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transition is an active process in
the large airways of patients
with asthma-COPD overlap
and partially abrogated by
inhaled corticosteroid
treatment: a bronchoscopy
endobronchial biopsy study
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Maddison Waters3, Greg Haug3, Josie Larby3,
Heinrich C. Weber4, Peter A. B. Wark2,5, Mathew Suji Eapen1

and Sukhwinder Singh Sohal1*

1Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health
Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia,
2Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton
Heights, Australia, 3Department of Respiratory Medicine, Launceston General Hospital,
Launceston, Australia, 4Department of Respiratory Medicine, Tasmanian Health Services (THS), North-
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Introduction: Asthma and chronic obstructive pulmonary disease (COPD)

overlap (ACO) is a term used to describe a patient with coexisting clinical

features of asthma and COPD. We have previously reported that epithelial to

mesenchymal transition (EMT) is active in the lungs of patients with COPD

however, EMT in ACO remains an unexplored area. We hypothesize that EMT

is an active process in ACO.

Methods: In this cross-sectional study, large airway endobronchial biopsy (EBB)

tissues from patients with asthma (14), COPD (22), current (CS) and ex-smokers

(ES), and ACO (12) were immunohistochemically stained for EMT markers (E and

N cadherin, vimentin, S100A4, and Collagen IV) and compared with 12 current

smokers with normal lung function (NLFS) and 10 non-smoking healthy control

(HC) subjects. In addition, air-liquid interface (ALI) cell cultures were performed

and cells from patients with ACO and HC were treated with TGF-b, IL-13 and

cigarette smoke extract (CSE). Later cells from ALI cultures were lysed for

Immunoblotting. Immunostained tissues were enumerated for percent

expression of E and N-Cadherin in the epithelium, vimentin and S100A4

positive cells both in the epithelium and reticular basement membrane (RBM).

Additionally, the degree of RBM fragmentation was evaluated, a key tissue

structural marker of EMT.
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Results: Compared to healthy controls and asthmatics, ACO had the greatest

fragmentation of RBM (P < 0.01). ACO also had substantially decreased

percentage expression of E-cadherin (P <0.01), increase percentage of N-

cadherin expression, and higher vimentin and S100A4 positive basal cells, in

comparison to healthy controls. In the RBM of ACO, S100A4 positive cells (P

<0.05) and Vimentin-positive cells were markedly higher in comparison to HC.

Similar changes were observed with western blots in response to Th-2 cytokine

IL-13, CSE and EMT activator TGF-b.

Conclusions: These data are suggestive of active EMT in ACO. Additionally, 50%

of the patients with ACO were on 800 mcg/day inhaled corticosteroid (ICS)

treatment which may have abrogated some EMT activity; however, it suggests

protective effects of ICS as we previously reported in COPD. Studies with larger

cohorts are needed to further confirm ICS effects in ACO.
KEYWORDS

asthma-COPD overlap (ACO), COPD - chronic obstructive pulmonary disease, smoking,
fibrosis, ICS - inhaled corticosteroids, histopathology, diagnosis, EMT - epithelial to
mesenchymal transformation
Introduction

Asthma and COPD are chronic respiratory diseases affecting

millions of people worldwide (1). Associations between these two

diseases have been acknowledged over the previous decades and

recently received an official designation of ACO (1). If asthma and

COPD are considered diseases with distinct pathologies, one might

conceive that the ACO is also a discrete disease entity with its own

pathology as determined by the genetic and environmental

determinants. ACO may also simply be a manifestation of

continued airway disease, positioned at the fulcrum of asthma and

COPD phenotypes, showing features associated with both conditions

(2). Although this debate is never-ending, ACO is nowadays

considered a treatable trait for better patient management (1).

Nonetheless, the underlying cellular and molecular mechanisms for

the development of ACO require a detailed investigation to

understand the involvement of undoubtedly complex mechanisms.

Epithelial to mesenchymal transition (EMT) is an important

cellular program during which the epithelial cells lose their

adhesive property and attain mesenchymal phenotype with a more

migratory property due to cell signals triggered from the cellular

microenvironment (3, 4). Generally, the cells of the epithelial layer of

tissue show apical-basal polarity and are held tightly by the tight,

adheren junctions such as E-cadherin and chained to the reticular

basement membrane (RBM) by hemidesmosomes. When EMT is

activated, E-cadherin expression is suppressed, and the tight epithelium

junction is loosened, leading to acquisition of mesenchymal proteins.

