
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yu'e Liu,
Boston Children's Hospital and Harvard
Medical School, United States

REVIEWED BY

Feng Zhang,
Nanjing University of Chinese Medicine, China
Yiqian Zhang,
Tulane University, United States

*CORRESPONDENCE

Zhi-Nan Chen

znchen@fmmu.edu.cn

Jiao Wu

jiaowubio@hotmail.com

†These authors have contributed equally to
this work

RECEIVED 21 November 2024
ACCEPTED 13 January 2025

PUBLISHED 11 February 2025

CITATION

Yang Z, Han T, Yang R, Zhang Y, Qin Y,
Hou J, Huo F, Feng Z, Ding Y, Yang J,
Zhou G, Wang S, Xie X, Lin P, Chen Z-N
and Wu J (2025) Dicoumarol sensitizes
hepatocellular carcinoma cells to ferroptosis
induced by imidazole ketone erastin.
Front. Immunol. 16:1531874.
doi: 10.3389/fimmu.2025.1531874

COPYRIGHT

© 2025 Yang, Han, Yang, Zhang, Qin, Hou,
Huo, Feng, Ding, Yang, Zhou, Wang, Xie, Lin,
Chen and Wu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 11 February 2025

DOI 10.3389/fimmu.2025.1531874
Dicoumarol sensitizes
hepatocellular carcinoma
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Introduction: Ferroptosis, an iron-dependent form of regulated cell death, is

characterized by the lethal accumulation of lipid peroxides on cellular membranes.

It not only inhibits tumor growth but also enhances immunotherapy responses and

overcomes drug resistance in cancer therapy. The inhibition of the cystine-

glutamate antiporter, system Xc–, induces ferroptosis. Imidazole ketone erastin

(IKE), an inhibitor of the system Xc– functional subunit solute carrier family

7 member 11 (SLC7A11), is an effective and metabolically stable inducer of

ferroptosis with potential in vivo applications. However, tumor cells exhibited

differential sensitivity to IKE-induced ferroptosis. The intrinsic factors

determining sensitivity to IKE-induced ferroptosis remain to be explored to

improve its efficacy.

Methods: Bulk RNA-sequencing data from hepatocellular carcinoma (HCC) and

normal liver tissues were collected from The Cancer Genome Atlas (TCGA) and

the Genotype-Tissue Expression (GTEx) databases. Differentially expressed genes

were identified and intersected with the ferroptosis-related genes (FRGs) listed in

the FerrDb database, yielding the identification of 13 distinct FRGs.

Results: A ferroptosis signature index model (Risk Score) was developed to

predict HCC prognosis. And SLC7A11 and NAD(P)H quinone dehydrogenase 1

(NQO1) were identified as candidate FRGs indicating poor prognosis of HCC.

Dicoumarol (DIC), an inhibitor of NQO1, was subsequently employed to assess its

sensitizing effects on IKE in HCC treatment. In HCC cell lines and the

subcutaneous xenograft model, the combined suppression of SLC7A11 and

NQO1 significantly enhanced the inhibitory effect on tumor growth by

inducing ferroptosis.
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Discussion: In conclusion, our findings demonstrate that DIC sensitized HCC

cells to IKE-induced ferroptosis in HCC. Moreover, the identification of potential

drugs that enhance the susceptibility of HCC cells to ferroptosis could provide

novel therapeutic strategies for the treatment of HCC.
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1 Introduction

Hepatocellular carcinoma (HCC), the most prevalent form of

liver cancer, ranks as the fourth leading cause of cancer-related

mortality globally. It is characterized by a heterogeneous prognosis

due to varying tumor burdens and the severity of chronic liver disease

(1). Typically, HCC originates in cirrhotic livers, often associated with

chronic liver diseases such as chronic hepatitis B or C infection,

alcohol-related liver disease, and metabolic dysfunction-associated

steatotic liver disease (2). For early-stage HCC, surgical therapies such

as resection and transplantation offer substantial survival benefits.

For intermediate-stage HCC, intra-arterial therapies, including

transarterial embolization (TAE), transarterial chemoembolization

(TACE), and transarterial radioembolization (TARE), serve as

first-line treatments or bridging therapies before transplantation.

However, HCC is often detected at advanced stages. Although

tyrosine kinase inhibitors (TKIs)-based systemic therapies are

widely used in advanced HCC, their clinical benefit is limited

due to drug resistance (3). Immune checkpoint inhibitors have

been approved for advanced HCC treatment, but the strong

immunosuppressive tumor microenvironment inhibits cytotoxic T

lymphocyte infiltration, restricting the responsiveness to immune

checkpoint blockade in a minority of patients. Investigating resistance

mechanisms and identifying novel therapeutic targets is critical for

enhancing HCC therapeutic efficacy (2).

Tumor cells can develop resistance to antitumor drugs by

promoting cell survival pathways, preventing apoptosis, and

facilitating epithelial-mesenchymal transition. Defects in apoptosis

contribute to resistance against cancer treatments and play a role in

tumorigenesis. In human hepatocarcinogenesis, the dysregulation

of the balance between cellular proliferation and death is a pro-

tumorigenic principle (4). Some HCC patients exhibit poor

responses to systemic therapies due to acquired or intrinsic

resistance to apoptosis (5, 6). As resistance to apoptosis is a

hallmark of cancer cells, the induction of non-apoptotic regulated

cell death, such as ferroptosis, pyroptosis, and necroptosis, is

emerging as a novel approach for cancer treatment (7). These

targeted therapies have shown significant potential in enhancing

therapeutic efficacy by bypassing apoptosis resistance and

exhibiting synergistic antitumor immune responses (8).
02
In recent years, ferroptosis has emerged as a significant area of

research due to its role as a natural tumor-suppressive mechanism

and its potential to enhance antitumor immunity (9). Cancer cells,

which require elevated levels of iron for survival, are particularly

susceptible to ferroptosis, and this susceptibility is closely linked to

the progression, treatment response, and metastasis of various cancer

types (10). Notably, mesenchymal and dedifferentiated cancer cells,

which are often resistant to apoptosis and conventional therapies,

demonstrate a remarkable vulnerability to ferroptosis. The induction

of ferroptosis can also restore the sensitivity of drug-resistant cancer

cells to standard treatments (11). However, some cancer cells mitigate

their susceptibility to ferroptosis by downregulating the ferroptosis

pathway, leading to resistance to anticancer therapies. Furthermore,

ferroptosis has been implicated in numerous oncogenic pathways,

suggesting its potential as a target for novel cancer therapeutics (12).

