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B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric

malignancy, accounting for 20-25% of all new cancer diagnoses in North

American children each year. The leukemia arises, most commonly after a

latency of 3–5 years, from a preleukemic B cell precursor population

generated in utero. Despite the generally low immunogenicity of B-ALL cells,

emerging evidence implicates T cell exhaustion - a state marked by sustained

expression of inhibitory receptors and progressive functional decline - as a

contributor to disease progression. Expression of inhibitory receptors is

frequently detected on T cells from children with B-ALL at diagnosis and

during therapy. As T cell exhaustion presents an actionable target for

enhancing protective immune activity, in this review we summarize evidence

from both clinical and pre-clinical settings for T cell exhaustion during pediatric

B-ALL progression and discuss the opportunities and challenges to incorporating

immune checkpoint blockade into pediatric B-ALL therapy regimens.
KEYWORDS

pediatric B cell precursor acute lymphoblastic leukemia, T cell exhaustion (Tex),
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1 Introduction

T cell activation is initiated when T cell receptor (TCR) engagement with peptide-MHC

complexes on antigen-presenting cells (APC) (signal 1) is accompanied by co-stimulatory

signals (signal 2) and cytokine support (signal 3). This coordinated signaling cascade drives

lymphocyte activation, proliferation, and differentiation that mediates antigen clearance (1,

2). Typically, immune checkpoints (IC) then regulate the immune response by engaging

with inhibitory receptors on activated T cells (3, 4). The timing and balance of stimulatory

and inhibitory signals influences the quality and duration of T cell responses (5). However,

in cases where antigen clearance is not achieved, prolonged T cell stimulation can lead to an

altered differentiation state, known as ‘exhaustion’ (6). T cell exhaustion is characterized by

sustained upregulation and co-expression of multiple inhibitory IC receptors, along with

transcriptional (7), metabolic (8), and epigenetic modifications (9), resulting in a
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progressive loss of effector function in antigen-specific T cells (10).

The accumulation of exhausted T cells is observed in many

cancers (11).

The genomic alterations that drive tumor formation can lead to

the generation of immunogenic neoantigens (12). Through iterations

of the tumor-immune cycle, recognition of these altered-self epitopes

by the adaptive immune system can initiate and maintain immune

responses that exert ongoing immunosurveillance (13, 14). However,

if these responses fail to eliminate the nascent tumor, exposure to an

increasing burden of neoantigens can lead to T cell exhaustion and

downregulation of protective immune activity, leading to tumor

progression (15, 16). The development of immune checkpoint

blockade (ICB) therapy to overcome inhibitory signaling pathways

and re-establish T cell-mediated anti-tumor activity has markedly

transformed the therapeutic landscape for several human

malignancies (17–19). While outcomes achieved with ICB therapy

have been unprecedented, there is a growing recognition from adult

cancer studies that properties of the patient’s immune system can

significantly influence the outcome of these therapies (20, 21).

Whether these same immune variables will modulate responses to

ICB in pediatric cancer patients remains largely unknown.

Pediatric cancers generally exhibit a lower tumor mutation

burden (TMB) than adult cancers (22–24), likely resulting in

reduced neoantigen-driven immune stimulation and infiltration.

Notably, ICB treatment responses are strongest for those rare
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pediatric cancers that possess TMB approaching or exceeding