The cells then take up the mesenchymal phenotype with fibroblast-like

morphology and express markers such as N-cadherin, vimentin, or

S100A4. The EMT has consequences to wound healing, tissue

regeneration, organ fibrosis and cancer.
02
EMT is the core pathophysiological process in COPD (5–7). In

smoking-associated COPD, recent research highlighted that EMT is

linked to airway remodelling, airway fibrosis, cancer and

subsequent airflow obstruction (8–11). Several studies including

from our research group have reported active EMT in patients with

COPD but there is no evidence from the lungs of patients with

ACO. The presence of smoking and chronic inflammation in ACO

is sufficient to inflict epithelial injury. Lately, we reported thickened

RBM and abundant RBM cells in the airways of patients with ACO

(12). Furthermore, our recent report indicated a hyper vascular

RBM in patients with ACO, suggesting a possible angiogenesis in

these patients, the so-called Type III EMT (1, 9, 13). Collectively, we

hypothesize that the EMT process may be active in the airways of

patients with ACO.
Methods

To evaluate the above hypothesis, we analyzed the large airway

biopsies tissues of patients with ACO, which were compared against

the HC, asthma, COPD-ES and CS, and NLFS for the EMTmarkers

E- and N-cadherins, vimentin, and S100A4. In addition, the degree

of RBM fragmentation, a hallmark of EMT activity (8) was

measured and compared among the groups.
Participant demographics

A total of 70 large airway endobronchial biopsy (EBB) samples

were collected from participants (12 ACO, 14 asthmatics, 10 COPD

ex-smokers (ES), 12 COPD current-smokers (CS), 12 NLFS, and
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10 HC) and were obtained from the Tasmanian Respiratory Tissue

bank and Newcastle biobanks (Tasmanian Health and Medical

Human Research Ethics Committee, ethics IDs: H0013051; the

Hunter New England Human Research Ethics Committee reference

no: 05/08/10/3.09). The details of tissue collection from the research

volunteers were reported in our earlier publications (12–14). Among

the participants with ACO, 7 were classified as GOLD stage I and II

and 1 as GOLD stage III COPD considering their lung function, and

4 were classified as having severe asthma. Themajority of participants

with ACO were ex-smokers. Participants with COPD were of mild to

moderate COPD (GOLD stage I and II). Fifty percent of the patients

with ACO and asthma were on inhaled corticosteroids (800/750 -

mcg/day). All participants with asthma and HC were non-smokers.

None of the HC subjects had a history of respiratory illness. A

summary of the participant demographics is presented in Table 1.
Immunohistochemical staining

The formalin-fixed, paraffin-embedded biopsy tissue blocks were

sectioned at 3 µm and placed on positively charged glass slides. These

sections were dried overnight. Paraffin sections were then dewaxed in

xylene, and rehydrated using graded ethanol, followed by a wash in

distilled water. Heat-Induced epitope retrieval was conducted in a

decloaking chamber (Biocare Medical) using low pH Dako target

retrieval solution (Cat#.S1699). The sections were then treated with

3% hydrogen peroxide (H2O2) in distilled water (v/v) to block

endogenous peroxidase activity. Primary antibodies were applied to

the tissue sections as follows: mouse monoclonal E-cadherin (1:200

dilution, ab1416, Abcam, Victoria, Australia), mouse monoclonal N-

cadherin (1:150 dilution, ab98952, Abcam, Victoria, Australia), rabbit

polyclonal S100A4 (1:1000, A5114, Dako, Victoria, Australia), mouse

monoclonal Vimentin (1:200, M7020 Dako, Victoria, Australia),

rabbit polyclonal Collagen IV (1:350, ab6586, Abcam, Victoria,

Australia), incubated at room temperature. Bound antibodies are
Frontiers in Immunology 03
then elaborated using polymer enzyme backbone conjugated

secondary antibody (Dako EnVision, K5007) and visualised using

diaminobenzidine (DAB) chromogen (Dako EnVision, K7005).

Harris hematoxylin was used for the nuclear staining. Before

performing immunostaining, optimisation of manufacturer-specific

immunohistochemical methods was conducted. We have published

with these methods before (15–18).
Quantification of immuno-stained biopsy
tissue

Computer-assisted image analysis was performed with a Leica

DM 500 microscope (Leica Microsystems, Germany) and a Leica

ICC50W camera. Tissues with visible epithelium, RBM, and

lamina propria (LP) were selected for image analysis. The

images of the entire tissue area, including epithelium, RBM and

LP, were captured at 40X brightfield, avoiding the overlapping

area between images. Five images were randomly chosen for

percentage stain and cell counts. For E- and N-cadherin, the

percent staining expression was measured in the epithelium. For

the mesenchymal markers, the marker-positive basal cells (brown)

in the epithelial and the marker-positive cells in RBM were

counted (Figures 1E, F), presented as cells per mm of RBM

length. The observer was blinded to patient and diagnosis. The

representative tissue micrographs of EMT markers in ACO and

HC are provided in Figure 1.