Emerging evidence indicates that ferroptosis exerts its anti-tumor

effects by interacting with various tumor suppressor genes,

highlighting its role as a tumor suppressor mechanism (13–16).

Ferroptosis interacts with the tumor microenvironment (TME) in

complex ways, influencing the immune response within TME. It has

been reported that ferroptotic cells release pro-inflammatory

damage-associated molecular patterns (DAMPs), which can trigger

the innate immune system (17). High mobility group box 1

(HMGB1), one of the best-characterized DAMPs involved in

immunogenic cell death, triggers inflammation and immune

responses during ferroptosis induced by RAS-selective lethal 3

(RSL3) and erastin in vitro (18) (19). The glutathione (GSH)/

glutathione peroxidase 4 (GPX4) axis is known to control the

activities of lysyl oxidase (LOX) and prostaglandin-endoperoxide

synthase (PTGS) via the peroxide (17). The enzyme PTGS2 serves as

an effective marker of ferroptosis (20). The sensitivity of immune cells

to ferroptosis in TME varies significantly; thus, regulating ferroptosis

sensitivity may aid in the discovery of novel therapeutic strategies to

improve cancer treatment (12). Pro-ferroptosis systems, which

produce lipid peroxides, and ferroptosis defense systems, which

detoxify these peroxides, exist in a delicate balance (21). When

pro-ferroptosis activities exceed ferroptosis defense systems,

excessive accumulation of lipid peroxides on cellular membranes

can damagemembrane integrity, ultimately leading to ferroptosis (21,

22). Oncogenes could cause ferroptosis resistance in cancer cells by
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stimulating antioxidant defense systems that prevent lipid

peroxidation or by suppressing cellular metabolic processes that

promote lipid peroxidation, including the formation of labile iron

pools, the composition of polyunsaturated fatty acids (PUFA)-

containing phospholipids, and the synthesis of mitochondrial

reactive oxygen species. Identifying reliable biomarkers that can

amplify pro-ferroptotic effects or increase the susceptibility of HCC

tumors to ferroptosis may significantly contribute to a more accurate

prognosis of HCC. This advancement could lead to the formulation

of more efficacious therapeutic strategies, thereby enhancing survival

rates among HCC patients (23). For example, activation of Yes-

associated protein (YAP) signaling can sensitize HCC to ferroptosis

via arachidonate lipoxygenase 3 (ALOXE3)-mediated lipid

peroxidation accumulation (24).

Enhancing sensitivity to ferroptosis is critical for the application of

ferroptosis-based therapeutic strategies. Bioinformatic analysis plays a

significant role in studying cancer and ferroptosis. This study aims to

identify ferroptosis-related genes (FRGs) and associated pathways in

tumors, elucidate the regulatorymechanisms of ferroptosis within these

malignancies, and assess the therapeutic efficacy and safety profiles of

drugs targeting ferroptosis. Multiomics has identified the correlation

between intratumor steatosis and the exhausted tumor immune

microenvironment in HCC (25). Previous research has shown that a

novel, integrated cell death index model predicts the prognosis and

responsiveness to immune checkpoint inhibitors in patients with

oesophageal squamous cell carcinoma (26). In a study of non-small

cell lung cancer, thorough multi-omics analysis clarified the biology of

cancer resulting from genetic aberration (27). Proteogenomic profiling

of small cell lung cancer has been instrumental in uncovering distinct

biological mechanisms and identifying subtype-specific therapeutic

strategies (28).

Further investigation on the effectiveness of imidazole ketone

erastin (IKE) in other animal cancer models would be beneficial. In

this study, we identified two ferroptosis suppressor genes, solute

carrier family 7 member 11 (SLC7A11) and NAD(P)H quinone

dehydrogenase 1 (NQO1), associated with the prognosis of HCC by

bioinformatics analysis. The combined inhibition of SLC7A11 and

NQO1 had a more significant suppressive effect on tumor growth in

the subcutaneous HCC model. These findings may inform whether

ferroptosis stimulation can yield favorable therapeutic outcomes in

specific cancer cases.
2 Materials and methods

2.1 Cell culture

Hep 3B cell line was obtained from Suzhou Starfish

Biotechnology Co., Ltd. (TCH-C195). HCCLM3 cells were

obtained from Be Na Culture Library (BNCC102270). Huh-7 and

Hep G2 liver cancer cell lines were sourced from the American Type

Culture Collection (ATCC, United States). Mycoplasma

contamination testing confirmed all cell lines to be negative. The

cells were maintained in a humidified incubator at 37°C with 5%

CO2 and cultured in Dulbecco's Modified Eagle's Medium

(DMEM), supplemented with 10% Fetal Bovine Serum (FBS).
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2.2 Data acquisition and preprocessing

RNA-sequencing (RNA-seq) data of 50 normal tissues and 371

HCC patients were downloaded from The Cancer Genome Atlas

(TCGA) (https://www.cancer.gov/tcga/) database. RNA-seq data of

110 normal tissues from the Genotype-Tissue Expression (GTEx)

(https://www.genome.gov/) database and 369 overall survival (OS)

data of HCC patients were obtained from the University of

California Santa Cruz (UCSC) (https://xenabrowser.net/) database.
2.3 Identification of differently expressed
FRGs in HCC

Three bioinformatics methods—DESeq2, edgeR, and limma—

were employed to identify differentially expressed genes in 371

HCC cases and 160 normal samples. A significance threshold of p <

0.05 and log2 fold change (FC) > 1 were utilized as cut-off criteria.