those of adult tumors (25, 26). Furthermore, many pediatric

malignancies, such as B cell acute lymphoblastic leukemia (B-

ALL), neuroblastoma, Wilm’s tumor, and medulloblastoma, have

a prenatal origin and manifest in early childhood following a

relatively short latency period (27). Fetal and neonatal

development are times of extensive immune tolerance induction

(28, 29), suggesting that the early genetic alterations driving

pediatric cancers may evade immune detection. Given these

potential constraints on the effectiveness of checkpoint inhibition

in the setting of childhood cancer, this review examines the

evidence supporting the application of ICB therapy to improve

outcomes for children with B-ALL, the most common of the

prenatally initiated pediatric cancers (Figure 1).
2 B-ALL immunogenicity

B-ALL comprises a heterogeneous group of malignancies

characterized by the uncontrolled proliferation of B cell

progenitors within the bone marrow (30). It is the most common

pediatric malignancy, accounting for almost a quarter of childhood

cancer cases worldwide (31, 32). While the incidence of B-ALL

peaks between 3 and 5 years of age, the initiating event usually

occurs in utero: more than 70% of patients have detectable
FIGURE 1

T cell exhaustion in pediatric B-cell acute lymphoblastic leukemia (B-ALL). Exhausted T cells can be detected and targeted at various timepoints
during B-ALL progression: (A) Diagnosis: Exhausted T cells in bone marrow aspirates from patients at diagnosis express multiple inhibitory receptors
such as PD-1,TIM-3 and CTLA-4, which impair T cell function. These receptors interact with their respective ligands expressed on leukemia blasts,
contributing to immune evasion. (B) Remission: When leukemia burden is reduced to minimal residual disease (MRD) levels by induction
chemoptherapy, there is an opportunity to restore anti-leukemia immunity. At this stage, immune checkpoint inhibitors - e.g. anti-PD-1 and anti-
CTLA-4 antibodies (Abs) - may reinvigorate T cells, especially when combined with approved immunotherapies such as CD3/CD19 bispecific T cell
engagers. (C) Relapse: CAR-T cells show an exhausted phenotype, characterized by high expression of inhibitory receptors including PD-1, TIM-3,
LAG-3, and CTLA-4, at various times during production and application. ICB may enhance CAR-T functionality, but the optimal timing to achieve
this remains to be determined. Abbreviations – Minimal residual disease (MRD); Bispecific T cell engager (BiTE); Chimeric antigen receptor (CAR); red
blood cell (RBC); antibody (Ab).
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leukemia-initiating cytogenetic abnormalities at birth (33–37). Full

transformation to overt leukemia requires additional genetic lesions

to occur within the early arising preleukemic population (38).

Treatment advancements have significantly improved outcomes

for children with B-ALL, with the current 5-year event-free

survival rate exceeding 85% in North America (39, 40).

Nevertheless, around 20% of patients will remain unresponsive to

initial therapy or experience relapse (41, 42). For these patients,

targeted immune therapies, such as chimeric antigen receptor

(CAR) T cells and bi-specific T cell engagers (BiTE), offer

considerable hope (43, 44). However, achieving more durable

responses with these novel treatments has emerged as a clinical

imperative (45, 46).

The mutation burden in pediatric B-ALL is relatively low,

ranging from 0.15 to 0.66 single nucleotide variants (SNVs) per

megabase (22), a frequency predicted to result in relatively few

neoantigens (47, 48). Additionally, B-ALL blasts often lack or have

limited expression of essential co-stimulatory molecules, including

CD80 and CD86 (49, 50). The combination of weak neoantigen

expression and poor co-stimulation is predicted to favor induction

of T cell anergy over activation. Consistent with this prediction,

early studies reported that antigen presentation by B-ALL blasts

often induces T cell deletion or anergy (51–54). The low

immunogenicity of B-ALL, however, is not absolute, as ALL-

specific CD4+ and CD8+ T cell responses can be generated under

experimental conditions, indicating that the leukmeic blasts can

present immunogenic epitopes (55, 56). Subsequent research

demonstrated that 88% of B-ALL cases contain at least one

predicted neoepitope (48). Further, leukemia antigen-specific T

cells can be generated from pediatric B-ALL patients during

maintenance therapy, and these T cells exhibited cytotoxicity

against autologous leukemia cells (57). High-throughput studies

further support this finding, showing that CD8+ T cells from

patients with B-ALL can recognize and respond to neoantigens

derived from fusion proteins, such as ETV6::RUNX1 (58)

Mouse models of B-ALL further support the feasibility of T cell-

mediated control over leukemia, although these studies rely primarily

on leukemia transplant approaches that do not capture the potential

impact of neonatal tolerance. In a recent study using a murine Arf−/−

Bcr-Abl1 mouse model, BCR::ABL1-specific CD4+ memory T cells

played a protective role, with T cell depletion drastically increasing

leukemia outgrowth after dasatinib or cytotoxic chemotherapy (59).

