mucosal barrier hypothesis

The large mucosal surface area of the lungs is exposed to the

external environment, coming into direct contact with antigens,

pollutants, and microorganisms, thereby maintaining a relatively

active immune response over time (20). Recurrent lung

inflammation can persistently activate mucosal immunity,

potentially resulting in abnormal protein and autoantibody

production, which may progress to affect the synovial tissue. In

studies on the preclinical stage of seropositive RA, serum samples

from high-risk individuals show elevated inflammatory factors,

altered T-cell phenotypes, and expanded autoantibody profiles (7,

21–28). Additionally, the serum biomarker patterns in high-risk

individuals were consistent with those found in retrospective

studies of RA patients (7). Therefore, studying the origin of these

biomarkers in high-risk populations for seropositive RA is of great

significance, as pulmonary mucosal inflammation may be one of the

causes of immune abnormalities in these individuals. Research on

mucosal immunity indicates that IgA-ACPA and RF emerge long

before the onset of joint symptoms in seropositive RA. The

production of IgA isotypes ACPA and RF is common in mucosal

tissues and has been shown to be associated with local mucosal

inflammation (29–31). Through sequencing and characterization of

plasmablasts in high-risk individuals, control subjects, and early

seropositive RA patients, IgA and IgG antibodies have been
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phylogenetically shown to have a close relationship (32–34). The

compromised mucosal barrier integrity can lead to antibodies

entering the systemic circulation (35). This indicates that in

seropositive RA, a persistent immune response linked to mucosal

antigens might occur, with mucosal barrier dysfunction and

systemic spread of IgG autoantibodies potentially being crucial

early events in preclinical development.
3.2 Neutrophil extracellular traps

Neutrophil extracellular traps (NETs) are web-like structures

composed of DNA and neutrophil-derived proteins that can rapidly

control infections and exert immune functions, inducing local

inflammation and tissue damage (36). The persistent activation of

neutrophils and the formation and scaffolding role of NETs are closely

associated with the local production of IgA ACPA in the lungs (37).

During pulmonary infections, inflammatory mediators released at the

infection site, together with locally produced ACPA, can trigger the

formation of NETs through a process known as NETosis. Notably, in

patients with RA-associated pulmonary inflammation, neutrophils

demonstrate a markedly increased ability to form NETs (38).

Growing evidence indicates that chronic airway inflammation

contributes to the onset of seropositive RA by promoting NETosis,

which leads to the breakdown of immune tolerance (39). Furthermore,

the citrullination of various proteins within NETs has been

identified as a critical factor driving ACPA production during the

progression of RA (40). This process further amplifies NETosis by

activating inflammasomes in macrophages, thereby promoting an

immunogenic and pro-inflammatory microenvironment (41). The

generation of ACPA and the persistence of inflammatory conditions

are key mechanisms that drive the onset and progression of

seropositive RA. During NET formation or apoptosis, elevated

intracellular calcium concentrations lead to Ca²+ binding to the

Ca²+-binding sites of peptidylarginine deiminases (PADs), resulting

in their conformational activation (42). Activation of PADs enhances

ACPA production, thereby contributing to the autoimmune

pathogenesis of seropositive RA. The link between PAD activity and

inflammatory states has been experimentally validated, with both

factors working synergistically to drive the formation of NETs (43).

Through these mechanisms, immune tolerance is compromised,

establishing a self-perpetuating inflammatory state. The systemic

spread of seropositive RA-associated immune cells, autoantibodies

(particularly ACPA), and inflammatory mediators via the

bloodstream constitutes a crucial pathway that drives both the onset

of immune dysregulation and the ongoing inflammation characteristic

of seropositive RA. Disruption of this process can exacerbate

inflammation and tissue damage, creating a vicious cycle, and the

notable inhibitory effects of specific PAD4 inhibitors on protein

citrullination and NET formation provide supporting evidence for

this hypothesis (43, 44).

The body has mechanisms to limit this vicious cycle. Myeloid

inhibitory C-type lectin-like receptor (MICL) is predominantly

found on myeloid cell surfaces, functioning as an inhibitory

receptor. It regulates local immune responses, particularly the
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inflammatory response during cell death (45–47). The study by

Malamud et al. demonstrated that MICL can recognize DNA within

NETs and regulate NET formation by inhibiting neutrophil

activation. Deficiency or inhibition of MICL triggers excessive

NET formation via the ROS-PAD4 pathway, establishing a

pathogenic autoinflammatory feedback loop in seropositive RA.

They also confirmed a significant increase in anti-MICL

autoantibody titers in the early stages of seropositive RA, with a

correlation between anti-MICL antibody levels and ACPA levels

(48). Therefore, anti-MICL antibodies produced in seropositive RA

patients may be one of the factors that promote disease onset. When

NETs are released, the resulting citrullinated neoepitopes promote

the production of ACPA. Loss or inhibition of MICL function

increases NET formation, leading to the development of a positive

feedback loop in autoimmunity (49).