Principal component analysis (PCA) and heatmap visualizations of

differential gene expression between tumor and normal tissues were

generated using the R package "tinyarray." Using differential

expression analysis methods—DESeq2, edgeR, and limma—we

identified genes that were significantly up-regulated and down-

regulated. Subsequently, we utilized the R package "tinyarray" to

determine the intersection of these gene sets. A Venn diagram,

representing 356 up-regulated genes and 154 down-regulated genes,

was constructed using the R package "tinyarray." The intersection of

these 510 genes with FRGs (functionally relevant genes) from

FerrDb (http://www.zhounan.org/ferrdb/current/operations/

download.html) was considered, leading to the identification of

13 differentially expressed FRGs in HCC. Volcano plots and

heatmaps of the 13 FRGs were created using "tinyarray."
2.4 Enrichment analysis of differently
expressed FRGs

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes Pathway (KEGG) enrichment analysis of 13 differently

expressed FRGs was performed using "clusterProfiler," "org.Hs.eg.db,"

"enrichplot," "ggplot2," and "GOplot" R packages. We performed Gene

Set Enrichment Analysis (GSEA) to further understand 13 differently

expressed FRGs. Furthermore, GSEA analysis was also performed on

the signaling pathways that were enriched in the high-risk and low-risk

groups in HCC. Significance was set at a p-value threshold of less than

0.05. A thousand permutation analyses were run in order to assess the

significance levels. We visualized co-expression potential with the R

package "corrplot" to assess co-expression and anti-correlation between

13 differently expressed FRGs.
2.5 Protein-protein interaction (PPI)
network and identification of hub genes
and key molecules

The PPI network was utilized to identify functional modules

based on 13 differently expressed FRGs. This was accomplished
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using Cytoscape (version 3.8.1) and the Search Tool for the

Retrieval of Interacting Genes (STRING) database (https://string-

db.org). The Molecular Complex Detection (MCODE) algorithm

within Cytoscape and the CytoHubba plugin were employed to

identify hub genes or significant PPI network modules.
2.6 Identification of prognostic genes and
establishment of a prognostic model

A risk model incorporating univariate, multivariate, and lasso

regression analysis was developed using the "ggExtra" and "survival"

R packages. The model was then applied to stratify the patients into

high-risk and low-risk groups.
2.7 Verification of the prognostic model

The correlation between gene expression levels and overall survival

(OS) in HCC patients was investigated using data from the TCGA,

International Cancer Genome Consortium (ICGC), and Gene

Expression Omnibus (GEO) databases (GSE14520). Furthermore,

receiver operating characteristic (ROC) curves for the 1-, 2-, and 3-

year survival periods were employed to establish the gene expression

cutoff that distinguishes high-risk or low-risk patients using the

"forestplot" package's functionality for generating forest plots.
2.8 Assessment of risk genes

A nomogram, developed from a multivariate regression analysis,

served as a prognostic tool using the "survival," "rms," and "regplot" R

packages. This nomogram enabled the calculation of individual

probabilities for clinical events by integrating various prognostic and

determinant variables, such as age, gender, stage, and Risk Score,

thereby facilitating the prediction of diverse prognoses influenced by

gene expression. The calibration curve illuminated the accuracy of the

model's probability estimation. A scatter plot, a common graphical

representation of the calibration curve, depicted the model's predicted

probabilities or scores on the x-axis and the empirically observed event

rates on the y-axis. The "Corrplot" R package was utilized to evaluate

the correlation between the Risk Score and expression of specific genes,

including E-twenty-six-specific sequence variant 4 (ETV4), kinesin

family member 20A (KIF20A), cyclin-dependent kinase inhibitor A

(CDKN2A), SLC7A11, and NQO1.
2.9 Differential expression of the hub gene
in different stages and screening of
target genes

After identifying the Hub gene, we utilized the Gene Set Cancer

Analysis (GSCA) database to compile and illustrate the progression

of mRNA expression levels between early- and late-stage cancers

(http://bioinfo.life.hust.edu.cn/GSCA/#/). Employing Origin's box

plot functionality, we delineated the correlation between clinical
Frontiers in Immunology 04
stages and gene expression levels. Through an integrative approach

involving PPI network analysis, risk assessment modeling, and a

thorough review of pertinent literature, we identified three pivotal

target genes. The "survival" R package was utilized to find the

association between prognosis and three target gene expressions. In

order to ascertain how genes interact, the Gene Transcription

Regulation Database (http://gtrd20-06.biouml.org/) was utilized to

investigate the transcription factors' downstream regulation

of genes.
2.10 Drug resistance analyses

Utilizing the CellMiner tools, we rapidly retrieved transcript data

for a comprehensive set of 22,379 genes and 360 microRNAs.

Additionally, the platform offered activity reports for 20,503

chemical compounds, including 102 medications approved by the

U.S. Food and Drug Administration. By translating the differential

expression levels into quantifiable patterns across the National

Cancer Institute (NCI)-60, we improved data organization and

enabled sophisticated cross-comparisons through the application of

an innovative pioneering pattern match tool. Utilizing samples from

the CellMiner database, we quantified the relationship between drug

sensitivity profiles and gene expression patterns. The drug binding

affinity, depicted by the Z score, was plotted on the y-axis, with the x-

axis indicating the gene's relative expression levels. The violin plot of

the Z score under high and low gene expression was shown.
2.11 Multiplex
immunohistochemistry (mIHC)

The high-throughput tissuemicroarray was procured from Shaanxi

Avila Biotechnology Co., Ltd. (Cat. No. DC-liv11047). Within the 96

cases of the tissue microarray, 10 cases were normal liver tissue, and 86

cases were cancer patients (71 patients with HCC, 15 with intrahepatic

cholangiocarcinoma, and 1 with mixed carcinoma). There were two

panels of five biomarkers examined in this study, including panel 1:

SLC7A11 (ab307601, Abcam, 1:100), NQO1 (393700, Thermofisher,

1:100), and NF-E2 p45-related factor 2 (NRF2) (R1312-8, Huabio,

1:100). Another tissue came from a subcutaneous tumor. And panel 2:

HMGB1 (ab79823, Abcam, 1:300), PTGS2 (12282s, CST, 1:500).

