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Background: Juvenile idiopathic arthritis (JIA) is an immune-mediated pediatric

disease believed to result from a complex interplay of genetic and environmental

factors. Genome-wide association studies have enabled calculation of polygenic

risk scores (PRS) for JIA. Understanding how the PRS associates with JIA and

whether it performs similarly across sexes is essential for its utility in future studies.

Methods: We studied the relationship between a PRS developed from a

previously published genome-wide association study of JIA and JIA in children

from the Norwegian Mother, Father and Child Cohort Study (MoBa; total n =

57,630; JIA cases = 238). Generalized linear models (GLM) and generalized

additive models (GAM) were used in logistic regression to assess the

association. Furthermore, we investigated whether the relationship between

PRS and JIA differed by sex by applying GAM models with interaction terms.

Results: PRSwas significantly associatedwith JIA using bothGLM (p< 2e-16) andGAM

(p< 2e-16) models, and our results indicated a nonlinear relationship between PRS and

JIA (effective degrees of freedom, EDF = 1.96). We found a significant interaction

between sex and JIA PRS in relation to JIA (p = 0.017), and indications of a stronger and

more logit-nonlinear relationship in females (EDF = 1.82) versus males (EDF = 1.06).

Conclusion: The relationship between PRS and JIA was slightly logit-nonlinear

for females and logit-linear for males. The PRS for JIA can likely be used either as

a continuous or discrete variable in analyses, but sex-stratification is

recommended for future studies.
KEYWORDS
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1 Introduction

Juvenile idiopathic arthritis (JIA) is an immune-mediated

disease characterized by joint inflammation lasting for at least six

weeks and presenting before the age of 16 (1). It is a heterogenous

disease with seven subtypes, and it is more prevalent in girls (2, 3).

JIA imposes a significant burden on patients, their families, and

society. It is believed to result from a complex interplay of genetic

and environmental factors, although causal factors and underlying

mechanisms remain largely unknown (4).

Familial, twin, and genome-wide association studies (GWAS)

have helped to approach and dissect the genetic contribution to

complex diseases, including JIA (5, 6). The monozygotic twin

concordance rate of JIA has been estimated as 25-40%, and the

sibling recurrence risk ratio as 11.6 (1). In the so far largest GWAS

of JIA, including 3305 cases and 9196 controls, López-Isac et al.

identified numerous susceptibility loci for JIA with a total SNP-

based heritability of 0.61 (7).

The results from GWAS studies can be exploited by

constructing polygenic risk scores (PRS), comprising aggregated

effects of variants across the genome, which can be used to estimate

the individual’s genetic risk for the outcome of interest (8). PRS

have been widely applied in studies of a range of different diseases

and phenotypes and can be particularly useful in studies assessing

the relationship between genetic and environmental risk factors for

disease (9). Although PRSs have been suggested as potential clinical

tools in the future, there are several obstacles that need to be

addressed before they can be implemented into a clinical setting (9).

PRSs are therefore so far mainly useful as research tools for studying

genetic risk.

Recently, we developed a PRS for the children in the Norwegian

Mother, Father and Child cohort study (MoBa) based on results

from the aforementioned GWAS by López-Isac et al. (7, 10). When

including a PRS in statistical models, either as a main effect or

interaction variable, it is important to know how it relates to the

outcome, in our case JIA. Understanding how the risk of JIA

changes depending on the PRS can inform whether the PRS can

be used as a continuous variable in the model or if it should be

grouped into a discrete variable, and if so, how the discrete variable

should be defined (11). Traditional logistic regression assumes a

linear relationship between predictors and the log-odds of the

outcome. However, some biological associations, including those

between genetic risk scores and disease, may not follow a strictly

linear pattern. Using nonlinear methods for modelling can

therefore be useful because they are flexible enough to capture

more complex relationships between the PRS and JIA. Furthermore,

the PRS may be performing differently in specific subgroups, such

as males and females, which can also be important to uncover when

including the PRS in studies of risk and disease development (12).

Sex-specific genetic associations appear to play a role in a

number of autoimmune and immune-mediated diseases, but the

degree to which these differences contribute to JIA susceptibility has

not been fully studied (13). A recent study on JIA patients found

that the presence of antinuclear antibodies (ANA) was associated

with specific genes, and this was observed more frequently in
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females, suggesting an interaction between certain genes and sex

(14). Furthermore, a female-specific association between the

PTPN22 SNP rs2476601 and JIA has been confirmed across

several different populations (15, 16), and evidence of a sex-

specific association of PSMA6/PSMC6/PSMA3 genetic variants

with subtypes of JIA has also been reported (17). However,

genome-wide studies of JIA, including the GWAS on which our

PRS is based, were not stratified by sex (7). To address potential sex

differences, it is thus important to assess whether the PRS performs

similarly in males and females.