Similarly, protective T cell responses are generated by toll-like

receptor-mediated immune modulation in the Em-ret model of

hyperdiploid B-ALL (60). In addition, evidence that tolerance

mechanisms affect the durability of T cell-mediated protection

against Em-ret B-ALL outgrowth has been reported, suggesting that

secondary, less immunogenic antigens might contribute to anti-

leukemia T cell activity (61). However, the contribution of

such antigens to ongoing immunosurveillance prior to disease

presentation remains unknown.

Collectively, findings support a model of B-ALL progression in

which an in utero-generated preleukemic cell population persists

due to the undermining of effective immunosurveillance against the

driver mutation by early-life tolerance mechanisms. The occurrence
Frontiers in Immunology 03
of secondary genomic lesions in preleukemic cells drives

transformation but may also induce neoantigen-targeted immune

responses against the emerging leukemia cells. According to this

model, if T cell exhaustion is a pathway that enables immune escape

and the emergence of overt leukemia, B-ALL blasts and patient T

cells should be characterized by the expression of inhibitory

IC molecules.
3 Clinical evidence of T cell
exhaustion in pediatric B-ALL

The expression of exhaustion markers at various timepoints

during pediatric B-ALL progression has been reported, summarized

in Table 1. At diagnosis, there is an upregulation of IC receptors on

patient T cells and their corresponding ligands on B-ALL blasts (68,

69, 71–73). Elevated expression of PD-1 and CTLA-4 have been

observed on both ab+ and gd+ T cells in newly diagnosed ALL

patients prior to chemotherapy (62). Notably, higher CTLA-4 levels

on gd+ T cells and CD86 expression on blasts has been linked to

poor prognosis in high-risk B-ALL. Similarly, analysis of the bone

marrow (BM) immune microenvironment in B-ALL showed

increased expression of TIGIT, LAG3, and PD-1 on CD4+ and

CD8+ T cells compared to healthy controls (63). In addition, several

studies have reported upregulation of multiple immune checkpoint

molecules at diagnosis across different compartments, including

serum, peripheral blood mononuclear cells (PBMCs), and bone

marrow mononuclear cells (BMMCs). These findings include

elevated PD-L1 levels in the serum of children with ALL at

diagnosis (67); upregulation of inhibitory molecules such as TIM-

3, NR4A1, and BATF on CD8+ T cells in bone marrow aspirates

from children with PAX5 mutation (64), and significantly higher

TIM-3 mRNA expression in peripheral blood and BM of ALL

patients (1.7- and 5-fold higher, respectively, compared to controls)

(66). A bioinformatic analysis further suggested that increased

expression of CD39, CTLA-4, TNFR2, TIGIT, and TIM-3 on

Tregs and CD8+ T cells may contribute to disease progression (65).

Elevated IC molecule expression continue to be detected after

the initiation of B-ALL treatment. Evaluation of matched PB and

BM samples from B-ALL patients post induction therapy indicated

higher PD-1 expression on BM T cells, with PD-1 and LAG3 levels

further upregulated on CD4+ and CD8+ T cells following ex vivo

expansion (69). High circulating soluble CTLA-4 (sCTLA-4) levels

have been detected in 70% of pediatric B-ALL patients with active

disease (74), with elevated sCTLA-4 and CD86 levels associated

with poor prognosis (70). In relapsed B-ALL following allogeneic

hematopoietic stem cell transplantation (allo-HSCT), increased co-

expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells

correlated with reduced proliferative capacity, cytokine

production, and cytotoxic potential (73). Notably, the frequency

of PD-1+TIM-3+ CD8+ T cells was lower in patients who achieved

a complete remission. Lastly, while CD8+T cells are undoubtedly

important mediators of anti-tumor immunity (75), recent studies

suggest that exhausted CD4+ T cells may predict risk of relapse. In a

study by Blaeschke et al., B-ALL was associated with a late-stage
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CD4+ phenotype, with high TIM-3 expression on BM CD4+ T cells

