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Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a severe

clinical syndrome characterized by high morbidity and mortality, primarily due

to lung injury. However, the pathogenesis of ALI/ARDS remains a complex issue.

In recent years, the role of macrophage pyroptosis in lung injury has garnered

extensive attention worldwide. This paper reviews the mechanism of

macrophage pyroptosis, discusses its role in ALI/ARDS, and introduces several

drugs and intervening measures that can regulate macrophage pyroptosis to

influence the progression of ALI/ARDS. By doing so, we aim to enhance the

understanding of the mechanism of macrophage pyroptosis in ALI/ARDS and

provide novel insights for its treatment.
KEYWORDS
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1 Introduction

ALI/ARDS is a common respiratory disease, which is an acute hypoxic respiratory

insufficiency caused directly or indirectly by various intrapulmonary or extrapulmonary

factors, with progressive hypoxemia and respiratory distress as the main clinical feature (1, 2).

About 3 million people suffer fromALI/ARDS around the world every year, and the mortality

is as high as 35%-46% (3). The risk factors for ALI/ARDS include direct and indirect lung

injuries. The direct factors include infectious pneumonia, aspiration of stomach contents and

severe trauma. On the contrary, indirect factors arise from a systemic inflammatory response

triggered outside the lungs, such as sepsis from non-pulmonary infections, non-thoracic

trauma, pancreatitis, severe burns, blood product transfusion, and reperfusion edema

following lung transplantation or thrombectomy (4). Currently, no effective treatment

exists to reduce mortality or improve the prognosis of patients with ALI/ARDS. Therefore,

exploring the pathogenesis of ALI/ARDS is crucial for developing effective treatments.

The pulmonary innate immune system serves as the first line of defense against external

stimuli by recognizing pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs). Innate immune cells located in the lung

epithelium play an essential role by producing pro-inflammatory factors to eliminate
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pathogens and releasing anti-inflammatory factors to maintain lung

homeostasis (5). Pulmonary macrophage is a critical cell of the

pneumonic innate immune system, expressing pattern recognition

receptors(PRRs) to recognize PAMPs and DAMPs (6). Once the

PAMPs or DAMPs are recognized by PRRs, macrophages will

initiate a series of immune responses, including inflammasome

activation and release of inflammatory cytokines. These processes,

in addition to removing pathogens, also lead to damage and

pyroptosis of macrophages. On the one hand, activated

inflammasomes recruit and activate inflammatory caspases and

subsequently lead to activation and release of pro-inflammatory

factors like IL-1b and IL-18, which further aggravates the

inflammatory response (7). On the other hand, activated caspases

can also cleave and activate gasdermin protein, contributing to cell

membrane perforation and cell swelling, eventually inducing cell

pyroptosis (8). Generally, macrophage pyroptosis contributes to the

occurrence and development of ALI/ARDS. However, the precise

regulatory mechanisms of macrophage pyroptosis remain

incompletely understood and involve a range of signaling

pathways and other regulatory networks (9, 10). The regulation of

macrophage pyroptosis may represent a novel therapeutic direction

for ALI/ARDS. In this review, we summarize the known

mechanisms of macrophage pyroptosis and its impact on

ALI/ARDS.
2 ALI/ARDS

Ashbaugh, with his co-workers, first put forward the term ALI/

ARDS in 1967 (11). In 1994, American-European Consensus

Conference(AECC)proposed the clinical definition of ALI/ARDS:

rapid onset of respiratory failure(ALI is diagnosed when 200
Frontiers in Immunology 02
mmHg<PaO2/FiO2<300 mmHg and the criteria for ARDS are

met when PaO2/FiO2< 200mmHg); chest radiography showing

bilateral diffuse pulmonary infiltration; absence of increased

pulmonary artery wedge pressure; and no clinical manifestation

of left atrial hypertension (12, 13). Subsequently, the ARDS was

classified into the following three categories based on the degree of

hypoxemia according to the later Berlin definition: mild ARDS

(PaO2/FiO2 = 200-300mmHg); moderate ARDS(PaO2/FiO2 =

100~200mmHg); and severe ARDS(PaO2/FiO2<100mmHg) (14).

Although the background of onset is different between ALI and

ARDS, the clinical symptoms, pathophysiological features and

specific targets for pharmacological interventions are similar,

which contributes to the fact that ALI and ARDS are usually

studied as a whole (15). The pathological characteristics of ALI/

ARDS include depressed pulmonary compliance, increased

pulmonary vascular permeability and alveolar and interstitial

pulmonary edema (Figure 1) (16, 17), while the main clinical

symptoms are refractory hypoxemia and progressive exacerbation

of hypoxic respiratory failure (1).

ALI/ARDS is characterized by life-threatening lung injury, in

which immune mechanisms play an essential role. In response to

lung damage, the immune system initiates a series of inflammatory

responses to remove pathogens and protect lung tissue. Pulmonary

immune cells, such as dendritic cells, natural killer cells,

macrophages, and neutrophils, maintain lung-tissue homeostasis

(18). However, abnormal immune cell function can lead to

continuous or excessive inflammatory reactions and subsequent

lung tissue damage. Macrophages and neutrophils are additional

immune cells that contribute to the pathogenesis of ALI/ARDS (18).

Although macrophages play a key role in lung defense, their

excessive activation aggravates lung damage. Various activation

and death modes of macrophages, including polarization,
FIGURE 1

Pathological features of ALI/ARDS. The pathologic features of ALI/ARDS include diffuse necrosis of alveolar capillary endothelial cells and epithelial
cells, increased permeability of the pulmonary capillary endothelial and alveolar epithelial barriers, accumulation of protein-rich edema fluid,
extensive pulmonary hemorrhage, and thrombosis in the alveolar hyaloid membrane and capillaries.
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apoptosis, autophagy, and pyroptosis et al., have different impacts

on ALI/ARDS. Among them, pyroptosis is a newly discovered form

of programmed cell death, depending on caspase-triggered cleavage

of gasdermin proteins following recognition of the ligand in the

cytoplasm (19). In ALI/ARDS caused by various factors, pulmonary

damage is always accompanied by macrophage pyroptosis (20–22),

suggesting that macrophage pyroptosis plays an essential role in

ALI/ARDS.