Length of fragments was measured from Collagen IV-positive

tissues which separated the fragments from vessels (Figure 1I).

Fragmentation of the RBM included pieces apparently hanging off

and fully separated from the rest and clefts within the RBM. The

total length of splits was added and divided by the length of RBM.

Splits that were parallel to the RBM were also included in the

measurement. Image analyses were performed using the image

analysis software Image-Pro Plus 7.0.
TABLE 1 Patients/subject demographics.

Parameters/Groups HC ACO Asthma COPD-ES COPD-CS NLFS

Subjects 10 12 14 10 12 12

Age (years) 61 (25–68) 70 (52–77) 62 (26-81) 67 (46-78) 65.5 (51-78) 56.5 (41-72)

Smoking History (pack-year) 0 22.5 (15-103) 0 36 (22-105) 34.8 (10-114) 31.5 (20-75)

ICS treatment (n) N/A 6 6 N/A N/A N/A

ICS dose N/A 800 mcg/day 750 mcg/day N/A N/A N/A

GINA Diagnosis Mild persistent/
Moderate/Severe (n)

N/A 0/0/4 5/1/8 N/A N/A N/A

Gold Diagnosis Stage I &II/Stage
III (n)

N/A 7/1 N/A 10/0 12/0 N/A

%FEV1 93 (75-114) 58 (35-96) 81.5 (48-108) 84.5 (54-113) 69 (49-92) 94 (79-113)

%FEV1/FVC 83 (73-86) 65.5 (31-84) 74 (52-90) 63.2 (55-69) 63.6 (50-75.3) 78 (70-85)
Data expressed as median and range.
ACO, asthma COPD overlap; COPD, chronic obstructive pulmonary disease; COPD-CS, COPD current smokers; COPD-ES, COPD ex-smokers; FEV1, forced expiratory volume in 1 second;
FVC, forced vital capacity; GINA, The Global Initiative for Asthma; GOLD, The Global Initiative for Chronic Obstructive Lung Disease; HC, healthy control; n, number of subjects/patients; N/A,
not applicable; NLFS, normal lung function smokers; ICS, inhaled corticosteroids.
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Cigarette smoke extraction

Cigarette smoke extract (CSE) was prepared by bubbling smoke

from one filter-less Kentucky research cigarette, 3R4F, which contains

9.5mg of tar and 0.8mg of nicotine, through 10mL of Bronchial

Epithelial Basal Medium (BEBM, Lonza) at a rate of one cigarette
Frontiers in Immunology 04
every 5 minutes (19). This was used immediately in subsequent cell

culture experiments by diluting it with BEBM media to achieve a

concentration of 1%. We previously determined that this

concentration of CSE, assessed via dose-response curves, causes

minimal toxicity to the cells while still inducing an immune

response. All cells were grown at 37°C with 5% CO2 air.
FIGURE 1

Representative micrographs of EMT markers in ACO and HC: E-cadherin (A, B), N-cadherin (C, D), vimentin (E, F), S100A4 (G, H), and collagen IV
(I, J). Tissue micrograph showing the junctional E-cadherin and N cadherin “red arrow”, marker positive basal cells “yellow circle”, RBM cells “red
circle”, and RBM fragments “black arrow”.
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Cell culture and treatment

Primary bronchial epithelial cells (pBECs) were collected from

healthy (n=3) and ACO (n=3) subjects via bronchoscopy. pBECs

from the healthy control and ACO groups were cultured in separate

culture plates as air-liquid interface cultures. In each plate, transwells

were spaced out one well apart to minimize cross-contamination.

Treatments were added carefully into the basal compartment. A new

cell culture pipette tip was used on each treatment for each well on

every media change. Primary cells were grown in complete BEGM

(Lonza) with growth factor supplements in a submerged monolayer

culture. Once confluent, cells were trypsinised using a 1:10 dilution of

the standard 0.25% trypsin-EDTA solution (Sigma), and once the

cells are dissociated, FBS was used to neutralise and then seeded at

2 × 105 cells in trans-wells in a 12-well plate (Corning) with

PneumaCult™-Ex Plus medium containing amphotericin B (final

concentration 250 mg/ml), and 2% penicillin-streptomycin until

confluent (at least 3 days in both apical and basal compartments)