Furthermore, abnormal expression of the protein tyrosine

phosphatase, non-receptor type 22 (PTPN22) gene leading to

hypercitrullination of proteins can increase the propensity for

NET formation, which is not uncommon in seropositive RA

patients (50, 51). PTPN22 is a phosphatase involved in regulating

immune responses and can also inhibit the process of histone

citrullination (52). In peripheral CD4+ T cells, dysfunction of the

PTPN22 gene may lead to abnormal protein citrullination, elevated

Th17 cytokines, and decreased Th2 cytokines (52). This indicates

that CD4+ T cells with dysfunctional PTPN22 are more prone to

inflammation, aligning with mucosal inflammation and potentially

linked to ACPA production.
3.3 Pathogenic microbial infections and
COVID-19

The lungs are a common site for pathogenic microbial infections

that cause tissue damage and trigger inflammation. During the

inflammatory process, the pattern recognition receptor NOD-like

receptor protein 3 (NLRP3) can detect and respond to pathogenic

stimuli, assembling the NLRP3 inflammasome and activating caspase-

1, which induces pyroptosis and promotes the maturation of

interleukin-1 (IL-1b) and IL-18, thereby triggering an inflammatory

response (53). This mechanism is particularly relevant in infections

with certain serotypes of Streptococcus pneumoniae (54). Excessive

activation of NLRP3 may be associated with the pathogenesis of

seropositive RA. IL-1b is a key pro-inflammatory factor that

facilitates inflammation by recruiting leukocytes, promoting systemic

inflammation, inducing IL-12 to boost interferon-g (IFN-g)
production, driving Th17 or Th9 cell differentiation, stimulating

naive CD8+ T cell proliferation, differentiation, and migration, and

promoting the proliferation of B cells and the synthesis of antibodies

(55–62). IL-18 can direct Th1 responses and induce the production of

IFN-g and IL-8 (63–67). IL-18 originating from epithelial cells can also

modulate the differentiation of Th17 cells and the functionality of

regulatory T cells (Tregs). Moreover, a dysregulation in the Th17/Treg

balance has been implicated in the pathogenesis of seropositive RA (66,

67). ACPA found in seropositive RA patients can enhance the

expression of NLRP3 and IL-1b. This aberrant activation may
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establish a deleterious feedback loop in the lungs of seropositive RA

patients, aggravating the disease condition (Figure 1) (68).

In addition, cytokines can play a significant role in the

pathogenesis and progression of seropositive RA through other

pathways. IL-1b can activate C/EBPb, which, either alone or in

synergy with NF-kB, upregulates the expression of factors such as

tumor necrosis factor a (TNF-a), IL-1b, and IL-6, thereby

exacerbating the inflammatory response in seropositive RA (69).

IL-6 is widely involved in immune regulation and inflammatory

responses and is a key factor in cytokine storms. Overproduction

and unregulated receptor signaling may contribute to inflammatory

diseases (70). IL-6 can influence the autoimmune response in

seropositive RA by promoting Th17/Treg imbalance and can

synergize with IL-21 to mediate antibody production, further

exacerbating autoantibody production in seropositive RA (71, 72).

The massive release of cytokines triggered by pathogenic

microbes may also cause immune dysregulation in other ways,

inducing the onset of seropositive RA autoimmunity. Jonsson et al.

(73) identified a novel population of CD8+ T cells with reduced

cytotoxicity that can be rapidly activated by cytokines and produce

high concentrations of IFN-g and TNF-a, playing a key role in

driving inflammation. These cells exhibit clonal expansion in

inflamed tissues and can be activated both by cytokines such as

IL-12 and in an antigen-specific manner, potentially linked to

NLRP3 inflammasome-mediated inflammatory responses. This

population is present in the blood, can migrate between tissues

without changing phenotype, and shows higher enrichment in

inflamed tissues. The characteristics of this novel CD8+ T cell

population suggest that it may be one of the mechanisms by

which pulmonary inflammation contributes to seropositive RA.

Cytokines may also play a crucial role in the pathogenesis of

seropositive RA through the action of macrophages. Simmons et al.

(74) demonstrated that signaling lymphocytic activation molecule

family member 7 (SLAMF7) a receptor associated with macrophage

hyperactivation in RA, and confirmed the presence of a SLAMF7

hyperactivated macrophage population in the synovial fluid of

seropositive RA patients and in the lung tissue of COVID-19

patients. IFN-g is a key regulator of SLAMF7 expression, driving

robust expression of SLAMF7-mediated inflammatory factors and

inducing a TNF-a autocrine signaling loop that amplifies

inflammation. The novel CD8+ T cell population may contribute to

the activation of this pathway by secreting large amounts of IFN-g. This
finding suggests a significant impact of COVID-19 on RA, though the

relationship between the two requires further elucidation. Previous

research indicates that TNF-a, a pro-inflammatory factor, contributes

to the development of seropositive RA. However, it can also induce the

expression of IL-7R on monocytes in the blood of seropositive RA

patients, conferring anti-inflammatory properties on these monocytes

(75). The imbalance between macrophage-mediated inflammatory and

anti-inflammatory responses in RA patients may be one of the factors

contributing to the disease’s onset and progression.

The COVID-19 pandemic has profoundly affected human health.