At present, supportive treatment is the main therapeutic

method for ALI/ARDS mainly including lung protective

mechanical ventilation and fluid management therapy,

supplemented by glucocorticoids, surfactants, and extracorporeal

membrane oxygenation (23). Although supportive treatment can

improve patients’ symptoms to some extent, it cannot significantly

improve prognosis, instead the mortality remains high, and even

patients in recovery may face long-term cognitive impairment and

impaired quality of life (24). In addition, long-term or excessive

mechanical ventilation may also lead to ventilator-induced lung

injury(VILI)and even pulmonary fibrosis (25, 26). Therefore, it is of

great significance to figure out the pathogenesis so that we can find

much safer and more efficient treatment measures for ALI/ARDS.
3 Pyroptosis

3.1 Pyroptosis and its pivotal
effector gasdermin

Pyroptosis is defined as gasdermin-mediated programmed cell

death and closely related to a variety of diseases (27). Pyroptosis was

first identified by Zychlinsky et al. when they first discovered suicide

events in macrophages infected with the Gram-negative pathogen

Shigella flexneri in 1992 (28). In the initial study, it was found that

there were some similar characteristics between apoptosis and such a

cell death way, such as caspase independence, DNA damage and

nuclear condensation et al., so it had been called apoptosis for a long

time. The subsequent studies showed it was different from apoptosis,

especially in the orderliness of DNA fragments and the integrity of

cell nucleus (29). In 2001, D’souza et al. first proposed the term of

pyroptosis to describe this kind of programmed proinflammatory cell

death, thereby distinguishing pyroptosis from apoptosis (30).

The human gasdermin protein family consists of six proteins:

gasdermin A–E and deafness autosomal recessive type 59 (DFNB59,

also called Pejvakin). Except for DFNB59, all gasdermin proteins

contain two conserved domains including the N-terminal pore-

forming domain (PFD) and the C-terminal repressor domain (RD)

connected by a peptide linker (31). Normally, the PFD and RD of

gasdermin proteins interact to maintain oligomerization so that the

cytotoxicity of PFD can be inhibited by RD (32, 33). After the host is

stimulated, the activation of upstream molecules such as caspase-1

and caspase-11/4/5 will trigger the cleavage of gasdermin,

separating the PFD from the RD (34). Then the PFD oligomer

binds to cell membranes, contributing to damage of cell membranes

and formation of perforation, which further leads to cell swelling

and release of inflammatory factors such as IL-1b and IL-18 (32, 35)
and meanwhile perturbs regulation of ions and water (36). The
Frontiers in Immunology 03
formation of perforation, cell cleavage and release of

proinflammatory cytokine are significant characteristics of

pyroptosis (37).

At present, there are three identified pathways of pyroptosis:

canonical inflammasome pathway, non-canonical inflammasome

pathway and inflammasome-independent pathway (Figure 2).
3.2 Canonical inflammasome pathway

The canonical inflammasome pathway is mediated by assembly

of inflammasomes. As a large cytoplasmic multiprotein complex, the

inflammasome is assembled in response to pathogens, damage-

associated stimulation, and other danger signals that disrupt cell

homeostasis (38, 39). It is capable of regulating the activation of

caspase (40). The majority of inflammasome complexes consist of

sensor protein (also called pattern recognition receptor, PRR),

adopter protein(an apoptosis-associated speck-like protein [ASC]

containing caspase activation and recruitment domain [CARD])

and effector caspase (pro-caspase-1) (41). ASC is a bipartite

molecule containing a pyrin domain(PYD) and a caspase activation

and recruitment domain (CARD), enabling itself to bridge the sensor

and effector pro-caspase-1 (42, 43). The structure of caspase also

contains a CARD, allowing ASC to interact with it through CARD-

CARD coaction to recruit pro-caspase-1 for inflammasome assembly.

Several inflammasomes have been identified up to now

including NLRP1, NLRP3, NAIP/NLRC4, AIM2, PYRIN and

CARD8 et al. It is fundamental and essential for assembly of

inflammasome complex to produce spirochetes through CARD-

CARD or PYD-PYD interactions, which will mediate

oligomerization of homology and heterogeneity (44, 45). As the

first identified key component of inflammasome, the human

NLRP1 contains an N-terminal PYD and a C-terminal CARD

(46). NLRP3 contains three conserved domains including the

nucleotide binding and oligomerization (NACHT) domain in the

middle, the leucine-rich repeat domain (LRR) in the C terminus,

and the pyrin domain (PYD) in the N terminus (47). When

activated and assembled, NACHT domain acts as a support

structure for oligomerization of NLRP3 to recruit ASC and pro-

caspase-1 to form multiprotein inflammasome complex (48, 49).

NAIPs are cytoplasmic receptors for various bacterial protein

ligands, leading to recruitment of the adaptor protein NLRC4 to

form the NAIP-NLRC4 inflammasome (50, 51). NLRC4 containing

CARD can serve as an adaptor in the downstream of NAIP to

recruit CASP1, and NAIP, together with NLRC4 and CASP1, is

sufficient to initiate pyroptosis although it is essential to recruit ASC

adaptor to the complex for processing of IL-1 and IL-18 (41). As

one of the members of PYHIN protein family, AIM2 contains a

PYRIN domain(PYD) and a HIN-200 DNA-binding domain. AIM2

differs from other inflammasomes components due to the lack of

NBD and LRR, but it can still coordinate the oligomerization of

large inflammasome complexes by the way that AIM2 interacts with

ASC via PYD (52), and the downstream pathway, including the

processing of cytokines and pyroptosis, is similar to that of proteins

containing NBD-LRR domains. The structure of PYRIN includes

the N-terminal PYD, b30.2/SPRY domain, and central B box and
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coiled-coil domain, whose mode of action is similar to NLRP3. At

present, NLRP12, NLRP6 and NLRP9b are also considered to be

involved in the inflammasome complex, and NLRP6 is similar in

structure and assembly to NLRP3. Overall, the assembly of NLRP3,

NLRP6, AIM2 and PYRIN is strictly dependent on the adaptor

protein ASC while NLRP1, NLRC4 and CARD8 can induce

inflammasome assembly and the subsequent pyroptosis in an

ASC-independent way because of the existence of CARD.

However, participation of ASC is essential for NLRC4 to mediate

the processing and release of cytokines.
3.3 Non-canonical inflammasome pathway

In the non-canonical inflammasome pathway, caspase-11/4/5

(caspase-11 is the mouse homologue of human caspase-4/5)can

be activated by the way that the N-terminal CARD binds in direct

to intracellular lipopolysaccharide(LPS) (53), and activated
Frontiers in Immunology 04
caspase-11/4/5 can also cleave gasdermin D(GSDMD) to N-