(20–24). Once confluent, apical media was removed and the basal

media was replaced with PneumaCult™-ALI medium containing

amphotericin B (final concentration 250 mg/ml), and 2% penicillin-

streptomycin and maintained at the air-liquid interface (ALI) phase

for 21 days until fully differentiated. Fully differentiated ALI wells at

day 21 were basolaterally treated with EMT drivers (25) TGF-b (5ng/

mL) and interleukin (IL)-13 (10ng/mL) (26) for 10 days or with 1%

cigarette smoke extract (CSE) for 2 days. At the end of the treatment,

cells were harvested for RNA or protein using appropriate

lysis buffers.
Immunoblotting

Air-liquid interface (ALI) samples were lysed with RIPA buffer

containing protease inhibitor (Sigma-Aldrich, Australia) for 20

minutes at 4°C and were assessed for total protein concentrations

using pierce™ BCA protein assay kits (Thermofisher Scientific,

Australia) (27, 28). A total of 5ug protein was loaded into activated

Mini-PROTEAN® TGX Stain-Free™ precast gels (Bio-Rad

laboratories Australia) and SDS-PAGE separation was performed.

Standard immunoblot was performed against E-cadherin (14472S,

Cell signalling), N-cadherin (ab18203, Abcam), and Vimentin

(ab92547, Abcam) as described previously (29). b-actin (ab8227,

Abcam) was used as the loading control. Protein bands were detected

using SuperSignal West Femto Maximum Sensitivity Substrate

reagents (ThermoFisher Scientific Inc.) on the ChemiDoc MP

Imaging System (Bio-Rad Laboratories). Protein band density was

measured using Image J software and normalized to the loading

control (b-actin) level. The relative expression level of protein was

calculated and graphed using GraphPad Prism 9.0 software.
Statistical analysis

Following the data distribution check using D’Agostino &

Pearson test, intra- and inter-group variances were analysed using
Frontiers in Immunology 05
one-way ANOVA or nonparametric with multiple comparisons

using uncorrected Dunn’s test. Unless otherwise mentioned, the

results are reported as median and range. Univariate Spearman r

was used for correlation analysis. Furthermore, the effect of ICS on

the EMT markers was explored using a nonparametric test. A P

value of <0.05 was considered significant. All analyses were done

using GraphPad Prism v9 (San Diego, CA, USA).
Results

Expression of EMT markers in the
epithelium

The epithelial marker E-cadherin percentage expression in large

airway epithelium decreased across all pathological groups

(Figure 2). In contrast, the mesenchymal markers N-cadherin

percent expression, vimentin, and S100A4 positive cell counts

generally increased in all pathological groups except in the

patients with asthma. E-cadherin percent expression in patients

with ACO was substantially decreased as compared to the HC

(P <0.01) and NLFS (P <0.001) groups and tended to be lower than

the COPD groups (Figure 2A). In addition, a notable decrease in E-

cadherin expression was also noted in COPD-ES (P <0.05) and

COPD-CS (P <0.05) groups as compared to NLFS; however,

compared to HC the decrease in percent expression COPD-ES

(P = 0.1021) and CS (P = 0.1178) was not statistically significant.

N-cadherin percent expression in the ACO group appeared to

be higher (P = 0.1608) than in the HC group and tended to be lower

than in the COPD groups (ES, P = 0.3107; CS, P = 0.0702) and

NLFS (P = 0.5487) (Figure 2B). Compared to asthma, the percent

expression of N-cadherin increased markedly in ACO (P <0.01).

Although the percent expression of N-cadherin remained similar in

between COPD groups, we further noticed a substantially higher

expression of N-cadherin in COPD-ES and CS groups than in the

HC (P <001 and <0.05, respectively) and asthma (P <0.001

and <0.0001, respectively). The ratio of E and N cadherin percent

expression indicated a dominance of N cadherin, a mesenchymal

marker as compared to HC which had near similar proportion of E

and N cadherin percent expression (Figure 3A).

The number of vimentin-positive basal cells was highest in the

patients with ACO followed by the patients with COPD (Table 2,

Figure 2C). However, compared to HC, the differences were

statistically not significant (ACO, P = 0.6909; COPD-ES, P =

0.7259; CS, P = 0.2686). In asthma, vimentin-positive basal cells

were similar to the HC (P = 0.5150).