correlating with a higher risk of relapse (71). Collectively, these

findings suggest a functional relevance of IC expression on both

CD4+ and CD8+ T cells during B-ALL development and relapse.
4 Pre-clinical support for functional T
cell exhaustion in pediatric B-ALL

Preclinical studies using murine models of B-ALL have shed

light on the role of ICs in disease progression. While exhausted CD8

+ T cells are characterized by distinct functional, epigenetic and

transcriptional features, many of these characteristics remain poorly

defined for exhausted CD4+T cells. Recent work using primary

patient samples and a murine model of Ph+ B-ALL have shown that

phenotypic exhaustion predominantly occurs within a unique
Frontiers in Immunology 04
subset of CD4+ T cells (76). This subset, defined by its

transcriptomic profile, displays hybrid functionality, exhibiting

both cytotoxic and helper functions. In a syngeneic murine model

of TCF3::PBX1 leukemia, an upregulation of PD-1, TIM-3, and

LAG3 on CD4+ and CD8+ T cells was observed in the presence of

leukemia (77). The resulting leukemia-induced T cell dysfunction

was independent of TCR signaling and led to the generation of

suboptimal autologous CAR-T cells, which were less effective in

clearing leukemia blasts compared to CAR-T cells generated from

naïve mice.

Further research has indicated that inhibiting myeloid–

epithelial–reproductive tyrosine kinase (MERTK), a gene linked

to the induction of an antiapoptotic gene expression signature in B-

ALL cells, decreased PD-1 expression on both CD4+ and CD8+ T

cells, leading to enhanced T cell activation and anti-ALL immune

activity (78). Similarly, IL-12-mediated leukemia clearance in a
TABLE 1 Overview of exhaustion markers on T cells from pediatric B-ALL patients at diagnosis, during treatment, and at relapse.

Research
study

Disease stage
(Dx or Relapse)

Cell
source
(PB,

PBMC,
BMMNC)

T
cell

subset
Markers of exhaustion Clinical correlate

(62)
Newly diagnosed, prior
to chemotherapy

PBMC
ab and
gd T cells

PD-1 and CTLA-4 expression higher on ab and gd
T cells. The expression of CTLA-4 on gd T cells and
B7-H2 ligand on blasts was higher in patients with
high risk ALL.

Expression of CTLA-4 on gd T cells
and PD-L1 on ALL blasts are
associated with poor prognosis in
B-ALL.

(63)

Diagnosis
BM aspirates,
BM MNCs

CD4+
and CD8
+
T, Tregs

Increased expression of TIGIT, LAG3 and PD-1 on
CD4 and CD8+T cells. T cells also had a higher
proportion of Foxp3 expressing Treg cells.

(64)
Not mentioned Bone marrow

CD8
+T cells

Tim-3, NR4A1 and BATF were upregulated in Pax5
haploinsufficient tumors.

(65)

Not mentioned
mRNA
from PBMCs

CD8+T
cells,
Tregs

Tim-3, TIGIT and CTLA-4 are overexpressed in B-
ALL patients.

Increased Treg cells as well as CD8
+T cells expressing CD39, CTLA-4,
TNFR2, TIGIT and Tim-3 favor B-
ALL progression.

(66)
Diagnosis PB and BM n/a

Relative mRNA expression of Tim-3 in PB and
BMMNCs was 1.7 and 5 times higher in ALL
patients compared to HD.