To fill these knowledge gaps, our aims of this study were 1) to

investigate the relationship between the PRS for JIA and the

probability of a JIA diagnosis, and 2) to explore whether the

relationship between the PRS and JIA risk is different between

males and females.
2 Methods

2.1 Study population and design

MoBa is a large-scale pregnancy cohort study led by the

Norwegian Institute of Public Health (NIPH), which recruited

participants across Norway between 1999 and 2008. 41% of the

eligible women participated. The cohort comprises around 114,500

children, 95,200 mothers, and 75,200 fathers (18, 19). The present

study uses version 12 of the MoBa data files, which underwent

quality assurance and were made available for research in January

2019. We included MoBa children who had previously been

genotyped (20).
2.2 Outcome

Information about JIA status was collected by linkage to the

Norwegian Patient Registry (NPR), which includes data with

personal ID numbers from all Norwegian public hospitals and

specialists with public funding from 2008 (21). In Norway, the

university hospitals with specialists within pediatric rheumatology

have the main responsibility of diagnosing and following JIA

patients. Cases were born between 1999 and 2009 and diagnosed

with JIA before December 2021. We defined a JIA case as having at

least two International Classification of Diseases (ICD)-10 codes

(≥2 M08, ≥2 M09, or ≥1 M08 and ≥1 M09). In a recent validation of

this case definition, we found a positive predictive value of 93.4%

(10), ensuring a low number of false positive diagnoses. It is

therefore reasonable to assume that our case definition largely

reflects accurate diagnoses. For cases who received their first ICD-

10 code in 2021, we accepted a single relevant ICD-10 code (M08 or

M09), as we received our latest updates from NPR in December

2021. Controls were defined as non-JIA cases, and we removed all

controls who had one ICD-10 code (M08 or M09) because they

might have JIA.
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2.3 Polygenic risk score for JIA

Umbilical cord blood samples were collected at birth, and the

extracted DNA was frozen and stored at NIPH. The genotyping,

quality control and imputation of the genetics data of the samples in

MoBa have been extensively described previously (20). We

calculated PRSs from the results of a previously published GWAS

of JIA (7) by applying PRSice, version 2.3.3 (22). We chose p-value

thresholds of 5E-8, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 5E-2, 1E-1, and 1

to calculate PRSs and then extracted the first principal component

(PC) for PRSs across all the thresholds, using this first PRS-PC as

our final PRS for JIA (23). We then, using the whole dataset,

standardized the PRS to a mean of zero and a standard deviation

(SD) of 1 (24) and we used the standardized PRS for all analyses. In

sensitivity analyses, the PRS was categorized into (1) quartiles,

forming four equal-sized categories, (2) three categories

containing the top 10%, middle 80% and bottom 10% of

observations, and (3) a binary variable based on the median

(Supplementary Table 1).
2.4 Statistical analysis

R version 4.2.3 was used to conduct all statistical analyses (25),

and all scripts are available in our GitHub repository (https://

github.com/KristineLH/PRS-JIA-sex). We used multiple logistic

regression and generalized additive models (GAM) to examine

the relationship between PRS and JIA. The top 10 PCs from the

whole genotype dataset, together with sex, and year of birth were

included as covariates in the models.

Nonlinear modeling approach
To account for potential logit-nonlinearity, we applied GAM

using the gam function from the mgcv package (26). GAM extends

traditional regression by allowing flexibility in how predictors

influence the outcome, fitting smooth, data-driven curves rather

than assuming a fixed logit-linear form. In our model, PRS was

modeled as a smooth function using a regression spline, which

adapts to the shape of the data. The effective degrees of freedom

(EDF) from the GAM output served as an indicator of nonlinearity,

with an EDF of 1 representing a linear relationship and values

greater than 1 suggesting a nonlinear relationship (27).