GSDMD, oligomerizing it and transferring it to the cell

membrane, ultimately forming membrane perforation (54). LPS

is a major component of the outer membrane of Gram-negative

bacteria and consists of three parts including the most conserved

lipid moiety, a core oligosaccharide chain and a variable

polysaccharide chain known as O-antigen (55). Although

caspase-11/4/5 contains a CARD like caspase-1, their binding

to LPS requires some specific charged residues. The predicted

isoelectric point of CARD of caspase-11/4/5 is alkaline(>8) while

that of caspase-1’s is about 6, which explains the binding between

the CARD of caspase-11/4/5 and the acidic phosphate of the lipid

A skeleton in LPS (53, 56). However, pro-IL-1b and pro-IL-18

can not be cut by caspase-11/4/5. In some cells, such as monocyte,

GSDMD cleaved by caspase-11/4/5 generates efflux of K+,

inducing assembly of NLRP3 inflammasome and then

mediating maturement and secretion of IL-1b and IL-18

through NLRP3/caspase-1 pathway (27, 57, 58).
FIGURE 2

Molecular mechanism of pyroptosis. In the canonical inflammasome pathway, the majority of inflammasome complex is assembled from
intracellular sensor protein, adapter proteins ASC and effector protein caspase. When PAMPs or DAMPs such as toxins, bacteria, viruses and dsDNA
intrude, the NLRP1 and NAIP/NLRC4 can directly convert pro-caspase-1 into active caspase-1 because both of them have the CARD to connect with
pro-caspase-1, while the AIM2, NLRP3, PYRIN and NLRP6 have to bind with ASC firstly before activating the pro-caspase-1 due to the lack of CARD.
Active caspase-1 cleaves the GSDMD to causing damage to cell membrane and formation of perforations meanwhile cleaves pro-IL-1b and pro-IL-
18 and results in the maturation of IL-1b and IL-18 that are subsequently released from the N-GSDMD pores. In the non-canonical inflammasome
pathway, LPS directly binds to pro-caspase-4/5/11, resulting in activation of caspase-4/5/11, which cleaves GSDMD to trigger pyroptosis. In the
granzyme-A/B-dependent pyroptosis pathway, GzmA and GzmB from NK cells and CD8 + T cells enter cancer cells via perforin and recognise
GSDMB and GSDME, respectively, to induce pyroptosis. In addition, chemotherapeutic drugs and Y. pestis trigger pyroptosis through the caspase-3/
GSDME or caspase-8/GSDMD cascades.
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3.4 Inflammasome-independent pathway

In addition to the above pathways, some studies have shown

that with treatment of chemotherapeutic drugs the gasdermin-E

(GSDME) when highly expressed can be characteristically cleaved

and activated by caspase-3 to form N-GSDME termini, leading to

pyroptosis of tumor cells (59, 60). Furthermore, PD-L1 transfers

apoptosis mediated by TNF into pyroptosis in breast cancer cells

and the main mechanism is that the p-STAT3 promotes nuclear

translocation of PD-L1 as well as transcription of gasdermin-C

(GSDMC) and then under the stimulation of TNF-a, caspase-8
specifically cleaves GSDMC to generate N-GSDMC, forming holes

in cell membrane to induce pyroptosis (61).

Granzyme, a serine protease, is released from cytosolic granules

of cytotoxic lymphocytes (CTLs) and natural killer cells (NK).

Granzyme A from CTLs can cleave and activate gasdermin-B

(GSDMB) and then release its pore-forming activity, triggering

pyroptosis in target cells (62). Besides, CAR-T cell is able to

rapidly activate caspase-3 in target cells by releasing granzyme B

(GZMB), subsequently triggering caspase-3/GSDME-mediated

pyroptosis (63).

Cell pyroptosis can trigger both immune protection,

pathological inflammation and tissue damage (64). Overall,

pyroptosis depends on the members of the gasdermin protein

family to facilitate the formation of membrane pores, resulting in

the release of pro-inflammatory mediators and cellular contents,

which ultimately contributes to cell disruption. Under normal

circumstances, these mediators play a vital role in activating and

regulating the immune response, helping to control or eliminate

invading pathogens. In ALI/ARDS, excessive release of cytokines

and infiltration of immune cells can trigger a cytokine storm,

leading to severe damage to lung tissue (5). In the case of ARDS,

IL-1b has emerged as a potent pro-inflammatory factor found in

the lungs of affected patients (65). Additionally, the cytokines

released in pyroptosis promote the polarization of macrophages

into M1 phenotype, aggravating the inflammatory response in the

lungs (66).
4 Macrophage

4.1 The origin of macrophage

Macrophages are important components of the innate immune

system and the activation of macrophage has been proven to be

essential for immune defense, inflammatory response, tissue

remodeling and homeostasis et al (67). Macrophages were first

identified and named by immunologist Ellie Metchnikoff according

to the characteristics of swallowing and killing bacteria in 1882 (13).

At the very beginning, it was thought that macrophages originate

from bone marrow-derived monocytes that are recruited to the

tissue and differentiate into macrophages within tissue (68). Later

research shows that the contribution of blood monocytes to the

macrophage population homeostasis appears to be limited to a few
Frontiers in Immunology 05
specific tissues while a great number of tissue macrophages such as

brain microglia, liver Kuffer cells, heart macrophages and alveolar

macrophages originate from yolk sac or original macrophages

existing in fetal livers and are maintained independently of blood

monocytes (69, 70). Macrophages have the functions of

phagocytosis, antigen presentation and immune defense and

regulation (71, 72). In different environments and under various

stimulations, macrophages will develop processes such as

autophagy (73), polarization (67) and pyroptosis (74) to maintain

tissue homeostasis. Based on their function and activation,

macrophages are divided into two subtypes: classically activated

M1macrophages which produce mainly proinflammatory factors as

part of the immune defense response and alternative activated M2

macrophages which mainly secrete anti-inflammatory factors to

promote tissue repair (67, 75).
4.2 Pulmonary macrophage

There are two subtypes of pulmonary macrophages including

alveolar macrophages(AM) and pulmonary interstitial

macrophages(IM) (76), and each type of macrophage contains

tissue-resident and recruited macrophages, which are critical

participants in innate immune and maintaining pulmonary

homeostasis (Figure 3) (77). Acute inflammation and severe

infection typically lead to loss of tissue-resident macrophages and

recruitment of monocytes-derived macrophages, which become

part of the pulmonary macrophage repertoire (77). The current

study revealed that tissue-resident interstitial macrophages and

monocyte-derived interstitial macrophages exhibit distinct profiles

in omics analysis, but no significant differences were observed in

their functional characteristics and properties (78).

AM is an important cell line for catabolism of surface active

material produced by alveolar type II epithelial cells and essential

effector cells resisting external stimuli in lung, playing a critical role

in the pathogenesis of pulmonary inflammation (79, 80). Generally,

AM is able to continuously capture, swallow, conceal and neutralize

vast inhaled pathogens and particles, which will not induce

excessive inflammation triggered by influx of neutrophils (81).