(67)
Diagnosis Blood serum n/a

Elevated PD-1 in the serum of children with ALL
compared to healthy volunteers

(68)
Diagnosis PBMC

CD8
+T cells

PD-1 was upregulated on CD8+T cells in B-
ALL patients

(69)
End of
induction chemotherapy

Matched PB
and
BM samples

CD8+T
At end of induction therapy, CD8+T cells from the
bone marrow upregulated PD-1

(70) Newly diagnosed, prior
to chemotherapy, 28
months after therapy
and relapse.

PB n/a

sCTLA-4 was upregulated in the serum of patients
with B-ALL. Expression of serum sCTLA-4 was
higher at relapse and in patients who died
from disease.

High serum levels of sCTLA-4 and
CD86 in B-ALL patients is a
candidate parameter for
poor prognosis.

(71)
Relapse BM samples

CD4
+T cells

Tim-3 is upregulated on CD4+T cells in patients
with ALL

Expression of Tim-3 on CD4+T cells
is a risk factor for disease relapse.

(72)

Diagnosis and Relapse
PBMC
or Blasts

CD3
+T cells

Expression of PD-L1 was higher in relapse patients
compared to diagnosis on ALL blasts. PD-1 and
Tim-3 was elevated on patients T cells compared
to control.
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syngeneic murine model of B-ALL was dependent on T cell activity.

T cells frommice that failed to achieve leukemia clearance exhibited

expression of exhaustion-associated genes, including LAG3 and

TIGIT (79). Lastly, in a syngeneic model of Em−ret B-ALL, mice

that failed to control non−immunogenic wild−type ALL blasts

exhibited an upregulation of PD−1 and CTLA−4 on both CD4+

and CD8+ splenic T cells, whereas mice receiving B-ALL cells that

express GFP/luciferase (which act as a model antigens) did not (80).

This elevated checkpoint expression in non−responders was

accompanied by higher CD80 on conventional dendritic cells and

increased PD−L1 on plasmacytoid DCs. In contrast, T cells from

leukemia−responsive mice downregulated these inhibitory

receptors, allowing effective DC maturation, IL−12 production,

and IFN−g release by naïve T cells against otherwise non

−immunogenic leukemia antigens. These results suggest that PD

−1 and CTLA−4 inhibit epitope spreading and support combined

checkpoint blockade strategies to broaden anti−ALL immunity.

In summary, increasing evidence from both clinical and

preclinical studies indicates that B-ALL progression is

accompanied by impaired T cell function, characterized by the

overexpression of multiple IC molecules. This finding has

significant implications for the application of immune therapies

to children with B-ALL.
5 Immune checkpoint blockade in
B-ALL

The role for immune checkpoint pathways in cancer

progression, and rationale for ICB therapy, was first identified

when antibodies targeting CTLA-4 demonstrated efficacy in

reducing melanoma tumor size in mice (81). This early discovery

led to the development of ipilimumab, an anti-CTLA-4 monoclonal

antibody (mAb) that became the first therapy to improve survival in

patients with metastatic melanoma (82). PD-1 then emerged as

another critical immune checkpoint. Anti-PD-1/PD-L1 therapies,

such as pembrolizumab and nivolumab, showed promising efficacy

in controlling tumor progression, leading to their approval in 2014

for metastatic melanoma (83, 84). In general, ICB therapy with

blocking mAbs has shown most success in solid tumors with high

mutation loads, where it can achieve durable clinical responses (85).

However, clinical efficacy is largely confined to a subset of patients

(86). In the years since their approval, hundreds of clinical trials

have explored the impact of ICB mAbs across diverse cancers, with

varying degrees of success. In hematologic malignancies like B-ALL,

the application of immune checkpoint inhibitors remains under

investigation (87–89).