During the COVID-19 pandemic, the overall incidence of RA

increased significantly, particularly for seropositive RA (IRR = 1.60),

suggesting an association between COVID-19 and seropositive RA
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(76). SARS-CoV-2, the virus responsible for COVID-19, can trigger

autoimmune responses via inflammation and immune reactions,

utilizing mechanisms like epitope spreading, molecular mimicry, and

bystander activation (77). During the immune response to viral

infection, interferon (IFN) is a key cytokine in antiviral immunity.

Autoantibodies against IFN were detected in 13.7% of severe

COVID-19 patients, indicating immune dysregulation in the context
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of SARS-CoV-2 infection (78). SARS-CoV-2 infection can also induce

the generation of various autoantibodies. The acute phase is

characterized by a severe inflammatory response, while the persistent

inflammatory response observed during the recovery phase is

associated with multiple autoimmune diseases (79).

COVID-19 primarily affects the lungs and can trigger excessive

immune responses and cytokine storms, leading to severe pneumonia
FIGURE 1

The vicious cycle in the lungs of seropositive rheumatoid arthritis patients. Inflammation triggers the NF-kB signaling pathway via pathogen-
associated molecular pattern (PAMP) or damage-associated molecular pattern (DAMP) receptors, leading to the expression of NLRP3 and IL-1b.
NLRP3 proteins assemble into the NLRP3 inflammasome complex, activating caspase-1 to trigger pyroptosis and facilitate the maturation of IL-1b
and IL-18, thereby initiating downstream immune responses. The NLRP3-mediated inflammatory response can ultimately promote B cell
proliferation and antibody production as well as T cell proliferation, differentiation, and cytokine release. ACPA enhances the expression of NLRP3
and IL-1b. This abnormal activation may create a vicious cycle in the lungs of seropositive RA patients and potentially lead to a cytokine storm.
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(80). Overproduction of factors like IL-6, IL-1b, and TNF mirrors the

inflammatory response observed in RA. COVID-19 and seropositive

RA both involve abnormal immune cell activation, resulting in tissue

damage and inflammatory cell infiltration (81). SARS-CoV-2 infection

can induce excessive inflammatory responses in seropositive RA

patients by activating the NLRP3/CASP1 pyroptosis pathway and

may enhance autoantibody production through similar mechanisms

(82). In addition to the inflammatory response induced by innate

immunity, an alternative and extrafollicular immune response to

SARS-CoV-2 occurs in pulmonary tissues, which alters humoral

immunity and memory T cell responses (83). This ultimately leads

to breakdown of immune tolerance and generation of seropositive RA-

associated autoantibodies. Studies have confirmed that the spike

glycoprotein of SARS-CoV-2 shares 13 of 24 pentapeptides with

pulmonary surfactant protein, which may contribute to specific

immune responses and cross-reactivity following SARS-CoV-2

infection, potentially triggering seropositive RA (84). Moreover,

studies demonstrate that impaired NET degradation in severe

COVID-19 establishes a vicious cycle of NETosis and ACPA

production, perpetuating a pro-inflammatory milieu in seropositive

RA patients (85). Prolonged immune activation from COVID-19 may

result in persistent autoantibodies, potentially causing seropositive RA.

Additionally, SARS-CoV-2 infection may ultimately lead to pulmonary

fibrosis, sharing similar mechanisms with RA-associated interstitial

lung disease (RA-ILD), which will be discussed further (86).
3.4 Vitamin D

Vitamin D is crucial for infection resistance, inflammation

reduction, and immune balance regulation (87). Vitamin D

deficiency may exacerbate the burden of autoimmune diseases, a

concern that is particularly pronounced during the COVID-19

pandemic (88). Vitamin D requires activation within the body to

exert its physiological functions, and various immune cells can

express vitamin D receptors and activating enzymes (89). 1,25-

Dihydroxyvitamin D, the active form of vitamin D, promotes Th2

differentiation and the secretion of anti-inflammatory cytokines

while reducing Th1 differentiation and the secretion of pro-

inflammatory cytokines (such as IL-2, IFN-g, and TNF-a). It also
regulates the Th17/Treg balance and can inhibit the differentiation

or maturation of naive B cells, indicating its potential to

downregulate the activity of seropositive RA (90–92). Research on

early RA patients indicates that vitamin D deficiency correlates with

disease activity and serves as a predictive biomarker for disability

progression within a year (93). Therefore, vitamin D potentially

regulates pulmonary inflammation and may slow the progression of

seropositive RA.
3.5 Microbiome and the gut-lung axis

The human microbiome, comprising all microorganisms

residing in body cavities and on surfaces, impacts the host’s

immune system via microbial antigens and metabolic products
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(94, 95). It is crucial for sustaining homeostasis and supporting

immune function (96). Previously considered sterile, the lungs are

the largest organ directly interacting with the environment (10, 97).

Recent studies have identified the presence of bacteria in human

lungs, noting their alterations in lung diseases and their links to

alveolar immunity and disease outcomes (98, 99). The lung

microbiome’s composition is mainly shaped by three factors: (i)

the microbiota from the oral cavity, stomach, and air; (ii)

mucociliary escalator and cough reflex clearance mechanisms; (iii)

the local physicochemical conditions within the lungs (100). When

lung inflammation occurs, the balance of these three factors may

shift, potentially leading to alterations in the microbiome.