But when such a swallowing function is surpassed, AM will

induce inflammation by producing chemokines and cytokines

(such as type I IFNs, TNF-a, and IL-1b) that can recruit and

activate neutrophils, monocytes and DCs (81). Tissue-resident

alveolar macrophages(TR-AMs) and monocyte-derived alveolar

macrophages(Mo-AMs) exhibit distinct characteristics during

both homeostasis and disease states. TR-AMs play a crucial role

in the clearance of dead alveolar cells and excess alveolar surfactants

(82). In the absence of inflammation or tissue damage, TR-AMs

maintain their cellular population through local proliferation,

thereby minimizing the contribution of Mo-AMs (83). Upon the

onset of inflammation, TR-AMs are rapidly activated, releasing a

variety of cytokines and chemokines that modulate the

inflammatory response and influence tissue integrity (84).

Concurrently, the inflammatory process triggers the recruitment
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of monocytes to the lungs, where they differentiate into

macrophages within the alveolar space, potentially exacerbating

tissue damage through the release of pro-inflammatory mediators

(85). Additionally, the time and cause of pyroptosis may vary

among different macrophage populations. AMs emerged as the

earliest cell type to initiate pyroptosis and act as pivotal regulators

of cell communication (86). AMs usually die early in ALI/ARDS,

and some pathogens can directly induce pyroptosis. In vitro

experiments, the level of macrophage pyroptosis in RAW264.7

cells increased significantly within 24 hours after stimulation with

LPS (87). The NETs and some cytokines can induce pyroptosis

of monocyte-derived macrophages in the mid-stage (66, 88). In

general, apoptosis is an important process in tissue homeostasis,

which eliminates excessive cells in multicellular organisms,

while pyroptosis usually leads to severe inflammatory response

and tissue damage, aggravating disease progression. Although

macrophage pyroptosis represents a distinct form of cell death

compared to macrophage apoptosis, these two processes are not

entirely independent. It has been identified that GSDME and

GSDMD can induce the transition from apoptosis to pyroptosis.

Caspase-3 and caspase-1, as the main performers of apoptosis and

pyroptosis respectively, were also found to have crosstalk (89).

However, there is uncertainty existing about whether apoptosis

induced by pyroptosis protects cells from the pyroptosis-induced

inflammatory response or further accelerates the inflammatory

response of macrophages.
Frontiers in Immunology 06
5 Macrophage pyroptosis and
ALI/ARDS

5.1 Macrophage pyroptosis aggravates
ALI/ARDS

Pyroptosis is a double-edged sword. For one thing, it enhances

adaptive immune response by releasing pro-inflammatory medium

to gather the nearby immune cells around the pathogen-infected

place and then destroy the replication niches (90). For another thing,

excessive pyroptosis will aggravate multiple organ damage,

circulatory failure and even death (91). Most of the time,

macrophage pyroptosis significantly aggravates the progression of

ALI/ARDS primarily through exacerbating pulmonary inflammation

and tissue damage. Studies revealed that the mean caspase-1 levels,

which are associated with pyroptosis, were significantly elevated in

patients with ARDS compared to healthy individuals. It is noteworthy

that the mean caspase-1 levels in nonsurviving patients were also

significantly higher than those in survivors. Concurrently, the levels

of inflammatory cytokines, including IL-1b, IL-18, and TNF-a, were
significantly elevated and the extent of pulmonary injury was more

severe in patients with ARDS compared to healthy controls (92, 93).

In sepsis-induced acute lung injury, the incidence of macrophage

pyroptosis were increased, followed by overexpression of pro-

inflammatory mediators such as iNOS, IL-1b and TNF-a, and
observable pulmonary tissue lesions (94).
FIGURE 3

The distribution of macrophage populations in the lung. Macrophages in the lungs are composed of Alveolar macrophages (AMs) and interstitial
macrophages (IMs). AMs are located in the alveoli, and IMs reside in the parenchyma between the microvascular endothelium and alveolar
epithelium. When there is pulmonary inflammation and injury, circulating monocytes in capillaries are subsequently recruited to the lungs and
converted into AM-like cells.
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Macrophages are capable of recognizing PAMPs and DAMPs,

thereby initiating a cascade of responses during pyroptosis.

Additionally, the impact of macrophage pyroptosis on ALI/ARDS is

also modulated by protein post-translational modifications (95),

mitochondrial function (96), exosome activity (97), neutrophil

extracellular traps (98) and other various signaling pathways (99–101).

The above factors can exert a positive or negative influences on the

regulation of macrophage pyroptosis. Generally, modulating these

factors to inhibit macrophage pyroptosis holds significant potential for

mitigating ALI/ARDS.
5.2 Inhibition of macrophage pyroptosis
alleviates ALI/ARDS

5.2.1 Inhibiting macrophage pyroptosis by
regulating mitochondrial function reduces
ALI/ARDS

Mitochondria are not only the major sites of cellular energy

production through oxidative phosphorylation but also the

participants in various cellular processes (96, 102). Studies have

confirmed that mitochondria are involved in regulation of

macrophage pyroptosis in ALI/ARDS.

Mitophagy plays a crucial role in mitochondrial quality control

and cell survival by selectively eliminating excess or damaged

mitochondria through the autophagic process (103). The present

study indicates that mitophagy contributes to the mitigation of

macrophage pyroptosis in ALI/ARDS. Defects in mitophagy

result in the accumulation of mitochondrial reactive oxygen

species (mtROS), leading to the overactivation of the NLRP3

inflammasome, and subsequently triggering Caspase-1-dependent

pyroptosis (104). Dong et al. verified that the miR-138-5p promoter

demethylation attenuates the pyroptosis of AMs in sepsis-

associated ALI while increased mitophagy reduces cytoplasmic

mtDNA levels, suppressing miR-138-5p promoter methylation,

which suggested that enhanced mitophagy can reduce AM

pyroptosis and alleviate sepsis-associated ALI (105).

Conversely, mitochondrial damage led to an increase of

macrophage pyroptosis. Mitochondrial damage-associated

molecular patterns (MTDs) are a type of damage-associated

molecular patterns (DAMPs) that are released from mitochondrial

rupture (106). MTDs have been reported to induce NLRP3

inflammasome activation, resulting in severe inflammatory

response in alveolar macrophages (107). In sepsis-induced ALI, Z-

DNA-binding protein 1 (ZBP1) deficiency in macrophages mitigates

mitochondrial damage, consequently reducing macrophage

pyroptosis mediated by NLRP3 inflammasome activation (108).

Additionally, the study conducted by Han et al. identified that

the 18-kDa translocator protein (TSPO), a mitochondrial outer

membrane protein, is a crucial mediator regulating NLRP3

inflammasome activation in macrophages during ALI/ARDS

(109). They found that the expression of TSPO was rapidly

upregulated in response to inflammatory stimulation and its

deficiency resulted in enhanced activation of the NLRP3

inflammasome pathway in LPS-injured lung tissue (109).
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5.2.2 Inhibition of macrophage pyroptosis by
regulating exosome reduces ALI/ARDS

Exosome is the nanoscale membrane-bound extracellular

vesicle that plays crucial roles in intercellular communications by

carrying bioactive molecules, such as proteins, RNAs, microRNAs

(miRNAs) and DNAs, from one cell to the others (97). Crosstalk

between exosome and inflammasome activation has been verified in

many studies. As the upstream of inflammasome, exosome can

either promote or suppress activation of inflammasome,

subsequently affecting macrophage pyroptosis and ALI/ARDS.