The number of S100A4-positive basal cells was higher in all

pathological groups (Figure 2D). Although in the ACO group

S100A4 positive basal cells appeared to be higher than the HC

(P = 0.3376) and asthma group (P = 0.7417), we noted significantly

lower basal cells in ACO than in COPD-ES (P <0.01) and NLFS

(P <0.05) groups. S100A4 positive basal cells were tended to be lower in

ACO than in COPD-CS group (P = 0.1029). Furthermore, the S100A4-

positive basal cells were markedly enhanced in both COPD-ES and CS

groups as compared to the HC (P <0.01 and <0.05, respectively) and
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asthma (P <0.01 and <0.5, respectively). S100A4-positive basal cells in

asthma were essentially normal. When we plotted the ratio of vimentin

and S100A4 positive basal cells, we noted a higher proportion of

S100A4 positive cells across all groups (Figure 3B).
The degree of reticular basement
membrane fragmentation (RBM, key EMT
tissue hallmark)

The degree of fragmentation was greatest in patients with ACO

followed by COPD-CS and ES, and lowest in the asthma group

(Figure 4C). Enhanced fragmentation in the ACO group was

statistically significant than the HC (P <0.01) and asthma

(P <0.01). Although the fragmentation in the ACO group

appeared to be higher than the COPD-CS (P = 0.3215) and ES

(P= 0.2017), the difference was not statistically significant.

Furthermore, the degree of fragmentation was substantially higher
Frontiers in Immunology 06
(P <0.05) in COPD-CS than in the asthma group and tended to be

higher than in the HC (P=0.1086). In the COPD-ES group, the

fragmentation tended to be higher (P= 0.2039) than the HC and

lower than the COPD-CS group (P = 0.7612). The RBM

fragmentation in patients with asthma was very similar to HC.
Expression of mesenchymal markers in the
RBM

In general, similar to the epithelial basal cells, both vimentin

and S100A4 positive cells (Figures 4A, B) in the RBM of

pathological groups were elevated except in patients with asthma.

The vimentin-positive cells appeared to be elevated in the

RBM of ACO as compared to HC although the difference was not

statistically (P = 0.1610); however, as compared to asthma the

increase in vimentin-positive cells was notable (P <0.05). The

number of vimentin-positive cells in patients with ACO was
FIGURE 2

Box plots showing percent expression of E-cadherin (A), N-cadherin (B), vimentin-positive basal cells per mm of reticular basement membrane
(RBM) (C), S100A-positive basal cells per mm RBM (D) in HC, ACO, asthma, COPD-ES and COPD-CS, and NLFS. The horizontal line inside each box
represents the median; the top and bottom of each box represent the upper and lower quartiles, respectively; and the whiskers represent extreme
values. P value representation * <0.05, ** <0.01, *** <0.001, **** <0.0001.
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similar to that of COPD-ES (P = 0.7397) and NLFS (P = 0.4331)

groups. The COPD-CS group also had high vimentin-positive

RBM cells, compared to HC and asthma groups (P <0.05 for

both). On the other hand, the vimentin-positive cells in asthma

tended to be lower than HC (P = 0.5641). Similar to the epithelial

region, the ratio of vimentin and S100A4 RBM cells suggested a

higher proportion of S100A4 positive cells across all

groups (Figure 3C).

In the RBM, a significantly higher number of cells were stained

for S100A4 in ACO (P <0.05), COPD-ES (P <0.05), COPD-CS (P

<0.01), and NLFS (P <0.001) as compared to HC. The S100A4

stained cells remained comparable among patients with ACO,

COPD-ES, COPD-CS, and NLFS. The S100A4 stained RBM cells

in asthma remained similar to HC.
Exploratory analysis

We performed an array of correlation analyses using the FEV1/

FVC ratio, smoking history with EMT markers from samples of

ACO (Table 2). In addition, we checked correlation (Table 3)
Frontiers in Immunology 07
between EMT markers from samples of ACO and epithelial

macrophage that we reported to be higher in ACO earlier

(Figure 5). Notable correlations trend considering spearman r

values were (a) a trend of moderate positive correlation between

mesenchymal markers (vimentin and S100A4 positive basal cells) in

the epithelium and FEV1/FVC ratio (spearman r, 0.3357 and

0.4825, respectively); (b) a trend of moderate positive correlations

between smoking history and mesenchymal markers (Vimentin and

S100A4 positive basal cells with the spearman r of 0.3825 and

0.2947, respectively); (c) a trend of weak positive correlation

between E-cadherin and epithelial macrophages (Figure 5A) (d)

significant and moderate positive correlation between epithelial

macrophage and epithelial-mesenchymal markers (S100A4 and

vimentin positive basal cells with the spearman r of 0.5245 and

0.6294; P = 0.0161 and 0.0420 respectively) (Figures 5C, D). We

dichotomized the ICS-treated and nontreated patients with ACO to

see if there is any effect on the EMT markers (Figure 6) We noted a

marked decrease in vimentin (P <0.05) and S100A4 (P <0.001)