Pulmonary microbiota typically develops in areas of bronchial

alteration, with a composition similar to that of the oropharynx but

with a lower bacterial load (101). The pulmonary microbiota may

be influenced by various regulators, impacting lung health. Vitamin

D deficiency is linked to alterations in microbial populations and is

associated with bronchiectasis and bacterial colonization (102).

Alterations in the lung microbiota could significantly influence

the progression of seropositive RA. Research indicates that

seropositive RA patients exhibit significantly reduced microbial

diversity and population imbalances in bronchoalveolar lavage

samples compared to healthy individuals. Additionally, the

disease activity of seropositive RA is significantly positively

correlated with Micrococcus and Renibaterium (103). Therefore,

alterations in the pulmonary microbiota are associated with

seropositive RA; however, further research is needed to establish a

causal relationship between the two.

The gut and lungs share a degree of homology in tissue

embryology, resulting in certain similarities in their mucosal

structure and function (104). The potential anatomical

connections between the gut and lungs, along with the complex

microbiota-related pathways involved, further support the existence

of the gut-lung axis (105). Research indicates that changes in gut

microbiota can influence lung immune responses via mechanisms

involving Treg cells, toll-like receptors (TLRs), and inflammatory

factors (106). Therefore, disruption of the gut microbiota is

associated with various pulmonary diseases, including chronic

obstructive pulmonary disease (COPD), asthma, cystic fibrosis,

and interstitial lung disease (ILD) (100, 105, 107). These diseases

may have an important impact on the development and progression

of seropositive RA, which will be discussed in the following section.

RA. Structural changes in the gut microbiota, through direct or

indirect effects, can impact the onset of seropositive RA by

decreasing anti-inflammatory microbes and increasing pro-

inflammatory microbes (108). Studies have confirmed that the

number of short-chain fatty acid-producing bacteria is

significantly reduced in RA patients, while oral colonizing

bacteria are increased. This transition results in decreased short-

chain fatty acid-related metabolites and elevated amino acid and

carbohydrate metabolites. These alterations show a positive

correlation with pro-inflammatory cytokines like IL-6 and a

negative correlation with anti-inflammatory cytokines such as IL-

12, potentially affecting pulmonary inflammation via the gut-lung

axis (109).
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Pulmonary infections or chronic inflammation may alter the

microbiota in both the lungs and gut, impacting local mucosal

immune responses through multiple pathways and ultimately

influencing joints via systemic inflammation (110). In seropositive

RA patients, changes in the microbiota may affect the severity of

joint symptoms, thereby influencing the assessment of seropositive

RA activity. Animal studies on RA often use a collagen-induced

arthritis model. During the preparation of this model, arthritic mice

exhibit dysbiosis of the gut microbiota, and transplanting fecal

matter from these arthritic mice to germ-free mice accelerates the

development of arthritis (111). Another experiment demonstrated

that using broad-spectrum antibiotics to modulate the microbiota

prior to arthritis induction can reduce disease severity, while

administering antibiotics in the late stages of arthritis induction

can almost completely suppress the arthritis (112). This suggests

that the role of the microbiome in the preclinical and clinical

development of RA is multifaceted, potentially influencing various

stages of the autoimmune initiation process, thereby impacting the

activity of RA.

Mucosal dysbiosis can also trigger persistent mucosal

inflammation, activate local innate immunity, and drive the

disruption of the mucosal barrier, leading to the translocation of

bacterial DNA, endotoxins, and other substances into circulation,

which subsequently induces the production of systemic IgG

autoantibodies (113, 114). The alleviation of mucosal

inflammation in the lungs, intestines, and other sites is associated

with substances such as resolvins (115, 116). Resolvins and

protectins belong to the bioactive mediators synthesized from

omega-3 polyunsaturated fatty acids (n-3 PUFAs). They are

capable of reducing cellular activation and inflammation

mediated by immune complexes (117). Chronic mucosal

inflammation can lead to significant depletion of n-3 PUFAs,

causing reduced circulating levels in RA patients (118). In

patients with RA, persistent mucosal inflammation can deplete n-

3 PUFAs, resulting in lower circulating levels (119, 120). This

suggests a potentially close association between local mucosal

inflammation, autoantibody production, and n-3 PUFA levels.

Excessive mucosal inflammation and n-3 PUFA deficiency may

both be essential factors for the persistent progression of RA.

Moreover, the mucosal microbiome may influence the

development of seropositive RA through additional mechanisms.

Alterations in mucosal surface microorganisms can lead to the

occurrence of cross-reactivity, partially supporting a causal

relationship between mucosal exposure, dysbiosis, and the

progression of high-risk individuals to active RA (121). In

seropositive RA patients, antigens carried by certain organisms

can cross-react with ACPA (122), which may represent a key

mechanism driving and influencing disease progression. It is

currently known that seropositive RA is strongly linked to

periodontitis resulting from Porphyromonas gingivalis infection,

with underlying mechanisms involving molecular mimicry and

specific antibody formation (123, 124). The periodontal pathogen

Porphyromonas gingivalis encodes a PAD enzyme that citrullinates

both bacterial and host proteins (125). Furthermore, periodontal

abscesses can trigger the release of NETs, which, along with the
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aforementioned factors, contribute to the detection of ACP in the

gingival crevicular fluid. These findings support the association

between periodontal disease and increased citrullination within the

inflammatory environment, which in turn impacts systemic ACPA

levels (126–128). Previous studies have also demonstrated a link

between oral bacteremia and RA flare-ups (129). Silva et al. (130,

131) confirmed a positive correlation between the severity of

periodontitis and RA disease activity, showing that treatment of

periodontal disease in RA patients was associated with a decrease in

ACPA levels. They further noted that this reduction in ACPA was

observed only in patients with baseline IgG ACPA levels below 150

AU (P = 0.006). These results support the hypothesis that ACPA

responses are triggered and sustained within the gingival mucosa,

and given the anatomical and microbiological similarities between

the lung and oropharyngeal mucosa, this process may also influence

the development of pulmonary mucosal responses.