Modeling sex differences
To investigate whether the relationship between the PRS and

JIA differed by sex, we first included an interaction term between

the PRS and sex in the multiple logistic regression model. The Wald

test was used to assess statistical significance of the interaction, and

a p-value < 0.05 was regarded as significant. However, interaction

terms in standard regression models assume a constant, linear

modification of the association by sex, which may not fully

capture potential differences in the way the PRS is associated with

JIA in males and females. To address this, we further investigated

sex-specific patterns by fitting separate smooth splines for the PRS

in males and females. Specifically, we created new variables by
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multiplying PRS with dummy variables for each sex and then

modeled these products as smooth terms in the GAM framework.

This allowed us to estimate the association between the PRS and JIA

in each sex separately.

Visualization
To aid interpretation, we visualized the relationship between

PRS and JIA for each model. Using the predict function, we

calculated the probability of JIA across a range of PRS values

(-4.5 to 4.5 with an increment of 0.1), while keeping other

covariates (10 PCs, year of birth) at their mean values. This

enabled direct comparison of PRS effects across methods

(Figure 1) and sexes (Figure 2).
3 Results

3.1 Study sample characteristics

Our final analytical sample included 57,630 children of whom

238 were identified as JIA-cases (Table 1). Male participants

comprised 51.0% (n = 29,139) of the controls, compared to only

39.9% (n = 91) of the JIA cases. The JIA cases had a mean PRS of

0.58 (+/- 1.10 SD), whereas the mean PRS in controls was -0.002

(+/- 1.00 SD).
3.2 Association between PRS and JIA

We assessed the association between PRS and JIA using a

standard logistic regression model (GLM) and a generalized

additive model (GAM), results shown in Figure 1. In both
FIGURE 1

Relationship between PRS for JIA and probability of JIA modelled by
a generalized linear model (GLM) compared to a generalized
additive model (GAM). The lines show the fitted prediction model of
JIA probability ~ PRS + sex + year of birth + top 10 principal
components for each of the models. The colored areas represent
the 95% confidence intervals for the corresponding models.
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models, PRS was significantly associated with JIA (p < 2e-16 for

both models), and the results were similar for the categorized PRS

variables (Supplementary Figure 1). The EDF in our GAM model

was 1.939, indicating a logit-nonlinear relationship between PRS

and risk of JIA.
3.3 The association between PRS and JIA
differs by sex

In Figure 2, we show the distributions of PRS in controls, as well

as cases stratified by sex. The PRS distributions for controls show a

mean of 0.01 in males and -0.01 in females. In contrast, JIA cases

demonstrate higher PRS means. Specifically, the PRS mean for male

cases is 0.40, while for female cases, it is 0.70, indicating a stronger

association between PRS and JIA diagnosis in females compared

to males.

We further investigated the interaction between sex and PRS in

association with JIA. In a simple logit-linear model, the interaction

term between sex and PRS was significantly associated with JIA (p =

0.017). We then investigated this interaction further by conducting

a semi-stratified analysis allowing for nonlinear relationships

(Figure 3). This model showed that PRS was significantly

associated with JIA in both females (p < 2e-16) and males
Frontiers in Immunology 04
(p < 0.001). Interestingly, the relationship between PRS and JIA

was approximately logit-linear in males (EDF = 1.06) but showed a

larger tendency of logit-nonlinearity in females (EDF = 1.82). We

detected a similar pattern when defining the PRS as high- and low-

risk variable divided into top 10%, bottom 10% and middle 80% of

observations (Supplementary Figure 2).
4 Discussion

Our results show that the relationship between PRS and JIA is

weakly logit-nonlinear. The notable difference in PRS distribution

between male and female JIA cases underscores a sex-specific

variation in PRS among JIA cases in the MoBa cohort.

Furthermore, we show a significant interaction between sex and

PRS in relation to JIA, with sex acting as a PRS effect measure

modifier. Interestingly, the logit-nonlinearity of the relationship

seems to be driven by the females, whereas in males the relationship

seems to be logit-linear.

Understanding the relationship between a PRS and the outcome

of interest is important when the PRS is to be used in further

analyses, such as when investigating interactions between

environmental exposures and genetic predisposition to develop

JIA. Particularly, for the PRS to be used as a continuous variable
FIGURE 2

Distribution of JIA PRS in (A) controls, and (B) JIA cases grouped by sex.
TABLE 1 Study sample characteristics.