basal cells in ICS treated patients as compared to patients without

ICS treatment. Furthermore, Vimentin and S100A4-positive RBM

cells also appeared to be lower in ICS-treated patients as compared
FIGURE 3

Column plots showing the ratios of percent expression of E and N-cadherin (A), vimentin and S100A4-positive basal cells (B) and RBM cells (C) in
HC, ACO, asthma, COPD-ES and COPD-CS, and NLFS.
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to patients without ICS treatment. Interestingly, the degree of

fragmentation tended to be higher in ICS treated patients as

compared to patients without ICS treatment.
Immunoblot protein expression of EMT
markers

The protein expression of EMTmarkers; E-cadherin, N-cadherin

and Vimentin was measured by performing immunoblot. b-Actin
was used as the internal control. The intensity of protein bands was

measured, and the fold expression was graphed. Our results show that
Frontiers in Immunology 08
E-cadherin protein expression is significantly low in the ACO group

compared to the healthy group at baseline level (Figures 7A, B). IL-13

and TGF-b drastically reduce the expression of E-cadherin in the

healthy group but not in ACOS. The expression of N-cadherin

protein level was similar between ACO and healthy across all

treatments (Figures 7A, C). Interestingly, the expression of

vimentin protein level was significantly higher in ACOS at baseline

(p≤ 0.05) as well as with IL-13 and 1% CSE treatment (Figures 7A,

D). We also compared relative expression change of N-cadherin and

E-cadherin in response to treatment (Figure 8). Although similar in

ratios, N-cadherin expression in HC media control was higher than

in ACOS (#P<0.05) media control. Within-group variability was
TABLE 2 EMT markers and degree of fragmentation among HC, ACO, asthma, COPD-ES, COPD-CS, and NLFS.

EMT markers/Groups HC ACO Asthma COPD-ES COPD-CS NLFS

E-cadherin

Epithelial E-cadherin
(% expression)

12.4
(6.7-16.8)

4.4
(0-11.5)

0.52
(0-4.9)

9.1
(1.7-12.2)

6.9
(2.1-13.8)

14.0
(6.1-19.8)

N-cadherin

Epithelial N-cadherin
(% expression)

22.9
(12.6-29.3)

27.8
(19.1-36.0)

17.2
(1.6-28.9)

35.3
(15.9-44.8)

35.1
(27.7-55.3)

29.9
(19.3-40.9)

Vimentin

Basal cells/mm of RBM 7.7
(1.5-19.8)

11.7
(1.2-21.6)

6.4
(2.2-15.1)

9.0
(5.6-13.8)

9.7
(4.4-36.1)

9.4
(3.5-23.9)

RBM cells/mm of RBM 12.2
(3.4-20.4)

18.2
(5.6-38.2) 6.8 (0-32.0)

17.7
(10.8-28.2)

22.23
(8.7-27.6)

19.77
(7.9-33.0)

S100A4

Basal cells/mm of RBM 20.6
(12.0-30.6)

29.0
(10.5-39.3)

23.4
(8.2-42.4)

39.3
(15.0-63.5)

33.7
(17.0-56.7)

36.8
(20.9-47.9)

RBM cells/mm of RBM 16.9
(8.4-26.7)

26.1
(12.2-35.0)

18.5
(5.2-41.1)

24.8
(15.5-36.1)

26.0
(16.3-46.9)

29.6
(15.7-39.2)

Collagen IV

Degree of RBM fragmentation 7.9
(2.6-12.0)

17.3
(7.0-52.1)

7.0
(1.2-26.1)

10.5
(0.95-50.9)

13.9
(6.5-27.3)

12.9
(6.7-21.3)
Data presented as median (minimum – maximum).
ACO, asthma COPD overlap; COPD, chronic obstructive pulmonary disease; COPD-CS, COPD current smokers; COPD-ES, COPD ex-smokers; RBM, reticular basement membrane; LP, lamina
propria; NLFS, normal lung function smokers.
TABLE 3 Spearman correlation analysis.