Formalin-fixed and paraffin-embedded (FFPE) samples were cut

from subcutaneous tumors, sections of 5 mm thickness. The slides

were stained manually according to the instructions using the Opal

seven-color IHCKit (NEL861001KT, PerkinElmer). Stained slides were

scanned by the Vectra (Vectra 3.0.5, PerkinElmer). Representative

images were used for analysis by the inform software after scanning

(inform 2.3.0, PerkinElmer).
2.12 Western blotting

Briefly, cells were scraped into ice-cold radioimmunoprecipitation

assay (RIPA) buffer, supplemented with a 1% final concentration of the

Halt protease and phosphatase inhibitor cocktail. Cell lysates were
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centrifuged at 14,000 rpm for 15 min at 4°C, and supernatants were

collected. Protein concentrations were determined using the Bradford

method. Cellular proteins were separated by 10% SDS-gel

electrophoresis (SDS-PAGE), transferred onto polyvinylidene fluoride

(PVDF) membranes (0.45 mM, IPVH00010, Millipore), and blocked

with 5% skimmilk at room temperature for 1 h. Membranes were then

incubated with the following primary antibodies overnight at 4°C: anti-

cystine glutamate reverse transporter (xCT) (ab307601, Abcam,

1:1000), anti-NQO1 (393700, Thermofisher, 1:500), anti-NRF2

(R1312-8, Huabio, 1:1000), and anti-b-actin (ab8226, Abcam,

1:3000). They were washed and incubated with horseradish

peroxidase conjugated goat anti-mouse IgG (H+L) (31430,

Thermofisher, 1:5000) and goat anti-rabbit IgG (H+L) (31460,

Thermofisher, 1:5000).
2.13 Immunofluorescence staining

HCCLM3 cells were seeded in 6-well plates at a density of 4 × 105

cells per well. Following treatment with IKE, DIC, or IKE + DIC, cells

were subjected to immunofluorescence analysis. They were fixed with

4% paraformaldehyde for 15 minutes and then washed with PBS.

Subsequently, cells were permeabilized with 0.2% Triton X-100 to

facilitate antibody penetration. Non-specific binding was blocked

using a blocking buffer consisting of 5% normal goat serum (NGS) in

PBS with 0.1% Tween-20 for 1 hour at room temperature. Primary

antibodies, diluted in PBS with 1% BSA and 0.1% Tween-20, were

applied to cells at 4°C overnight. The antibodies used were anti-

cystine glutamate reverse transporter (xCT) (ab307601, Abcam,

1:100) and anti-NQO1 (393700, Thermo Fisher Scientific, 1:100).

After incubation, unbound primary antibodies were washed away

with PBS. Fluorochrome-conjugated secondary antibodies,

compatible with the primary host species, were then applied for 1

hour at room temperature in the dark. Following further washing, cell

nuclei were counterstained with DAPI. Immunofluorescence was

visualized using a confocal microscope with appropriate filters for

the fluorochromes.
2.14 Measurement of cell death

Four HCC cell lines (Hep G2, Hep 3B, HCCLM3, and Huh-7)

were seeded in 96-well plates (3 × 103 cells/well). IKE (TS#2301,

TargetingScience) was diluted to 8 mM, 4 mM, 2 mM, and 1 mM,

respectively. Dicoumarol (DIC) (HY-N0645, MCE) was diluted to 4

mM. Ferrostatin-1 (HY-100579, MCE) was used as a specific

ferroptosis inhibitor. Cells were collected for SYTOX Green (S7020,

Invitrogen) and Hoechst33342 (C1029, Beyotime) staining for

analyzing cell death by microscopy, and the number of dead cells

and total cells was counted using ImageJ software.
2.15 In vivo xenograft mouse model

Male nude mice (7 weeks old) were injected with 3.0 × 106

HCCLM3 suspension cells subcutaneously. Tumor size was
Frontiers in Immunology 05
measured by an electronic caliper every 2 days and calculated

using the formula: tumor size (mm3) = 0.5 × length × width2.

Mice were randomly separated into 4 groups, 8 mice per group.

When the average tumor volume of each group of mice reached 100

mm3, drug intervention was started. One group of mice was injected

with the solvent (5% DMSO + 5% Tween-80 + 40% PEG-300 + 50%

ddH2O) as a control. Two groups of mice were injected with IKE or

DIC, respectively. One group of mice was injected with IKE and

DIC at the same time. All three drugs were injected

intraperitoneally. IKE was injected continuously for two weeks,

100 mL (30 kg/ml) each time. DIC was injected every other day for

two weeks, 100 mL (30 kg/ml) each time.
2.16 Statistical analysis

Statistical analyses were performed using R software (version

4.2.3) and GraphPad Prism 8 (GraphPad Software Inc., USA).