Given the low TMB and minimal neoantigen-specific T cell

generation in pediatric B-ALL, ICB alone was predicted to be

insufficient to achieve meaningful therapeutic activity. However,

the recent findings described above have challenged this notion,

prompting a re-examination of anti-ALL T cell activity. Preclinical

B-ALL models show early evidence that ICB, alone or combined,

can induce remissions. For instance, CTLA-4 blockade in Em-ret
mice, which are likely tolerized to antigens derived from the
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leukemia-driving transgene, enhanced immune control and

extended survival by 50% (61). In a BCR::ABL+ ALL mouse

model, PD-L1 blockade led to clonal expansion of leukemia-

specific CD4+T cells with a helper/cytotoxic phenotype, while

reducing exhaustion marker expression (76). Additionally,

combining PD-L1 mAb with nilotinib, a tyrosine kinase inhibitor

(TKI), significantly improved survival of BCR::ABL+ leukemia-

bearing mice. Studies with dasatinib, another TKI, in combination

with anti-PD-1 eliminated BCR::ABL+ ALL cells, prolonged

survival, and induced anti-leukemic immune memory upon

rechallenge in syngeneic mice (90). These intriguing findings

suggest that the administration of ICB during standard therapy is

worthy of thorough preclinical investigation. One key question is

whether targeting established or emerging exhaustion pathways

(during immune reconstitution following induction chemotherapy)

can enhance immune-mediated clearance of residual disease (91).

Notably, a Phase 2 study of pembrolizumab for treating minimal

residual disease (MRD) in adults with B-ALL found limited clinical

benefit from anti-PD-1 therapy in this setting (92). However, given

the distinct differences in immune reconstitution and treatment

responses between adults and children, investigating this approach

in pediatric B-ALL remains warranted. Finally, although B-ALL is

characterized by low TMB, levels vary across different B-ALL

subtypes. For instance, KMT2A-rearranged (KMT2A-r) ALL

typically exhibits a low TMB, whereas iAMP21 ALL tends to have

a comparatively higher TMB (93–95). Current data are insufficient

to establish a clear association between TMB variations across B-

ALL subtypes and their responsiveness to ICB therapy.
6 Integrating immune checkpoint
blockade with approved
immunotherapies

With the current shortage of empirical evidence supporting

single-agent ICB use during pediatric B-ALL treatment, ongoing

efforts are focused on exploring ICB in combination with other

immunotherapies. Redirected T cell therapies, such as CAR-T and

BiTE, facilitate cytotoxicity by directing autologous T cells toward

leukemia cell surface antigens (96). Both CARs and BiTEs operate

independently of the TCR and MHC molecules and rely on single-

chain variable fragment (scFv) to recognize tumor-associated

antigens (97). However, similar to peptide-specific T cells,

continuous exposure of redirected T cells to tumor antigen can

lead to T cell exhaustion (98), posing a significant challenge for both

therapies. Emerging evidence supports that integration of ICB into

these therapy protocols may achieve superior outcomes (99, 100).
6.1 ICB with CD3/CD19 BiTE

Blinatumomab, a CD3/CD19 BiTE, has notably improved

outcomes for pediatric patients with relapsed or refractory (R/R) B-

ALL and is now a frontline treatment option (101, 102). As of 2025, it

remains the only immunotherapy approved for pediatric B-ALL
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patients who are minimal residual disease (MRD) positive, showing

promise in low burden early-stage disease in combination with

standard chemotherapy (103). Despite this, patient responses to

blinatumomab can vary considerably. Some patients show little to

no response to the treatment (104, 105), while others experience a

loss of response after multiple cycles (104). Blinatumomab has been

shown to induce an upregulation of inhibitory receptors on T cells

and their corresponding ligands on B-ALL blasts, such as PD-1 and

PD-L1, respectively. A comparison of IC expression at diagnosis and

relapse showed higher PD-L1 expression on blasts obtained at relapse

or from patients refractory to the anti-CD19 BiTE blinatumomab.