Parameters

FEV1/FVC Smoking history

Spearman r P value Spearman r P value

Percent staining E-cadherin -0.04196 0.452 0.06667 0.4189

Percent staining N-cadherin -0.2273 0.2517 -0.1507 0.3283

Vimentin-positive basal cells 0.3357 0.1434 0.3825 0.1094

Vimentin-positive RBM cells -0.04196 0.452 0.1474 0.3229

S100A4 positive basal cells 0.4825 0.0577 0.2947 0.1748

S100A4 positive RBM cells -0.2448 0.2217 0.04211 0.4496

Degree of fragments -0.2238 0.2426 0.1228 0.3513
RBM, reticular basement membrane, FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1531279
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dey et al. 10.3389/fimmu.2025.1531279
more prominent in HC N-cadherin expression across the treatment

groups than in ACOS patients. There were higher significant changes

in expression (p<0.05, p<0.01, p<0.001, p<0.0001) between N-

cadherin and E-cadherin in ACOS than in HC. The ratio change

between N-cadherin and E-cadherin was most significant in the

ACOS patients induced with TGF-b, double that of HC.
Discussion

This exploratory EBB study unequivocally demonstrated a

marked decrease in epithelial E-cadherin and a trend of increased

mesenchymal marker N-cadherin in the airway epithelium of

patients with ACO. This study also demonstrated a trend of high

vimentin and S100A4-positive basal and RBM cells in ACO, and an

RBM with the elevated degree of fragmentation as represented by

the cleft formation in ACO as compared with HC and asthma.

Similar changes were observed with western blots in response to

Th-2 cytokine IL-13, CSE and EMT activator TGF-b. These

preliminary findings could provide new insights into ACO
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research and support our hypothesis of an active EMT process in

the airways of patients with ACO.

Although the EMT process is considered to be an active process

in COPD, in ACO there are no reports on EMT yet. It is suggested

that following injury, adhesion junction modifications are critical for

the structural rearrangement of the airway epithelial cell to allow

spreading, migration, and subsequent epithelial proliferation on the

provisional fibrin extracellular matrix (ECM). One of the important

features of EMT is a decrease in epithelial markers and (3) and a

concomitant increase or acquisition of mesenchymal markers with

associated RBM fragmentation. Both E- and N-cadherins are

traditional type I cadherins (30). Cadherin cytoplasmic tails bind to

b-catenin, which in turn binds to a-catenin, forming the cadherin-

catenin adhesion complex which maintains tissue stability and

dynamic cell movements. By influencing a wide variety of

signalling pathways, E-cadherin plays a critical role in both the

preservation of the epithelial phenotype and the maintenance of

tissue homoeostasis. Our observation of decreased epithelial E-

cadherin and increased N-cadherin expression in patients with

ACO is, therefore, suggestive of an EMT process in these patients.
FIGURE 4

Box plots showing vimentin-positive cells in of reticular basement membrane (RBM) per mm of RBM (A), S100A-positive cells in RBM per mm of
RBM (B), degree of fragmentation (C) in HC, ACO, asthma, COPD-ES and COPD-CS, and NLFS. The horizontal line inside each box represents the
median; the top and bottom of each box represent the upper and lower quartiles, respectively; and the whiskers represent extreme values. P value
representation * <0.05, ** <0.01, *** <0.001.
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In addition, other widely used mesenchymal markers vimentin

and S100A4 were also reported to be increased in EMT (8, 31).

Vimentin is found in all mesenchymal cells and is at the heart of

EMT-mediated metastasis (32). Vimentin can induce cell migration

during EMT by forming cell processes, decreasing cell adhesion,

and increasing cell migration ability. In fact, in previous research

from our laboratory, enhanced vimentin-positive cells were

reported in smoking-associated COPD patients. In the context of

EMT, S100A4 is also regarded as a typical mesenchymal marker. Its

biological roles include the promotion of cell motility, invasion,

extracellular matrix (ECM) remodelling, autophagy, and

angiogenesis (33). Elevated vimentin and S100A4-postive basal

and RBM cells in patients with ACO thus are an indication of the

fact that the cells are undergoing transition to a mesenchymal

phenotype and attaining more migratory phenotype.

The increased RBM fragmentation is quite novel finding in the

large airway tissues of patients with ACO and is a tissue hallmark of

active EMT. During EMT, transitioning epithelial cells gain a

migratory potential and digest their way through basement

collagen into the subepithelial lamina propria to become

fibroblasts (8, 34). In addition, fragmentation or rupture was also

reported in the kidney tubular RBM of patients with acute cellular

rejection (35). In contrast to increased fragmentation in the ACO,

which is suggestive of a prominent COPD component in ACO, we

found low fragmentations in asthma, which were essentially similar

to HC. Indeed, the fragmentation results were consistent with our

prior report, in which we observed much fewer fragmentations than

those seen in COPD and were comparable to those seen in HC (8).