Comparisons between two groups were made for normally

distributed variables using an independent Student's t-test, while

non-normally distributed variables were assessed using the Mann-

Whitney U test (Wilcoxon rank-sum test). The experimental data are

presented as the mean ± SEM. Descriptive statistics were calculated

using GraphPad Prism. Statistical significance was defined as p < 0.05.
3 Results

3.1 Identification of 13 differently expressed
FRGs in HCC

Figure 1 provides a comprehensive overview of the

bioinformatics analysis workflow employed in this study. FRGs

were extracted from the FerrDb V2 database. Liver cancer-related

genes were identified in 110 normal tissues from GTEx and in 50

normal tissues and 371 HCC cases from the TCGA database. Three

distinct bioinformatics methods were utilized to analyze differentially

expressed genes in HCC, with results depicted in a heatmap and a

volcano plot. Using the R package "DESeq2," we identified 316 down-

regulated and 818 up-regulated differently expressed FRGs

(Figure 2A). With the R package "edgeR," 196 down-regulated and

952 up-regulated genes with differential expression related to

ferroptosis were found (Figure 2B). The "limma" package revealed

688 down-regulated and 616 up-regulated FRGs (Figure 2C).

Principal component analysis (PCA), a dimensionality reduction

technique, distinctly showed the distribution patterns between

HCC patients and healthy individuals (Figure 3A). Heatmaps were

used to illustrate the gene expression profiles of HCC patients and

healthy individuals (Figure 3B). A Venn diagram highlighted the

overlap and uniqueness of up-regulated and down-regulated,

revealing differential expression patterns. By integrating results

from DESeq2, edgeR, and limma, we identified a common set of

356 up-regulated and 154 down-regulated genes in HCC, indicating

significant alterations in gene expression (Figures 3C, D). The

intersection of these genes with FRGs yielded 13 differentially

expressed FRGs in HCC. These genes were visualized using a
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FIGURE 1

The flowchart of the research process.
FIGURE 2

Differently expressed FRGs between HCC tissues and normal tissues analyzed with three data analysis methods. (A) Heatmap and volcano plot indicating
FRGs using "DESeq2." (B) Heatmap and volcano plot indicating FRGs using "edgeR." (C) Heatmap and volcano plot indicating FRGs using the "limma" R
package. Red indicating high expression, blue indicating low expression, "Normal" representing normal tissues, and "Tumor" representing tumor tissues.
Volcano plots of differently expressed FRGs, with red indicating up-regulated, blue indicating down-regulated, "Up" representing up-regulated genes,
"Down" representing down-regulated genes, and "NOT" representing neither up-regulated genes nor down-regulated genes.
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heatmap and a volcano plot to show their expression patterns and the

significance of their expression changes (Figures 3E, F). The heatmap

indicated that aquaporin-8 (AQP8), cytochrome c oxidase subunit 4

isoform 2 (COX4I2), NADPH oxidase 4 (NOX4), telomerase reverse

transcriptase (TERT), KIF20A, CDKN2A, ETV4, acyl-CoA

synthetase long-chain family member 4 (ACSL4), NQO1, and

SLC7A11 were down-regulated in tumors relative to normal

tissues, whereas a disintegrin and metalloproteinase with

thrombospondin type 1 motif, 13 (ADAMTS13), prokineticin 2

(PROK2), and PTGS2 were up-regulated.
Frontiers in Immunology 07
3.2 Identification of gene correlation
through functional enrichment analysis,
gene set enrichment analysis, and gene
correlation analysis

GO and KEGG pathway enrichment analyses were performed

to investigate the functions of the differentially expressed FRGs.

Treemap visualizations demonstrated that these FRGs were

predominantly linked to replicative senescence, inflammatory cell

apoptosis, sulfur amino acid metabolism, and regulation of myeloid
FIGURE 3

Significantly differently expressed FRGs are screened between HCC tissues and normal tissues. (A) PCA diagram of dimensionality reduction analysis,
with red indicating tumor, blue indicating normal, "Normal" representing normal tissues, and "Tumor" representing tumor tissues. (B) Heatmap of
differently expressed FRGs, with red indicating high expression, blue indicating low expression, "Normal" representing normal tissues, and "Tumor"
representing tumor tissues. (C, D) Venn diagram showing the overlap of differentially expressed genes in the TCGA and GTEx databases.
(E, F) Heatmap and volcano plots of 13 differently expressed FRGs, with red indicating high expression, blue indicating low expression, "Normal"
representing normal tissues, and "Tumor" representing tumor tissues. "Up" representing up-regulated genes, "Down" representing down-regulated
genes, and "NOT" representing neither up-regulated genes nor down-regulated genes.
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cell apoptosis (Figure 4A). The data were graphically represented

using a treeplot for hierarchical detail and a barplot for an overview

of enrichment scores (Figures 4A, B). GSEA was applied to identify

the most relevant phenotypic pathways among the differentially

expressed FRGs. The ridge diagram indicated significant

enrichment of these genes in various biological pathways,

including the cell cycle, complement and coagulation cascades,

drug metabolism (cytochrome P450), retinol metabolism,
Frontiers in Immunology 08
coronavirus disease (COVID-19), carbon metabolism, and retinol

metabolism (Figure 4C). A cnetplot visually depicted significant

gene-gene interactions, particularly the strong association between

SLC7A11 and CDKN2A (Figure 4D). In the TCGA HCC patient

cohort RNA-seq data, which comprised 371 subjects, pairwise

Pearson correlation coefficients were calculated to evaluate

gene-gene relationships and were visualized in a matrix format

for gene-by-gene comparison. A subsequent correlation analysis
FIGURE 4

Gene function analysis of significantly differently expressed FRGs. (A) A treeplot of GO and KEGG enrichment analysis. (B) Barplot of GO and KEGG
enrichment analysis. (C) Ridge diagram of 13 differently expressed FRGs. (D) Cnetplot of GO and KEGG enrichment analysis. (E) A positive correlation
between NQO1 and SLC7A11. Gene-by-gene correlation matrix visualizing the pairwise Pearson correlation coefficients in bulk RNA-seq TCGA data
from patients with HCC (n = 371). Genes are favorably connected if their respective circles are near blue; on the other hand, genes are negatively
correlated if their respective circles are near red.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1531874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1531874
focused on the 13 differentially expressed FRGs and confirmed the

correlation between ferroptosis and these genes (Figure 4E).
3.3 Establishment of a prognostic model
and identification of prognostic FRGs