This discrepancy of exosome effects is likely affected by the type

of the cells producing exosomes and interventions or conditions

that induce cells to release the exosomes (97, 110).

Polymorphonuclear neutrophils (PMN) play an important role in

ALI/ARDS, and exosomes derived from it are a new subcellular entity

which is basic links between inflammation and tissue damage driven

by PMN (111). The study shows that TNF-a-stimulated exosomes

(TNF-Exo) derived from PMN is able to transfer the miR-30d-5p of

miRNA family into macrophages and then activate the NF-kB
signaling to up-regulate the expression of NLRP3 inflammation,

which triggers pyroptosis in macrophages and therefore promotes

sepsis-associated ALI (94). Another kind of exosome called Tenascin-

C(TNC) induces macrophage pyroptosis by DNA damage response.

The specific mechanism is that the DNA damage response could be

induced by excessive TNC-produced ROS and activation of p38/

ERK/NF-kB signaling to trigger macrophage pyroptosis tomake ALI/

ARDS severe (112). However, exosomes derived from mesenchymal

stem cells(MSCs-Exo) can inhibit AM pyroptosis by down-regulation

activated caspase-1, thereby alleviating LPS-induced ALI (113). Bone

marrow mesenchymal stem cells (BMSCS) -derived exosomes can

deliver miR-125b-5p and reduce macrophage pyroptosis by

regulating STAT3 expression, subsequently improving sepsis-

induced acute lung injury (114).

In conclusion, although exosomes from different cells have

different impacts on macrophage pyroptosis, regulating exosomes

can inhibit macrophage pyroptosis and reduce ALI/ARDS.

5.2.3 Inhibition of macrophage pyroptosis by
regulating neutrophil extracellular traps reduces
ALI/ARDS

Neutrophils are short-lived granulocytes, serving as the primary

line of defense against pathogens (115). Activated neutrophils release

neutrophil extracellular traps (NETs) in response to various stimuli,

which was identified as part of innate immune response, and this

response can either be beneficial or pathological (98, 116).

In ALI/ARDS, NETs aggravate lung injury mainly by

promoting macrophage pyroptosis (90, 93). The study proved

that neutrophils undergo NETosis to produce a large amount of

NETs. These NETs are engulfed by alveolar macrophages, leading

to AIM2 inflammasome activation and caspase-1-dependent

pyroptosis in LPS-priming alveolar macrophages. This, in turn,

results in the release of a large amount of cytokines and more

neutrophil infiltration, leading to ARDS through inflammatory

storm development due to a vicious cycle (93). A study

conducted by Liu et al. found that pretreatment of alpha-linolenic
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acid(ALA) might alleviate NETs-induced alveolar macrophage

pyroptosis by mediating Pyrin inflammasome activation, which

alleviated ALI/ARDS (117). They utilized Mefv (Pyrin)-/- mice to

demonstrate that NETs induce macrophage pyroptosis depending

on Pyrin inflammasome. In addition, The research found that IgG

IC-induced formation of NETs stimulates pulmonary macrophage

pyroptosis in ALI/ARDS, which could be inhibited by

verbenalin (118).

5.2.4 Inhibiting macrophage pyroptosis by
regulating protein post-translational
modifications reduces ALI/ARDS

Post-translational modifications (PTMs) refer to a series of

covalent modifications of proteins following the translation of

RNA, constituting a critical phase in protein biosynthesis (119).

Throughout the life cycle, PTMs contribute to increasing

complexity of the proteome, modulating subcellular localization

of associated proteins, facilitating or inhibiting protein-protein

interactions, and activating or inactivating target proteins (120).

Recent reports have identified multiple PTMs in pyroptosis process.

For example, (de)ubiquitylation, (de)phosphorylation, (de)

SUMOylation, (de)acetylation, alkylation and citrullination are

involved in the assembly and activation of inflammasomes

(NLRP3, NLRC4, AIM2) (121–123), while ubiquitination,

phosphorylation and ADP- ribosylation participate in caspase

activation, which is essential for the cleavage of GSDMD (124).

Additionally, several PTMs can directly modulate the cleavage of

GSDMD, such as ubiquitylation, phosphorylation, palmitoylation

and succinylation, while ubiquitylation exerts a negative regulatory

effect on the release of mature IL-1b and IL-18 through the pores

formed by GSDMD-N (125, 126).

The majority of PTMs are reversible. For instance,

deubiquitinating enzymes (DUBs) can reverse ubiquitination by

hydrolyzing the peptide or isopeptide bonds that link ubiquitin

molecules to each other or to substrate proteins. Ubiquitination

typically suppresses inflammasome activity, thereby inhibiting

pyroptosis, while deubiquitination has the opposite effect (127, 128).

SUMO-conjugating enzyme (UBC9) interacts with NLRP3 and

promotes SUMO1 to catalyse SUMOylation at Lys204 in NLRP3,

subsequently promoting NLRP3 activation and macrophage

pyroptosis. Conversely, SUMO-specific protease 3 (SENP3) catalyses

deSUMOylation of NLRP3, reducing ASC recruitment, ultimately

suppressing NLRP3 inflammasome activation, as well as IL-1b
cleavage and secretion (129). However, there are also some PTMs

that are irreversible, such as citrullination (130). The current studies

suggest that protein citrullination can promote macrophage pyroptosis

through regulating activation of inflammasomes and caspase proteins,

thereby aggravating ALI/ARDS (131, 132).

It has been demonstrated that Heat Shock Factor 1 (HSF1)

mitigates sepsis-induced lung injury through the promotion of

NLRP3 ubiquitination in macrophages (122). In human THP-1

cells and mouse bone marrow-derived macrophages lacking the

DUB USP50, reduced activation of pyroptosis was observed,

leading to decreased levels of IL-1b and IL-18. Further

investigations revealed that USP50 interacts with ASC proteins
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and deubiquitinates K63-linked ASC polyubiquitination (133).