In addition to the influence of the oral microbiota, the gut

microbiota may also drive the development of seropositive RA

through its interference with the immune system. Research by

Pianta et al. (132) indicates a significant association between

Prevotella species and the onset of RA. Prevotella can induce Th1-

type immune responses, promote the production of ACPA-

associated IgA antibodies and Prevotella DNA-associated IgG

antibodies, and facilitate systemic dissemination of Prevotella

DNA through phagocyte-mediated mechanisms. In addition to

phagocytes, lymphocyte subsets in the mucosa can also migrate to

other sites via circulation (133). Therefore, the interactions between

immune cells and the microbiome may not only manifest locally but

also influence immune and autoimmune responses in other tissues.

This could be a critical step in the immunological dysregulation of T

cells and B cells, wherein their activation occurs locally, such as in

the lungs or intestinal mucosa, subsequently triggering systemic

immune responses.

The composition of the pulmonary mucosal microbiome

remains under investigation and is of significant importance to

the onset and progression of seropositive RA. The relationship

between the mucosa, its associated microbiome, and seropositive

RA warrants further exploration.
3.6 Inhalation exposure and chronic
pulmonary diseases

Inhalation exposure ’s potential contribution to RA

development has been widely researched (134). Inflammatory

responses induced by the inhalation of toxic substances can

promote the accumulation and activation of pulmonary antigen-

presenting cells, induce the expression and activation of PAD, and

enhance protein citrullination in the lungs, ultimately leading to the

production of ACPA (135). Smoking has been established as a

significant risk factor for seropositive RA, playing a pivotal role in

the initial formation of RF and ACPA (136). In addition, air

pollution factors such as silica, biomass burning, and PM2.5 are

associated with higher rates of ACPA positivity (137–139). Studies

have shown that the relationship between air pollution and RA-
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associated autoimmunity differs between high-risk individuals and

seropositive RA patients (140). It is possible that air pollution may

contribute to the progression of RA by facilitating the transition of

RA-associated autoantibodies from pulmonary inflammation to

synovitis. Aspiration of gastric contents due to gastroesophageal

reflux disease, alongside environmental factors, is a risk factor for

seropositive RA (141).

Inhalation exposures, including smoking, are risk factors for

seropositive RA and contribute to chronic inflammatory lung

diseases (142, 143). This may be one of the reasons for the close

relationship between RA and chronic inflammatory pulmonary

diseases. Inhalation exposure-induced pulmonary injury causes

chronic inflammation in the lungs, which sustains the immune

system in a state of prolonged high stress, potentially triggering and

advancing seropositive RA via mechanisms like reactive oxygen

species-induced tissue damage, airway remodeling-induced chronic

hypoxia, molecular mimicry-driven autoimmunity, and chronic

infections that enhance joint-specific susceptibility (144). Clinical

evidence supports the involvement of airway processes in

seropositive RA, showing the frequent coexistence of persistent

airway inflammation and ACPA positivity both before and during

disease onset (19). This likely reflects a key mechanism underlying

the breakdown of immune tolerance and the persistence of

inflammation in patients with seropositive RA. Related diseases

include ILD, COPD, bronchiectasis, asthma, and others.

Epidemiological studies have found a significantly increased

prevalence of pulmonary diseases during the preclinical phase of

seropositive RA, supporting the notion that pulmonary diseases

may be a risk factor for the development of seropositive RA (145).

During the diagnosis of seropositive RA, ACPA demonstrate high

specificity. However, ACPA can also be detected in some patients

with chronic pulmonary diseases who have not yet been diagnosed

with RA. This group has a significantly increased likelihood of

developing seropositive RA in the future (146). The detection of

ACPA prior to the clinical diagnosis of RA may be related to

mucosal immune responses triggered by pulmonary inflammation.

Research by Kelmenson et al. (147) indicates that during the period

surrounding the clinical diagnosis of seropositive RA, the positivity

rate of IgA-ACPA significantly increases, while the positivity rate of

IgG-ACPA remains stable. This phenomenon suggests that IgA-

dominated mucosal immunity may drive the onset of seropositive

RA. Studies on lung biopsies and bronchoalveolar lavage fluid from

early seropositive RA cases have shown that ACPA produced in the

lungs shares some similar characteristics with ACPA produced in

the joints (148). Moreover, structural abnormalities and

inflammatory manifestations in the lungs may be associated with

this process (149). The induction of bronchus-associated lymphoid

tissue is a common structural abnormality in chronic pulmonary

inflammation and is frequently detected in patients with

seropositive RA (148). This structure has been shown to be

associated with the local production of RF and ACPA (150).