A protein-protein interaction (PPI) network was constructed to

identify key genes and visualize their interactions. The string

interaction network of genes with varying expression levels was

investigated using Cytoscape. Utilizing the MCODE plugin within

Cytoscape, we identified highly interconnected subnetworks,
Frontiers in Immunology 09
suggesting the presence of functionally related genes. Specifically,

we selected seven genes to construct a PPI network relevant to

ferroptosis: SLC7A11, NQO1, TERT, NOX4, ACSL4, PTGS2, and

CDKN2A (Figure 5A). Among these, SLC7A11, NQO1, and TERT

could inhibit ferroptosis (29–31). To identify FRGs whose expression

levels correlate with the overall survival (OS) of HCC patients, we

conducted a univariate Cox proportional hazards regression analysis.

This approach allowed us to assess the association between gene

expression and survival outcomes, applying a threshold p-value to

refine potential prognostic FRGs. Notably, NQO1, KIF20A, ETV4,

SLC7A11, and CDKN2A exhibited significant differential expression

(Figure 5B). Lasso regression, incorporating a regularization
FIGURE 5

Establishment of a prognostic model. (A) The establishment of the PPI network. (B) Genes were significantly expressed in the univariate Cox
regression model. (C) Lasso regression of 5 genes in (B). (D) High-risk and low-risk groups according to Risk Score.
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parameter l, was then applied to identify the optimal predictive

model, reducing regression coefficients b and eliminating variables

with minimal impact. Lasso regression mitigates multicollinearity

and overfitting by penalizing regression coefficients. Cross-validation

indicated improved predictive accuracy as the deviation from the

partial likelihood ordinate decreased. NQO1, KIF20A, ETV4,

SLC7A11, and CDKN2A were identified as having the best fit

within the model (Figures 5B, C). Furthermore, the multivariate

Cox regression analysis identified NQO1, KIF20A, ETV4, SLC7A11,

and CDKN2A as statistically significant predictors of increased

mortality risk in HCC patients, suggesting their potential as

independent risk factors and therapeutic targets. Subsequently, a

stepwise multivariate Cox regression analysis was used to develop

prognostic indicators, identifying genes with significant prognostic

value. The prognostic Risk Score for each patient was calculated as the

weighted sum of gene expression levels, each multiplied by its

corresponding regression coefficient from the multivariate Cox

regression analysis: Risk Score = 0.042*NQO1+0.281*KIF20A

+0.095*ETV4+0.195*SLC7A11+0.034*CDKN2A (Figure 5D).
3.4 Assessment and verification of the
prognostic model

After establishing the prognostic risk model, we validated its

performance using three independent datasets: TCGA, ICGC, and

GEO. The Risk Score for each patient was calculated using the

multivariate Cox regression method, which was followed by survival

analyses. Patients were subsequently stratified into high- and low-risk

groups based on their Risk Score. To evaluate the predictive accuracy of

the model, we constructed a ROC curve. The area under the curve

(AUC) value represents the model's ability to distinguish between high-

risk and low-risk groups within each corresponding database. It is

observed that the AUC varies under different survival times for

patients. The survival time with the highest AUC value can be

selected to assess patient risk, indicating the optimal discrimination

between the high- and low-risk groups. The AUC values for the 1-year,

2-year, and 3-year survival predictions for HCC patients were 0.801,

0.705, and 0.690, respectively, demonstrating significant model

performance with a p-value of less than 0.0001 for the Kaplan-Meier

(Km) survival analysis within the TCGA database (Figure 6A).

Similarly, the AUC values for the HCC patients' 1-year, 2-year, and

3-year survival predictions were 0.722, 0.724, and 0.720, respectively,

confirming themodel's robustness with a p-value of less than 0.0001 for

the Km survival analysis under the ICGC database (Figure 6B). Lastly,

the AUC values for the 1-year, 2-year, and 3-year survival predictions

were 0.613, 0.648, and 0.644, respectively, with a p-value of less than

0.067 for the Km survival analysis in the GEO database (Figure 6C).
3.5 Assessment of the risk genes by
Risk Score

The nomogram was designed into three main components (1):

Predictive model variables, including age, gender, and stage, were

clearly labeled and accompanied by a visual depiction of the Risk
Frontiers in Immunology 10
Score. Each variable was allocated a line segment on the nomogram,

calibrated with a scale that matched its value range. The length of

these line segments represented the relative impact of each variable

on the final outcome (2). The total score, labeled as ''Total Points'' on

the nomogram, was determined by aggregating the individual scores

from the variable values. Each variable's contribution was quantified

by a score, graphically displayed as a point along the corresponding

line segment (3). The nomogram detailed survival probabilities,

noting that for the ''High Risk Stratification'' group, the 1-year

survival rate was the primary endpoint, with the 5-year survival

rate being less probable. Conversely, the ''Low Risk Stratification''

group was characterized by significant 3- and 5-year survival rates as

the main outcomes. (Figure 7A). Ideally, the model's scatter points

should align with a 45-degree line, indicating a close match between

predicted and observed outcomes. Our analysis showed increasing

predictive accuracy for 5-year, 1-year, and 3-year survival

probabilities (Figure 7B). Using the TCGA database, we developed

a nomogram model to calculate the Risk Score for HCC patients and

correlated it with the expression levels of five pre-screened genes.