Additionally, relapsed patients who failed to respond to

blinatumomab exhibited increased expression of PD-1 and TIM-3

on T cells, alongside elevated PD-L1 on B-ALL blasts (71, 72). Recent

data from a study of 11 pediatric patients treated with a continuous

28-day infusion of blinatumomab revealed progressive acquisition of

T-cell exhaustion features (106). T cells exhibited phenotypic and

transcriptomic upregulation of inhibitory receptors including PD-1,

TIM-3, and TIGIT, a shift toward CD8+ T effector memory cells re-

expressing CD45RA (TEMRA) subsets, and reduced cytotoxic and

proliferative capacity. In a patient-derived xenograft (PDX) model of

B-ALL using umbilical cord blood-reconstituted immunodeficient

mice, treatment with either blinatumomab or pembrolizumab alone

led to partial disease protection (107). Notably, the combination of

both treatments resulted in a lower incidence of MRD and improved

leukemia-free survival. Lastly, treatment of a single refractory ALL

patient with a combination of blinatumomab and anti-PD-1 antibody

induced anti-leukemic responses, reducing the disease burden from

45% to 1% (72).
6.2 ICB with CAR-T

CD19-directed CAR-T therapy has achieved over 70% complete

remission rates in pediatric R/R B-ALL patients (108–111). However,

30–50% of these children experience relapse within the first year

(112–114). Relapse in B−ALL patients following CAR−T therapy is

most often driven by loss of leukemia-associated antigen (e.g., CD19

or CD22) or limited CAR−T cell persistence and proliferative

capacity due to T cell exhaustion (115). In a syngeneic B−ALL

mouse model, DeGolier et al. demonstrated that CD8+ CAR−T

cells inherit epigenetic and transcriptional programs from their
Frontiers in Immunology 06
prior TCR antigen exposure, which dictate their exhaustion

susceptibility (116). Although memory−derived CAR−T cells

mount superior initial effector responses, they rapidly develop

exhaustion phenotypes under low−antigen or low−dose conditions,

which are marked by an increased expression of PD-1, TIM-3, Tox

and CD39. In contrast, naive−derived CAR−T cells sustain

proliferation and resist dysfunction. Complementing these findings,

Zebley et al. analyzed CD8+ CD19-CAR T cells from pediatric B-ALL

patients and found that ongoing antigen stimulation drives

exhaustion-associated DNA methylation reprogramming (117).

This includes demethylation at genes such as CX3CR1, BATF, and

TOX, alongside repression of memory-associated genes like TCF7

and LEF1. This collectively promotes a progenitor-exhausted

phenotype which limits CAR-T cell persistence. In a related study,

it was shown that transiently interrupting CAR signaling—using

either a drug-regulatable system or dasatinib—can restore

functionality in exhausted CAR-T cells through epigenetic

remodeling (118). This brief period of rest reprograms CAR-T cells

toward a memory-like state, enhancing their cytokine production,

proliferative potential, and antitumor efficacy.

As the limited long-term efficacy of CAR-T therapy has been

linked to CAR-T cell exhaustion, ICB has been explored as a

strategy to enhance persistence (119). In a small cohort study

involving 14 pediatric B-ALL patients, the addition of anti-PD-1

mAbs to CD19 CAR-T cell therapy enhanced CAR-T cell

persistence. Remarkably, three out of six patients treated with the

PD-1 inhibitor at the time of early B cell recovery re-established B

cell aplasia, signifying restoration of CAR-T cell activity (120).

Other potential strategies for ICB integration with CAR-T therapy

include engineering CAR-T cells to secrete soluble PD-1-blocking

scFv. This approach has shown anti-leukemic efficacy comparable

to combination therapy with CAR-T cells and anti-PD-1 antibodies

(121), and has demonstrated improved eradication of CD19+PD-L1

+ leukemia cells (122). Another approach involves the development

of TIM-3-CD28 fusion proteins, which convert inhibitory TIM-3

signaling into an activating, immunostimulatory signal (123).

However, the complex outcomes of ICB require further

investigation, as increased CAR-T cell activation can reduce cell

survival and exacerbate exhaustion by upregulating TIGIT (124).

A growing body of research emphasizes the significance of

patient-derived T cell quality on CAR-T cell performance.

Evaluating both the apheresis starting material and the post-
TABLE 2 Pediatric trials of ICB in B-ALL.