Immunostaining of human macrophages indicates that the

bacterial effector protein NLeA inhibits inflammasome activity

through its binding to ubiquitinated NLRP3, thereby disrupting

the deubiquitination process. This interaction prevents

inflammasome assembly, caspase-1 activation, and subsequent IL-

1b secretion (134). The peptidylarginine deiminase 2(PAD2) is a

calcium-dependent enzyme that promotes the conversion of

arginine to citrulline. It has been demonstrated that PAD2

knockout can reduce the mortality of Pseudomonas aeruginosa

induced pneumonia mice by reducing the caspase-1-dependent

inflammasome activation in macrophages (135). In sepsis-

associated acute lung injury, PAD2 deficiency decreased caspase-

11-dependent macrophage pyroptosis, increasing survival and

organ functions following the onset of sepsis (132). Furthermore,

the study found that inhibition of PAD2 leads to a reduction of ASC

citrullination, suggesting that PAD2 may influence inflammasome

assembly through the mediation of ASC citrullination, ultimately

impacting macrophage pyroptosis (136). NLRC4 is a cytosolic

member of the NOD-like receptor family that is expressed in

innate immune cells. The phosphorylation of residue Ser 533 in

NLRC4 had been identified to activate NLRC4 inflammasome

activity and induce conformational changes that are essential for

host immune responses (137).

The effect of PTMs on caspase protein and gasdermin protein is

not as extensive as that on inflammasome. There is a study

demonstrating that the E3 ubiquitin ligase, synoviolin (SYVN1),

mediates the K27-linked polyubiquitination of GSDMD at K203

and K204, promoting GSDMD-induced pyroptosis (138). In

addition, upon activation by inflammasome, palmitoyl

transferases ZDHHC5/9 can induce S-palmitoylation at Cys191

(human)/Cys192 (mouse) on GSDMD, generating palmitoylated

GSDMD-N which effectively triggers pyroptosis (139).

5.2.5 Inhibition of macrophage pyroptosis by
regulating nuclear factor-erythroid 2 related
factor 2 pathway reduces ALI/ARDS

Nuclear factor-erythroid 2 related factor 2(Nrf2)is a ubiquitous

master transcription factor that upregulates antioxidant response

elements (AREs)-mediated expression of antioxidant enzymes and

cytoprotective proteins (140). Activation of Nrf2 has been shown to

be protective against lung injury (140), and increasing evidence also

demonstrates the crosstalk between the Nrf2 and NLRP3

inflammasome axis at different levels (141). Liu et al. found that

Nrf2 knockdown can substantially increase the mRNA level of

NLRP3 (142). Further studies showed that upregulating of AMPK

phosphorylation can promote expression of Nrf2 followed by

inhibition of NLRP3 transcription, thereby suppressing pyroptosis

in alveolar macrophages and ultimately alleviating ALI/ARDS

(142). In the models of LPS-induced sepsis, melatonin inhibits

NLRP3-GSDMD pathway via activating Nrf2/HO-1 signaling axis

to reduce ALI/ARDS in vivo and in vitro (100). In addition, Nrf2 is

able to inhibit activation of NLRP3 inflammasome by reducing

intracellular ROS levels and avoiding inflammation (143). A study

showed that chicoric acid alleviated NLRP3-mediated macrophage
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pyroptosis in the ALI model. This effect was achieved through ROS-

induced mitochondrial damage by activating the Akt/Nrf2 pathway

via PDPK1 ubiquitination (144). In conclusion, it is of great

significance in reducing ALI/ARDS to inhibit activation of

NLRP3 by up-regulating Nrf2 level.

5.2.6 Inhibition of macrophage pyroptosis by
regulating stimulator of interferon genes
pathway reduces ALI/ARDS

Stimulator of interferon genes(STING)is a signaling molecule

associated with the endoplasmic reticulum (ER) and is essential for

controlling the transcription of numerous host defence genes,

including type I interferons (IFNs) and pro-inflammatory

cytokines, following the recognition of aberrant DNA species or

cyclic dinucleotides (CDNs) in the cytosol of the cell (145, 146).

STING signaling has now been shown to be essential for protecting

the cell against a variety of pathogens (147). At present, growing

studies have shown that STING involved in regulation ofmacrophage

pyroptosis mainly by affecting NLRP3 inflammasome activation in

ALI/ARDS. Peng et al. found that up-gratulation of STING signaling

can promote NLRP3-mediated pyroptosis in macrophages and

knockout of cGAS/STING could ameliorate NLRP3 activation and

macrophage pyroptosis, ultimately improving SAP-ALI in mouse

model (148). In LPS-induced ALI, LPS could activate STING in a

cytosolic DNA-dependent manner and upregulate the expression of

STING in a c-Myc-dependent manner, which cooperatively promote

NLRP3-mediated macrophage pyroptosis following contributing to

acute pulmonary damage (149). Furthermore, another study

suggested that histone deacetylase 3 (HDAC3) activates cGAS/

STING pathway through its histone deacetylation function, playing

an essential role in mediating macrophage pyroptosis and ALI (101).

The specific mechanism is that HDAC3 andH3K9Ac are recruited by

LPS to the miR-4767 gene promoter, which repressed expression of

miR-4767 to promote the expression of cGAS (101).

5.2.7 Inhibition of macrophage pyroptosis by
regulating nuclear factor kappa-B pathway
reduces ALI/ARDS

Nuclear factor kappa-B(NF-kB)is a Rel family transcription factor

consisting of five members in mammalian cells, namely RelA (p65),

RelB, Rel (c-Rel), NF-kB1 (p50/p105) and NF-kB2 (p52/p100) (150),

which controls both innate and adaptive immune responses as well as

the development andmaintenance of the cells and tissues that comprise

the immune system (151). NF-kB is widely recognized as a key

regulator of inflammation due to its pivotal role in governing diverse

aspects of the inflammatory response, including evolution and

resolution (152). NF-kB signaling is also involved in the progression

of ALI/ARDS (153, 154), and NLRP3 inflammasome activation

requires involvement of NF-kB (122). Triggered by PAMPs, TNF,

and IL-1b, the mRNA expression of NLRP3 and pro-IL-1b is

upregulated by activating NF-kB. In septic ALI, heat shock factor 1

(HSF1) inhibited the NF-kB signaling pathway by upregulating tumor

necrosis factor receptor-associated factors 3(TRAF3)expression,

thereby inhibiting the production of NLRP3 at the transcriptional
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level and ultimately inhibiting the activation of the NLRP3

inflammasome, which reduces macrophage pyroptosis and

subsequently alleviates pulmonary damage (122). Sun et al.

discovered that angiopoietin-like 4 (ANGPTL4) silencing could

disrupt the activation of the NF-kB pathway to repress the

pyroptosis and polarization of M1 macrophages, whereby

suppressing the CLP-induced sepsis-related ALI (155). Other studies

demonstrated that macrophage pyroptosis mediated by NLRP3/

GSDMD signaling can be inhibited by suppressing the NF-kB
activation (99, 156), suggesting that inhibiting pyroptosis of

macrophages by targeting NF-kB pathway can reduce acute lung

injury. In addition, S100A9 gene deficiency inhibits pyroptosis of

macrophages through TLR4/MyD88/NF-kB pathway, alleviating

LPS-induced acute lung injury (157), which suggests a potential

therapeutic strategy for the treatment of ALI/ARDS.