Each gene exhibited a significant correlation: ETV4 (correlation

coefficient R = 0.60, p-value = 7.1e-38), KIF20A (R = 0.81, p-value

= 2e-87), CDKN2A (R = 0.45, p-value = 1.3e-19), SLC7A11 (R = 0.65,

p-value = 6.6e-46), and NQO1 (R = 0.42, p-value = 4e-17),

highlighting their potential as prognostic biomarkers (Figures 7C–G).
3.6 Higher expression of NQO1 and
SLC7A11 is correlated with a poorer
prognosis in HCC

After identifying the 13 differentially expressed FRGs, we

employed the GSCA database to analyze mRNA expression

trends from the early to late stages of HCC. The trend maps

exposed distinct patterns of change at different stages, with a

focus on the five risk genes: ETV4, KIF20A, CDKN2A, SLC7A11,

and NQO1. It was observed that the expression levels of these genes

collectively increased from stage I to stage II. Between stage II and

stage III, the expression of KIF20A and SLC7A11, among the five

risk genes, exhibited a significant increase. Finally, from stage III to

stage IV, an increase in expression was observed solely for ETV4.

(Figure 8A). Among the five risk genes identified, SLC7A11 and

NQO1 have been recognized as critical players in conferring

resistance to ferroptosis (32, 33). SLC7A11 is essential for

regulating GSH synthesis, which confers resistance to ferroptosis.

NQO1, an enzyme, protects cells from oxidative stress, thereby

reducing their susceptibility to ferroptosis. Both genes facilitate

tumor growth by inhibiting ferroptosis. We categorized samples

into high- and low-expression groups based on the levels of

NFE2L2, SLC7A11, and NQO1, with higher expression levels

being associated with poorer survival outcomes in the TCGA

database, showing significant p-values for SLC7A11 (p < 0.0001)

and NQO1 (p = 0.00089) (Figures 8B–D). The NFE2L2 gene

encodes NRF2, a regulator of cellular antioxidant responses.

Analysis of NRF2 chromatin immunoprecipitation followed by

sequencing (ChIP-seq) data revealed that NRF2 binds in the

vicinity of key antioxidant target gene loci, specifically NQO1 and
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SLC7A11, as documented in the Gene Transcription Regulation

Database, indicating NRF2's role in their transcriptional regulation,

which is essential for combating oxidative stress (Figure 8E).

3.7 Drug resistance analyses in high- and
low-expression groups of genes that are
sensitive to ferroptosis

We retrieved data from the CellMiner database, which included

drug activity measurements (drug-tolerant persister NCI-60-Average z
Frontiers in Immunology 11
score) and gene expression profiles (RNA-seq composite expression)

for NFE2L2, NQO1, KIF20A, ETV4, SLC7A11, and CDKN2A in HCC

cell lines. Employing the "pattern comparison" tool, we conducted

comparative analyses to explore the relationship between gene

expression and drug activity. We found that an improved prognosis

is correlated with increased drug binding sensitivity, potentially

mitigating drug resistance. These six genes, known to inhibit

ferroptosis, display significant expression variation within our HCC

gene dataset. As gene expression in liver cancer cells increases, so does

the binding affinity between the drugs and the cancer cells.
FIGURE 6

Assessment of prognostic model. (A-C) Kaplan-Meier overall survival (OS) curves for patients with high and low Risk Scores and time-dependent
ROC curves in the TCGA, ICGC, and GEO databases.
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Consequently, a positive correlation between the binding potency of

certain drugs and gene expression levels was established.We prioritized

drugs with the strongest binding affinity, suggesting their potential for

the most significant therapeutic impact (Figure 9).
3.8 Validation of the expression levels of
NRF2, SLC7A11, and NQO1 in human liver
and HCC tissues

The general and clinical characteristics of the study participants,

as determined by the high-throughput tissue microarray, were

presented in Table 1. mIHC analysis confirmed the expression
Frontiers in Immunology 12
patterns of NRF2, SLC7A11, and NQO1 proteins in HCC tissues

compared to normal liver tissues. Notably, NRF2, SLC7A11, and

NQO1 co-localized, with an increased positive rate for SLC7A11

and NQO1 associated with a high NRF2 positive rate in patients

(Figure 10A). The positive rates for NRF2 and NQO1 were

significantly higher in liver cancer tissues than in normal liver

tissues. However, in the results of the local scan analysis, SLC7A11

did not exhibit this differential expression between all liver cancer

and healthy individuals. Consequently, in subsequent analyses, it is

necessary to either examine the differential positive rate for each cell

or increase the sample size (Figure 10B). The positive rates for

NRF2 and NQO1 in HCC tissue microarrays were also significantly

greater than those in normal liver tissue microarrays. SLC7A11 did
FIGURE 7

Assessment of 5 risk genes. (A) A nomogram based on multivariate regression. (B) Calibration curve of the risk model. (C-G) Correlation of Risk
Score and expression of ETV4, KIF20A, CDKN2A, SLC7A11, and NQO1.
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not demonstrate a significant difference between HCC patients and

healthy individuals in the local scan analysis (Figure 10C). We

combined the mean fluorescence intensity (MFI) values from the

local scan areas with clinical data to evaluate whether the expression

levels of NRF2, NQO1, and SLC7A11 varied significantly across

different grades and tumor-node-metastasis (TNM) stages.

However, no statistical differences were observed (Figure 10D).
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3.9 Correlation of NRF2 with NQO1 and
SLC7A11 in human liver and HCC tissues