EMT is indeed an active process in both small and large airways

of smokers and COPD patients, with consequences for lung
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physiological parameters in these patients (36). The current study

data especially related to COPD, nearly mimic the previously

reported data from my laboratory on E-cadherin, N-cadherin,

and vimentin (8, 37). The results of EMT markers in asthma

especially the ratio of E and N-Cadherins suggests an active EMT

process in these patients as indicated in many studies reported in

relation to EMT in asthma based on simulated epithelial cells, in-

vivo animal model data, and house duct mice induced lungs (38–

40), although EMT in asthma remains a subject of debate as no

human tissue evidence is available including the hallmark of RBM

fragmentation. We believe EMT is not part of the asthma pathology,

but you may see some epithelial cell integrity compromised (41).

Our preliminary report on inflammatory cell profile in the large

airway of patients with ACO indicated dominant macrophages in

the epithelium, RBM, and LP. Macrophages were shown to induce

EMT, promoting metastasis of lung cancer cells through COX-2/

PGE2/b-catenin pathways (42). Our cell culture/western blot data

also shows role of inflammation in driving EMT changes, but more

work is needed. Indeed, we noticed a positive correlation between

significant and moderate positive correlation between epithelial

macrophage and epithelial-mesenchymal markers. Recently we

reported increased vascularity in the RBM of ACO patients,

characterizing type III EMT in these patients, which is recognised

as producing highly dangerous pre-cancerous stroma under the

epithelium. Active type 3 EMT is considered as precursor to

malignant conditions and metastasis (13, 43).

Intervention with ICS could play an important role in reducing

EMT, a critical pathology of chronic respiratory diseases, particularly

COPD (43, 44). Previously in a clinical study, we reported regression

of EMT biomarkers in bronchial biopsies of patients with COPDwho
FIGURE 5

Spearman correlation analysis between E-cadherin percent expression and epithelial macrophages per mm of the reticular basement membrane
(RBM) from samples of ACO (A), N-cadherin percent expression and epithelial macrophages per mm of RBM from samples of ACO (B), S100A4
positive basal cells and epithelial macrophages per mm of RBM from samples of ACO (C), and vimentin positive basal cells and epithelial
macrophages per mm of RBM (D) from samples of ACO.
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were on ICS treatment (44). In line with our previous findings, we

noted a dampening effect of ICS treatment on mesenchymal markers

in ACO patients, suggesting the prevention of epithelial phenotype

transitioning to mesenchymal cells.
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The current study findings are novel and should be considered as

preliminary. Clinical samples from ACO patients are very rare. We

expect reasonable criticism on the sample size used in this study;

however, we also noticed a robust difference between groups.
FIGURE 6

Box plots showing percent expression of E-cadherin (A), N-cadherin (B), vimentin-positive basal cells/mm of reticular basement membrane (RBM)
(C), vimentin-positive RBM cells/mm of RBM (D), S100A4-positive basal cells/mm of RBM (E), S100A4-positive RBM cells/mm of RBM (F), and degree
of fragmentation (G) in HC and asthma, and ACO with and without inhaled corticosteroids (ICS). The horizontal line inside each box represents the
median; the top and bottom of each box represent the upper and lower quartiles, respectively; and the whiskers represent extreme values. ANOVA P
value representation * <0.05, ** <0.01, and *** <0.001.
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FIGURE 7

Protein expression of EMT markers in the ACOS airway epithelium. (A). Protein lysate from different treatments from healthy and ACO pBEC ALIs
were used to immunoblot against E-Cadherin, N-Cadherin and Vimentin. b-actin was used as the loading control (n=3). (B–D). The band intensity
was measured and normalized to the b-actin level and the fold expression of (A). E-Cadherin (B). N-Cadherin and (C). Vimentin was graphed. Two-
group comparisons were analyzed with an unpaired t-test. *P ≤ 0.05.
FIGURE 8

Relative expression changes of N-cadherin and E-cadherin in human-derived lung primary epithelial cells (HC and ACO patients) post induction with
Th-2 cytokine IL-13, CSE and EMT activator TGF-b. # p<0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Furthermore, our study lacks mechanistic data elucidating the

underlying biological processes associated with our histopathological

examination. Integrating data from mechanistic study will provide a

more holistic understanding of the disease mechanisms. We also

acknowledge the lack of documented environmental exposures,

comorbidities, medication adherence, and lifestyle factors, may have

some influence on outcomes. Future studies including these factors will

be informative.

Although further investigations are required, the present study

contributes to a better understanding on an active EMT process in

patients with ACO. In the absence of sufficient literature on EMT in

patients with ACO, we believe that our research findings will be

informative not only to better understand the ACO process, but also

the patient management by targeting EMT, a novel and promising

platform, with ICS.
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