5.2.8 Other pathways that can reduce ALI/ARDS
via inhibiting macrophage pyroptosis

Apart from the above regulatory modes, there are many other

signaling pathways that can affect macrophage pyroptosis in ALI/

ARDS. A body of evidence confirmed that p38 mitogen-activated

protein kinase (MAPK) signaling pathway participates in the

progression of ALI/ARDS (158, 159). Li et al. demonstrated that

macrophage cell death could be skewed from proinflammatory

pyroptosis towards non−inflammatory apoptosis through

blockage of p38 MAPK signaling pathway, which may contribute

to amelioration of acute lung injury and excessive inflammation in

mice of ALI induced by LPS (160).

Tumor necrosis factor receptor-associated factor 3 (TRAF3) is

the member of TRAF family, playing a crucial role in regulating

both immune and inflammatory response. The study showed the

TRAF3/ULK1/NLRP3 axis promoted the development of ALI in

mice by inducing alveolar macrophage pyroptosis. The vitro cell

experiments verified that TRAF3 can downregulate ULK1 through

ubiquitination and activate the NLRP3 inflammasome to induce

alveolar macrophage pyroptosis (161).

Basic helix-loop-helix family member e40 (Bhlhe40), belonging

to the subfamily of transcription factors, is considered as an

important regulator of inflammation and immunity (162). A

study showed the expression of Bhlhe40 significantly increased

in AMs treated with LPS. Meanwhile, Bhlhe40−/− mice exhibited

decreased macrophages pyroptosis and inflammation by inhibiting

signaling pathway mediated by caspase-1 and caspase-11, and they

were resistant to LPS-induced ALI (163).
6 Advances in drugs application to
improve ALI/ARDS by interfering
macrophage pyroptosis

6.1 Natural small-molecule compounds

Natural products derived from plants play an important role in

the treatment of ALI/ARDS. Many studies show that natural active
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ingredients from Chinese herbs can regulate pyroptosis in

macrophages, alleviating ALI/ARDS.

Alpha-linolenic acid (ALA) is a plant-based omega-3 fatty

acid. Studies show that ALA reduces ALI/ARDS by inhibiting

the activation of macrophage pyroptosis driven by Pyrin

inflammasome (117). Emodin, a natural active ingredient

extracted from the Chinese herb Radix et Rhizoma Rhei,

a l leviates LPS-induced ALI by inhibit ing the NLRP3

inflammasome-dependent pyroptosis signaling pathway of

macrophages in vitro and in vivo (164). Arctiin (ARC) is a

lignan glycoside isolated from Fructus arctii that exerts

strong anti-inflammatory and antioxidant effects (165, 166).

Studies demonstrated that a nanoparticle (NP)-based delivery

system, ARC@DPBNP, could be applied to reduce LPS-induced

acute lung injury through attenuating pyroptosis in alveolar

macrophages (167). Sinensetin (SIN) is a polymethoxylated

flavonoid, which is proven to improve LPS-induced ALI by

inhibiting Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated

macrophage pyroptosis. Dehydroandrographolide(Deh), as one

of main components of Andrographis paniculata (Burm.f.)

Wall, can weaken ROS production in mitochondria to

suppress NLRP3-mediated pyroptosis in macrophages, thereby

alleviating ALI/ARDS (168). Shao et al. found that Britannin

extracted from Inula japonica Thunb. is an innate inhibitor that

effectively targeted NLRP3, suppressing activation of NLRP3

inflammasome in an NF-kB-independent manner and inhibiting

assembly of the NLRP3 inflammasome by directly binding to the

NACHT domain of NLRP3 (169), which suggests that Britannin

may be an effective drug inhibiting macrophages to reduce

ALI/ARDS.
6.2 Synthetic small-molecular compounds

Buformin (BF), a number of the biguanide family, was

originally used clinically as a hypoglycemic agent in the

treatment of type 2 diabetes (170). Studies conducted by Liu

et al. demonstrated that BF can reduce sepsis-induced lung

injury by inhibiting NLRP3-mediated macrophages pyroptosis

in an AMPK-dependent manner in vivo and in vitro (142).

Sacubitril/valsartan (SV) is an angiotensin receptor-neprilysin

inhibitor used for treating heart failure in the clinical

settings (171). The study showed that SV treatment effectively

alleviated sepsis-induced lung injury in caecal ligation and

puncture (CLP) mice (172). Further study found that the SV

could inhibit GSDMD-mediated macrophage pyroptosis through

the caspase-1-dependent signaling pathway, contributing to

the resolution of the inflammatory response and lung injury

in sepsis (172). As an N-methyl-D-aspartic acid receptor

(NMDAR) antagonist, memantine suppresses macrophage

pyroptosis through inhibiting NLRP3 inflammasome (173). In

cardiopulmonary bypass (CPB)–induced ALI, hydromorphone

(Hyd) alleviated NLRP3 inflammasome-mediated pyroptosis via

upregulating the Nrf2/HO-1 pathway, which may be achieved by

AMs (174).
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6.3 Other promising related compounds
or interventions

Apart from medications, there are alternative interventions that

can mitigate ALI/ARDS by suppressing macrophage pyroptosis. More

and more studies have confirmed it is a promising strategy for ALI/

ARDS to regulate exosomes. Liu et al. demonstrated that

mesenchymal stem cells-derived exosomes(MSCs-Exo) can alleviate

acute lung injury by inhibiting alveolar macrophage pyroptosis (113).

The specific mechanism is MSCs-Exo inhibited J774A.1 cell

pyroptosis by inhibiting the activation of caspase-1 (113). In

addition, exosomes from bone marrow-derived mesenchymal stem

cells, serving as carriers for delivering miR-125b-5p, can downregulate

STAT3, thereby inhibiting macrophage pyroptosis and alleviating

sepsis-associated ALI (114). The above studies suggest that the

regulation of mesenchymal stem cell-derived exosomes can

effectively inhibit macrophage pyroptosis and alleviate ALI/ARDS.

In LPS-induced ALI/ARDS, researchers found that NETs

directly promoted alveolar macrophage pyroptosis through NET

DNA-mediated activation of the AIM2 inflammasome, suggesting

that NETs and the AIM2 sensor may be crucial therapeutic targets

for the regulation of alveolar macrophage inflammasome-mediated

immunopathology in ARDS (93). Melatonin (Mel, N-acetyl-5-

methoxytryptamine) is a neurosecretory hormone, as well as a

potential modulator of Nrf2 signaling based on its abilities to

scavenge ROS and inflammatory cytokines (175). The study

proved that melatonin significantly inhibits LPS-induced

pyroptosis, attributed to its regulation of NLRP3-GSDMD

pathway via activating Nrf2/HO-1 signaling axis (100). Irisin, a

hormone−like myokine, can attenuate ALI by inhibiting the HSP90/

NLRP3/caspase−1/GSDMD signaling pathway, reducing the

pyroptosis of macrophages (176). The following section discusses

the treatments and mechanisms related to macrophage pyroptosis

in ALI/ARDS (Table 1).
6.4 Challenges in alleviating ALI/ARDS
through targeting macrophage pyroptosis

Undoubtedly, the therapeutic intervention of targeted

macrophage pyroptosis is still challenging to some extent.