ILD is often discussed as a consequence of the progression of

seropositive RA. However, research indicates that abnormal protein

modifications and immune responses triggered by smoking or other

lung injuries can lead to ILD, which may subsequently induce
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secondary joint diseases, including seropositive RA (151). This

indicates that the lungs might be the first location for immune

tolerance disruption, with ILD possibly being the initial irregularity

in seropositive RA development. However, ILD does not necessarily

progress to RA. Multiple lines of evidence indicate distinct

inflammatory components in the progression of RA-ILD

compared to non-RA-related ILD. For instance, the influx of

CXCR3-positive lymphocytes suggests a high local concentration

of IFN-g and the activation of Th1-type immune responses (152).

Unlike non-RA-related ILD, the development of RA-ILD involves

factors closely related to RA itself, such as abnormal activity of

PAD, which is strongly associated with the production of

autoantibodies, including ACPA (153). Research by Brink et al.

(154) has demonstrated that ACPA is an independent risk factor for

RA-ILD, with 11 types of ACPA targeting different antigens being

associated with the development of pulmonary fibrosis.

COPD patients show increased pulmonary citrullination and a

greater likelihood of producing diverse autoantibodies compared to

those without airway diseases. This may increase susceptibility to

seropositive RA (155, 156). Previous studies have indicated a

significant association between seropositive RA and an increased

risk of subsequently developing COPD (157). Therefore, small

airway disease preceding the clinical diagnosis of COPD may be a

contributing factor to the onset of seropositive RA. Evaluations

performed on patients with similar small airway changes identified

through high-resolution CT, using induced sputum collection, have

detected RA-related IgA and IgG autoantibodies in the lungs, even

when serum ACPA or RF is undetectable (31). These autoantibodies

have been demonstrated to originate locally (30). Therefore, COPD

may play a facilitating role in the development of seropositive

RA, although further research is required to substantiate

this relationship.

Chronic bacterial infections in seropositive RA patients with

bronchiectasis may elevate autoantibody levels, indicating

bronchiectasis could contribute to seropositive RA progression

(158). However, although bronchiectasis may precede the joint

manifestations of RA, it is often regarded as a late complication

due to the immunosuppressive state of seropositive RA patients,

which predisposes them to recurrent infections (159). A study

involving seropositive RA patients without a clinical diagnosis of

arthritis provided evidence supporting the possibility that chronic

pulmonary inflammation triggers immune dysregulation in

seropositive RA. In this study, 14% of the patients had

bronchiectasis, and 76% exhibited pulmonary abnormalities (160).

These findings suggest that the lungs, under chronic inflammatory

conditions, may serve as the initial site for the production of

autoantibodies in seropositive RA. However, the precise correlation

and underlying mechanisms require further investigation to be

fully elucidated.

The impact of asthma on the development of RA has been a subject

of debate (161–164). However, a recent study indicates a correlation

between asthma and an increased risk of seropositive RA, particularly

over an extended period preceding its onset (> 0–10 years) (165). The

specific mechanisms by which asthma influences the onset and

progression of seropositive RA remain to be further investigated.
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3.7 Anti-citrullinated protein antibodies

Extensive research has demonstrated that seropositive RA is

closely associated with abnormal protein citrullination (166–168).

Studies have found that ACPAs are present in the sputum of

seropositive ACPA individuals without arthritis and are enriched in

the bronchoalveolar lavage fluid of early ACPA-positive RA patients

(31, 169). These phenomena suggest that pulmonary inflammation

may play a role in the early stages of seropositive RA development.

Repeated pulmonary inflammation leads to cellular damage and

apoptosis, resulting in the release of large amounts of calcium ions,

which activate PAD (170). PAD catalyzes the conversion of arginine

residues in proteins to citrulline residues, leading to the deposition of

citrullinated proteins in lung tissue. This disruption of immune

tolerance leads to the presentation of citrullinated proteins as

antigens by antigen-presenting cells, which triggers a specific

immune response and the production of ACPAs (Figure 2) (171–

174). The pulmonary inflammation-related biological mechanisms

mentioned above may influence the onset of seropositive RA by

triggering the extensive formation of ACPAs. Persistent pulmonary

inflammation impacts mucosal immune responses through various

pathways. In the progression from localized mucosal immune

dysregulation to systemic seropositive RA, characterized

predominantly by arthritis, several factors may play pivotal roles.
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These factors encompass shared antigenic targets between the lungs

and joints, epitope spreading to joint-specific antigens, and the

deposition of immune complexes within the joints (175).
4 The relationship between immune
responses and seropositive
rheumatoid arthritis inflammation

RA is a chronic, systemic autoimmune inflammatory disorder

driven by complex, multifactorial interactions that involve

dysregulation at various levels of the immune system (176).