NCT
(Trial)

ICB
agent(s)

Combo
agent(s)

Phase Age (yrs) Status Objective/Eligibility

NCT05310591 Nivolumab
(anti–PD-1)

CD19 CAR-T
tisagenlecleucel
(Kymriah®)

1 1-25 Recruiting First relapse, to determine safety and efficacy of nivolumab
with CD19 CAR-T

NCT04546399 Nivolumab
(anti–PD-1)

Blinatumomab II ≥ 1 to <31 Suspended – FDA
partial
clinical hold

First relapse, to compare event free survival post re-
induction between blinatumomab vs
blinatumomab/nivolumab

NCT03605589 Pembrolizumab
(anti-PD-1

Blinatumomab I/II 1-40 Withdrawn (lack
of enrollment)

First relapse, to determine safety and feasibility of
combining pembrolizumab with blinatumomab to treat
relapsed B-ALL.
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infusion CAR-T product is crucial for identifying correlates of

CAR-T cell persistence (125). Notably, increased expression of

exhaustion markers, such as PD-1 and LAG-3, on CD8+ T cells

within the apheresis material has been associated with reduced

CAR-T cell efficacy (126). Conversely, higher levels of these

markers on CD4+ CAR-T cells during peak expansion in

recipients - triggered by cognate antigen-mediated activation -

have been associated with prolonged event-free survival (127).

These observations highlight that timing of IC assessments is

crucial, as elevated expression at different times are associated

with very different outcomes. A recent study examined the

apheresis materials from pediatric and young adult patients with

R/R B-ALL undergoing CD22 CAR-T cell therapy and found that T

cells from non-responders had a more differentiated phenotype and

overexpressed exhaustion-associated genes (128). These differences

in the apheresis material could predict response to therapy, with the

exhausted phenotype being a key predictor of poor outcomes. The

study indicates that early identification of exhaustion markers in

apheresis material could guide targeted manufacturing adjustments

to optimize CAR-T cell efficacy.
6.3 Challenges to integration

Despite the promise of ICB, several translational and clinical

barriers must be overcome if it is to become an established

treatment in the pediatric setting. First, ICB-associated immune-

related adverse events (irAEs), such as colitis, endocrinopathies, and

hepatitis, represent a significant risk in children, whose immune

and endocrine systems are still developing (129–131). The long-

term effects of checkpoint inhibition on immune and organ

development in children remain unknown. Second, the optimal

timing and patient selection for ICB remain open questions.

Introducing checkpoint inhibitors during immune reconstitution,

such as post-chemotherapy or allo-HSCT, may either enhance anti-

leukemic responses or disrupt essential tolerance pathways. Third,

empirical evidence supporting the clinical use of ICB for pediatric

B-ALL is limited. Most existing data are derived from adult trials or

preclinical models, and few clinical trials that include pediatric B-

ALL have been initiated (Table 2). These challenges highlight the

importance of careful patient stratification, pediatric-specific trial

design, and long-term monitoring if the field is to move toward

clinical translation of ICB in B-ALL. These goals are made even

more challenging to achieve by the diverstiy of clinical trials

available for this patient population.
7 Future considerations

Over the past decade, it has become clear that T cell-based

immunotherapies can overcome the hurdles of low immunogenicity

and tolerance to achieve significant therapeutic activity in children

with B-ALL. However, T cell exhaustion has emerged as a

characteristic feature of B-ALL progression. This finding identifies
Frontiers in Immunology 07
ICB therapy as an important consideration for improved treatment

of children with progressive disease. Several strategies to integrate

ICB into current treatment regimens merit further investigation,

including during immune reconstitution following chemotherapy

and in combination with redirected T cell therapies. Considerable

work will be needed to establish ICB as a central component of B-

ALL therapy, but the continued application of both preclinical

models and clinical studies to unveil underlying biology, identify the

variables determining outcome, and optimize protocols could

quickly set new immunotherapeutic standards that ultimately

improving long-term outcomes for pediatric patients with B-ALL.
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