Although the mechanism of macrophage pyroptosis in ALI/ARDS

have been increasingly investigated in recent studies, the specific

mechanisms of macrophage pyroptosis remain unclear. Whether

additional inflammasome complexes or gasdermin proteins

revolves in cell pyroptosis remains an open question. At the same

time, because of complexity of drugs’ action mechanism, their

absorption and distribution in the body are diverse. Therefore,

how to select an optimal delivery method for inhibitors to maximize

their suppression of macrophage pyroptosis presents a significant

challenge. The advent of nanotechnology has opened new avenues

for the development of novel therapeutic strategies for the

treatment of ARDS/ALI that can utilize targeting macrophage

pyroptosis pathways (178). However, its clinical transformation

still faces a series of challenges (179).
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At the same time, it has not been thoroughly studied whether the

potential side effects of inhibitors on the liver, kidney and other organs

will aggravate the multiple organs dysfunction of ALI/ARDS. There

are few successful examples of macrophage pyroptosis interventions

successfully applied in clinical practice, and the application of

therapies that inhibit excessive macrophage pyroptosis in clinical

practice is still facing severe challenges, while how to clarify the

changes of macrophage pyroptosis markers in ALI/ARDS patients is

also a key point of carrying out clinical interventions targeting the

modulation of pulmonary macrophage pyroptosis. At present, there

are few clinical studies related to the treatment of ALI/ARDS patients

by modulating macrophage pyroptosis, and more preclinical studies

are still needed to confirm the potential beneficial role of regulating

macrophage pyroptosis in ALI/ARDS. Some studies have confirmed

the role of markers related to pyroptosis in early identification and

prognosis assessment of ARDS patients. For example, a study

demonstrated that the mean levels of caspase-1, IL-1b and IL-18 in

aspirates from ARDS patients were significantly elevated compared to

those in healthy individuals (93). Modulation of macrophage

pyroptosis-related indicators may become a potential therapeutic

approach for ARDS patients, but future clinical studies are still

needed to demonstrate the beneficial effects of interventions to

modulate macrophage pyroptosis in ARDS patients.
Frontiers in Immunology 11
7 Conclusion and outlook

As an acute diffuse lung injury occurring in a short period of

time, ALI/ARDS has significantly severe clinical prognosis, and

therefore its clinical treatment is full of challenges. Macrophage

pyroptosis, as a special way of cell death, has attracted much

attention in study of development and treatment of ALI/ARDS.

Up to now, many studies have shown that macrophage pyroptosis

could be affected by regulating mitochondrial function (107, 180),

adjusting the generation of exosomes (181) or neutrophil

extracellular traps (93), and controlling its upstream signaling

transduction (100, 149, 182), thus influencing development and

outcome of ALI/ARDS. The regulation of macrophage pyroptosis

may become a therapeutic target for ALI/ARDS, thus providing

more new research directions for the treatment of ALI/ARDS.

However, there are still some problems unsolved. Firstly, the

current understanding of the inflammasomes and their role in

pyroptosis is incomplete, with only a few inflammasomes and

their mechanisms of action in pyroptosis being well understood.

Secondly, most of the current research on macrophage pyroptosis is

limited to preclinical studies, and the clinical studies that have been

conducted also have problems such as small sample sizes. In clinical

practice, there are very few cases where the actual reduction of lung
TABLE 1 The treatment and mechanisms of macrophage pyroptosis in ALI/ARDS.

Animal/cell Model Treatment
Macrophage
Pyroptosis

Mechanism Reference

Mouse LPS TSPO-KO − TSPO↑, NLRP3↓ (102)

Mouse
Klebsiella

pneumoniae infection
Anthocyanin − mtDNA↓, NLRP3↓ (177)

Mouse MTDs Autophagic agonist − Autophagosomes↑, NLRP3↓, ASC↓, pro-caspase-1↓ (105)

Mouse CLP TNF-Exo + NF-kB pathway↑, NLRP3↑, IL-1b↑, GSDMD-N↑ (110)

Cell LPS Tenascin-C +
ROS↑, p38/ERK/NF-kB↑, dsDNA↑, Caspase-1↑, GSDMD↑,

GSDME↑, AIM2↑
(111)

Mouse
Cell

LPS
LPS/Nig

MSCs-Exo − Caspase-1↓, IL-18↓, IL-1b↓ (94)

Cell
Mouse

LPS/ATP
LPS

BMSCs-Exo − STAT3↓, p-STAT3↓, NLRP3↓, GSDMD↓, caspase-1↓… (112)

Mouse LPS Alpha-linolenic acid − NETs↓, caspase-1↓, GSDMD↓, ASC↓, IL-1b↓ (116)

Mouse
Cell

LPS Buformin − AMPK↓, mTOR↓, autophagy↑, Nrf2↑, NLRP3↓ (140)

Mouse LPS Melatonin − Nrf2/HO-1↑, NLRP3↓, GSDMD↓ (141)

Mouse LPS Chicoric acid − AKT/Nrf2↑, NLRP3↓ (100)

Mouse SAP
cGAS-KO,
STING1-KO

− NLRP3↓ (146)

Mouse CLP HSF1-KO + NF-kB pathway↑, NLRP3↑, IL-1b↑IL-10↑ (153)

Mouse
Cell

LPS PAI-1 KO +
PI3K/MAPK/AKT↑, NET↑, NLRP3↑, ASC↑, caspase-11↑,

pro-caspase1↑, caspase1-p20↑, IL-1b↑
(159)

Mouse LPS Bhlhe40 KO − GSDMD↓, caspase-1↓, caspase-11↓ (161)

Cell LPS USP50 knockdown − ASC oligomerization↓,procase 1↓, IL-1b↓, IL-10↓ (133)

Mouse CLP PAD2 inhibition − ASC citrullination↓, NLRP3↓, caspase-1↓, caspase-11↓ (132)
The symbol ↑ indicates an increase and the ↓ indicates a decrease.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1530849
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2025.1530849
injury through intervention in macrophage pyroptosis has been

achieved, making it difficult to prove the clinical utility. Therefore,

more and more in-depth basic and clinical trials are needed to

investigate the specific role of macrophage pyroptosis in ALI/ARDS,

with the aim of selecting more effective targets for the treatment of

ALI/ARDS.
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