Specifically, the innate and adaptive immune systems form a

coordinated yet dysregulated network that collectively drives both

the onset and progression of RA-associated inflammation (177).
4.1 Innate immunity

Accumulating evidence highlights the role of innate immunity

as both the initiator and perpetuator in the pathogenesis of

seropositive RA. Innate immune components not only trigger

the initial breach of self-tolerance but also actively sustain

inflammatory cascades throughout disease progression (178).
FIGURE 2

Formation and dissemination of anti-citrullinated protein antibodies in the lungs. Chronic pulmonary inflammation causes cellular damage and
apoptosis, releasing significant calcium ions that activate PAD. PAD facilitates the transformation of protein arginine residues into citrulline, which
disrupts immune tolerance, and triggers a specific immune response, resulting in ACPA production. The loss of mucosal barrier integrity caused by
pulmonary inflammation further facilitates the leakage of abnormally produced ACPA into systemic circulation.
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In addition to neutrophils and NETosis, the innate immune

landscape in seropositive RA prominently involves monocytes,

macrophages, and dendritic cells (DCs), which play critical roles

in disease initiation and perpetuation through processes such as

phagocytosis, antigen presentation, and cytokine production

(179, 180).

Under homeostatic conditions, the maintenance of peripheral

immune tolerance relies critically on immature dendritic cells

(imDCs), which continuously sample and present self-antigens

derived from tissue and blood (181, 182). Experimental evidence

shows that depletion of imDCs leads to spontaneous autoimmunity,

characterized by autoantibody production, inflammatory cell

infiltration in peripheral organs, and a systemic wasting

syndrome (183). The maturation of DCs is tightly regulated by

TLR activation and influenced by various factors, including

cytokines, hormones, vitamins, and environmental stimuli (178).

During maturation, DCs undergo phenotypic reprogramming,

marked by a downregulation of antigen uptake capacity and an

upregulation of migration markers, which enables their trafficking

to secondary lymphoid organs where they prime naïve T cells (184–

186). Clinically, the induction of tolerogenic DCs in RA patients

reduces activated T cell populations while increasing the Treg/

effector T cell ratio, highlighting the important role of DCs in the

pathogenesis of seropositive RA (187).

Research has shown that DCs in seropositive RA patients

overproduce a wide range of immune mediators, including pro-

inflammatory cytokines (such as IL-1, IL-6, IL-12, TNF, and IFN),

differentiation factors (such as macrophage colony-stimulating

factor and fibroblast growth factor), and chemokines (188–190).

These DC-derived factors play key roles in sustaining synovial

inflammation and are directly involved in several immunological

processes that underpin RA pathogenesis (191). Activated by these

inflammatory mediators, monocytes and macrophages not only

amplify their own inflammatory responses but also become major

producers of pathogenic cytokines, thereby driving a self-

perpetuating cycle of inflammation and tissue destruction, which

is central to RA pathogenesis and correlates with disease activity

(192–196).

Innate lymphoid cells (ILCs) and natural killer (NK) cells play

significant roles as regulators of inflammatory responses,

contributing to the pathogenesis of autoimmunity in a dual

manner (197). Studies have identified an altered ILC balance in

RA patients, characterized by reduced frequencies of ILC2s in

peripheral blood and synovial tissue, alongside an expansion of

ILC3s. ILC2s exert protective effects through IL-9-mediated

enhancement of Treg function, and their depletion is associated

with increased arthritis severity (198–200). In contrast, ILC3s

secrete IL-17 and other cytokines, which are now recognized as

key mediators linking airway inflammation to RA pathogenesis

(201–203). However, the precise role of NK cells in RA remains

incompletely understood (204). Current evidence points to a

compartmentalized dysregulation: activated NK cells accumulate

in the synovium but are reduced in peripheral blood (205, 206).

Synovial fluid analyses suggest that NK cells may exacerbate

RA progression through two mechanisms: (i) secreting
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pro-inflammatory cytokines such as TNF-a and IFN-g, and (ii)

promoting osteoclastogenesis through cellular crosstalk (206, 207).

Collectively, pro-inflammatory cytokines (such as TNF-a and

IFN-g) released by activated innate immune cells drive the maturation

of DCs, creating a self-amplifying loop that exacerbates innate

immune activation and bridges to adaptive immunity, ultimately

orchestrating the initiation and progression of seropositive RA.
4.2 Adaptive immunity

The breakdown of immune tolerance and the development of

adaptive immunity-driven autoantibodies are hallmark features of

seropositive RA. T lymphocytes and B lymphocytes, as key

mediators of adaptive immunity, work synergistically with DCs to

form a crucial link between innate and adaptive immune

responses (208).

B cells play a central role in the pathogenesis of seropositive RA.

Upon activation, they differentiate into autoantibody-producing

plasma cells that generate RF and ACPAs, which are hallmarks of

seropositive RA. In addition to their antibody-producing capacity, B

cells contribute to disease progression through cytokine-mediated

mechanisms, secreting pro-inflammatory factors including IL-1, IL-

6, IL-8, IL-12, and TNF-a. These cytokines not only amplify

immune dysregulation but also help establish and maintain a

chronic inflammatory microenvironment that perpetuates disease

activity (209, 210). B cell-derived cytokines also influence innate

immune responses. For instance, TNF-a and IL-6 can activate

synovial fibroblasts, while IL-8 promotes neutrophil infiltration——

both mechanisms are closely associated with joint destruction in RA

(211, 212). Additionally, IFN-g produced during innate immune

reactions can induce a significant increase in CXCR3+RANKL+ B

cells in RA patients. These cells may further recruit IFN-g-
producing Th1 cells and additional CXCR3+RANKL+ B cells to

the joint, establishing a pathogenic feedback loop that amplifies

joint inflammation in RA (213, 214).