Characteristics JIA cases Controls

All Male Female All Male Female

Sample size (n,%) 238 (100) 95 (39.9) 143 (60.1) 57,392 29,319 (51.0) 28,073 (48.9)

Year of birth (mean, SD) 2005 (2.18) 2004 (2.19) 2005 (2.15) 2005 (2.17) 2005 (2.17) 2005 (2.16)

PRS (mean, SD) 0.579 (1.10) 0.399 (1.08) 0.699 (1.11) -0.002 (1.00) 0.005 (1.00) -0.010 (0.99)
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in analyses of JIA, the relationship between PRS and JIA should be

well modelled (11). A non-linear relationship between the PRS and

JIA could suggest that, for risk prediction, the PRS should be

grouped into a discrete variable. Our results indicate a somewhat

logit-nonlinear relationship between the PRS for JIA and risk of JIA,

with a stronger effect with higher PRS compared to lower PRS.

However, as shown in Figure 1, the GAM model taking logit-

nonlinear associations into account is not vastly different from the

simple logit-linear model. It should be noted, however, that the

relatively small number of JIA cases in our dataset may have limited

our power to detect subtle nonlinear interactions, particularly for

males. Although grouping the PRS into a categorical variable as

shown in Supplementary Figure 1 gave a similar fit, the predicted

probabilities of JIA were lower than with the continuous PRS,

especially for the high-risk groups. This indicates some loss of

information and shrinkage towards the mean due to grouping the

PRS. Thus, we suggest using PRS as a continuous variable in future

studies when possible. Grouping the PRS into high- and low-risk

groups of top 10%, bottom 10% and middle 80% gave the most

similar fit compared to using the PRS as a continuous variable and

may therefore be an alternative way of modelling the PRS. However,

males and females appear to require distinct models for use of this

PRS for JIA.

Sex-specific and sex-dependent effects of PRSs for other

diseases, like schizophrenia and coronary artery disease have also

been reported (28–30). The difference we observe in PRS

performance between the sexes could reflect differences in the sex

ratio among cases and controls in the GWAS our PRS is based on

(12), with the girl cases outnumbering the boys and consequently

having more influence on the formation of the score. However, the

sex ratios were not stated in the GWAS paper, which may limit our

results (7). Furthermore, different subtypes of JIA are associated

with different genetic loci, and sex distribution also differs

depending on the subtype (3). Some subtypes, such as
Frontiers in Immunology 05
oligoarticular and polyarticular JIA, which constitute around 70%

of all cases, occur 2–3 times more frequently in girls, but not all JIA

subtypes are more common in females (3). Thus, the PRS may be

mainly reflecting genetic predisposition for the more common

subtypes which are also more common in females and therefore

show a stronger association with JIA in females compared to males.

We did not have access to information on subtypes in our dataset

and were thus not able to account for this in our analyses. Given

that certain JIA subtypes differ in their genetic patterns, this

represents a limitation of our study. Furthermore, gene-

environment interactions involving exposures that differ by sex,

such as hormones, have not been accounted for and may have

influenced our results. Finally, our results may indicate that the

effect of genetic predisposition on JIA development is dependent on

biological processes that differ between the sexes.

When using the PRS for JIA in association and interaction

analyses, researchers should be aware of the sex-specific

associations and consider sex-stratification when possible. Our

findings suggest that future studies on the genetic predisposition

to JIA, including GWAS and the development of PRS, should

incorporate sex-specific analyses to identify genetic loci that may

contribute to disease development in males and females separately,

as well as those shared between sexes (31, 32). Developing a set of

distinct PRS scores specifically for sex-by-subtype categories could

prove to be even more usefully predictive, but this would require a

very large genetic dataset with detailed information on sex and JIA

subtypes. We also suggest exploring potential susceptibility loci for

JIA on the X-chromosome (33) as this was not included in our study

nor, to our knowledge, in any GWAS of JIA thus far. As sex

differences are common in autoimmune diseases in general,

investigating sex-specific associations of PRS may be relevant also

for other autoimmune and immune-mediated diseases (34).

In conclusion, our results show that the relationship between

our PRS and JIA is slightly logit-nonlinear, but only for females.
FIGURE 3

Relationship between PRS of JIA and probability of JIA in females and males. The lines show the fitted prediction model of JIA probability ~ PRS +
sex + year of birth + top 10 principal components for each of the sexes. The colored areas represent the 95% confidence intervals for the
corresponding models.
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The PRS for JIA can likely be used either as a continuous or

discrete variable in analyses, but sex-stratification should be

considered. Future studies should further investigate sex-

differences in genetic predisposition of JIA and other

autoimmune diseases.
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