T cells play a significant role in the adaptive immune

dysregulation of seropositive RA, particularly CD4+ T cells, which

drive inflammation and support antibody production by B cells

(215). The antigen-presenting function of innate immune cells,

such as DCs and macrophages, along with B cells, is crucial for T

cell activation (216). Upon activation, CD4+ T cells secrete pro-

inflammatory cytokines, including IL-17, IL-21, granulocyte-

macrophage colony-stimulating factor, TNF-a, IFN-g, and

CXCL13, which are essential for B cell recruitment and helper

functions. These cytokines also modulate innate immune responses,

representing a key mechanism in the initiation and perpetuation of

seropositive RA (217–221). The precise role of CD8+ T cells in RA

pathogenesis is still not fully understood. However, studies have

shown that CD8+ T cells in RA patients exhibit significantly

elevated IFN-g production and are crucial for the formation of

ectopic lymphoid neogenesis within the synovium, correlating with

higher titers of RF and ACPAs (222–225).

Beyond the direct pro-inflammatory effects of adaptive

immunity in RA, antibodies can also exert innate immune
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effector functions through their antigen-binding domains. These

mechanisms include antibody-dependent cellular cytotoxicity,

complement activation, and Fcg receptor-mediated cell activation,

all of which amplify inflammatory responses and contribute to joint

damage (178).

As outlined above, innate and adaptive immunity do not function

independently but rather work synergistically, creating a self-

reinforcing autoimmune feedback loop. Pathogenic factors, both

endogenous and exogenous, activate innate immune cells, triggering

the release of inflammatory mediators that, in turn, activate the

adaptive immune system. In response, activated adaptive immune

cells exacerbate innate immune responses through cytokine

production, further amplifying the inflammatory cascade and

breaking immune tolerance. Simultaneously, the cytokines and

other mediators produced by innate immunity actively regulate

adaptive immune responses, likely contributing to the dysregulation

of adaptive immunity and the destruction of adaptive immune cells.

Collectively, the intra- and extra-articular inflammation characteristic

of seropositive RA results from aberrant, mutually reinforcing

activation of both immune arms. Understanding their

interconnected regulatory mechanisms will not only reveal novel

therapeutic targets but also provide a conceptual framework for

future immune-modulatory strategies in seropositive RA.
5 Conclusions

In patients with seropositive RA, recurrent or chronic pulmonary

inflammation may be associated with the disease’s onset through

various biological mechanisms, underscoring the close relationship

between pulmonary inflammatory factors and RA development.

While seropositive RA is primarily characterized by joint

symptoms, its systemic and multi-organ involvement requires

greater emphasis. Among the extrajoint complications associated

with seropositive RA, pulmonary diseases are relatively common

and represent a significant cause of mortality in these patients. In

certain cases, the progression of seropositive RA may originate from

autoimmune processes in the lungs, manifest predominantly as joint

symptoms, and culminate in severe pulmonary involvement during

the disease’s terminal stages. The role of pulmonary immune

dysregulation in the course of RA remains incompletely

understood. The large volume and compensatory capacity of the

lungs may obscure histological changes that precede joint symptoms,

posing challenges for research into the mechanisms underlying

seropositive RA. Inflammatory responses triggered by various

pulmonary diseases need to be classified and studied in greater

detail based on their specific immune characteristics to clarify their

role in systemic immune dysregulation, thereby offering new avenues

for the prevention and treatment of autoimmune diseases such as

seropositive RA.

Studies have shown that the incidence of seropositive RA has

been increasing. Early identification of seropositive RA is critical for

reducing the disability associated with disease progression.

Autoantibodies such as ACPA and RF can be detected prior to

the clinical onset of seropositive RA, making them valuable for early
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diagnosis. As the close relationship between ACPA and pulmonary

diseases becomes increasingly evident, screening and monitoring

ACPA in individuals with long-standing pulmonary inflammation

or seropositive RA patients without overt lung disease is of great

significance. This may provide new hope for improving patients’

quality of life and extending their life expectancy. Additionally,

further exploration of related biomarkers and their implications for

systemic immunity is essential for advancing our understanding of

seropositive RA progression and prognosis.

Thus, the prevention and early treatment of pulmonary

inflammation should receive greater attention in the context of

seropositive RA management. From the perspective of mitigating

inflammation, maintaining a healthy microbiome, and

supplementing n-3 PUFAs and vitamin D may serve as adjunctive

measures for RA prevention and treatment. Recent studies have

provided new directions for controlling inflammation in seropositive

RA, including the suppression of inflammatory responses and the

induction or enhancement of anti-inflammatory mechanisms. These

strategies are particularly important for breaking the vicious cycles

associated with seropositive RA pathogenesis. However, because

these pathways are not unique to seropositive RA, they may

present challenges in the development of targeted therapies.

Further elucidation of the specific mechanisms underlying RA

pathogenesis is needed to minimize potential adverse effects

associated with new therapies.
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