We analyzed the correlation between NRF2 and NQO1,

SLC7A11 in LIHC using data from the analysis data by the inform

software after scanning. The expression levels of NRF2 showed a

positive correlation with both NQO1 (r = 0.6436, p < 0.0001) and
FIGURE 8

Screening of target genes. (A) FRGs expression tendencies in pathologic stages. (B-D) Kaplan-Meier overall survival (OS) curves for patients with
high- and low-expressing NFE2L2, SLC7A11, and NQO1, with red indicating high expression and blue indicating low expression. (E) Gene
transcription regulation of NFE2L2.
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SLC7A11 (r = 0.6125, p < 0.0001) in LIHC patients (Figure 11A). This

correlation was also observed in HCC patients, where NRF2

expression levels were positively correlated with NQO1 (r = 0.6585,

p < 0.0001) and SLC7A11 (r = 0.7039, p < 0.0001) (Figure 11B). We

categorized the MFI data of NRF2 in the cytoplasm of LIHC patients

and healthy individuals into "NRF2 high" and "NRF2 low" based on

the median MFI values of local scan slices. Elevated MFI of NRF2 in

the cytoplasm was found to correlate with increased MFI of SLC7A11

in the membrane and NQO1 in the cytoplasm (Figure 11C). This

pattern was consistent when analyzing HCC data alone, indicating a

uniform association across patient samples (Figure 11D). At the

single-cell level, significant differences (p < 0.0001) in the NRF2

expression patterns were identified between all liver cancer patients

and healthy individuals (Figure 11E). We then classified the
Frontiers in Immunology 14
single-cell mean MFI data of NRF2 in the cytoplasm for both HCC

patients and healthy individuals, selecting the highest MFI values

from five HCC patients and the lowest from five healthy individuals.

This approach confirmed that elevated MFI of NRF2 in the

cytoplasm correlates with increased MFI of SLC7A11 in the

membrane and NQO1 in the cytoplasm (Figure 11F).
3.10 DIC sensitizes IKE-induced ferroptosis
in HCC cell lines and leads to
tumor regression

Cell death induced by IKE was suppressed by the ferroptosis

inhibitor Ferrostatin-1 (Fer-1). All cell lines showed sensitivity to
FIGURE 9

Drug sensitivity analysis of target genes. "High" representing high-expressed genes, and "Low" representing low-expressed genes. *p<0.05, ***p<0.001.
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IKE-induced ferroptosis in a dose-dependent manner, with Hep G2

cells being the most sensitive and HCCLM3 cells the least sensitive

(Figure 12A). To investigate whether DIC can enhance IKE-

induced ferroptosis, we selected HCCLM3 cells for our further

research (Figure 12B). NRF2, NQO1, and SLC7A11 were confirmed

to be expressed in HCC cell lines, including Hep G2, Hep 3B,

HCCLM3, and Huh-7. (Figure 12C). We verified the effects of IKE

and DIC on the expression of SLC7A11 and NQO1 in vitro using

western blot and immunofluorescence experiments (Figures 12D,

E). A subcutaneous tumor model was established using HCCLM3

cells in nude mice to investigate the impact of NQO1 and SLC7A11

on tumor growth (Figure 12F). The combination of DIC with IKE

significantly decreased tumor growth (Figure 12G). The expression

levels of SLC7A11 and NQO1 were significantly reduced in groups

treated with IKE, DIC, or both, with the combined treatment

showing a more pronounced decrease compared to single

treatments (Figures 12H–J). These findings indicated that the

combination of SLC7A11 and NQO1 inhibitors is a promising

therapeutic approach for HCC.

The combination of IKE and DIC significantly reduced tumor

volume and weight. Our research confirmed that DIC inhibited the

expression of NQO1 and IKE inhibited the expression of SLC7A11,

both of which are known to suppress ferroptosis. Importantly, DIC

sensitized HCCLM3 cells to IKE-induced ferroptosis. To investigate

how DIC sensitizes tumor cells to IKE-induced ferroptosis in vivo,

we used DAB-enhanced Prussian blue staining to identify iron

deposits within cells and tissues. Our analysis revealed that the

treatment groups—IKE, DIC, and the combination of IKE and DIC

—increased the level of iron. The hepatic non-heme iron in sections

from mice that IKE and DIC were higher than in those treated with

IKE or DIC alone and control mice, as determined by
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DAB-enhanced Prussian blue staining (Figure 13A). mIHC

showed that the expression levels of HMGB1 and PTGS2 were

significantly elevated in tumors treated with IKE and DIC together

(Figures 13B, C).
4 Discussion

Ferroptosis, an iron-dependent type of programmed cell death

(PCD) marked by increased lipid peroxidation, is implicated with

tumor growth and therapeutic responses across various cancers.

While the precise effect of ferroptosis in tumor biology is not fully

understood, evidence suggests a link between therapeutic induction

of ferroptosis and mutations in cancer-related genes, particularly

those involved in stress response pathways (34). It is hypothesized

that IKE and DIC might induce ferroptosis and modulate other

biological processes by regulating SLC7A11 and NQO1 expression,

potentially explaining the observed reduction in tumor volume in

our experiment.

The translation of ferroptosis-targeted therapies from the bench

to bedside is crucial yet challenging. Several treatments, including

radiotherapy, immunotherapy, chemotherapy agents (like

altretamine), and targeted therapy agents (like sorafenib), are

known for their potential to induce or sensitize cancer cells to

ferroptosis (21). However, extensive clinical trials are necessary to

confirm the safety and efficacy of these methods in combination

with other ferroptosis-inducing treatments and to determine their

ability to replicate preclinical successes in overcoming therapeutic

resistance (34).

We employed three distinct analytical methods to assess

differential gene expression in HCC using transcriptomic data from

both the TCGA and GTEx databases. The intersection of

differentially expressed genes from HCC with the FRGs in the

FerrDb database identified a set of 13 differentially expressed FRGs.

Following a comprehensive bioinformatics analysis, including

functional enrichment, gene set enrichment, gene correlation

assessments, the construction of a PPI network, and various

regression analyses such as univariate Cox, Lasso, and multivariate

regression, we developed a prognostic risk model. Within this model,

SLC7A11 and NQO1 were identified as the key target genes for

this investigation.

NRF2, a master regulator of cellular redox homeostasis and

xenobiotic detoxification (35), is often associated with elevated

NFE2L2/NRF2 expression, oncogenic activity of NRF2, tumor

growth, metastasis, and resistance to anticancer treatments,

primarily due to Kelch-like ECH-associated protein 1 (KEAP1)

mutations (36–38). Clinical studies have correlated high NRF2

expression with poor prognosis in various malignancies (39). As

cancer cells can develop resistance to apoptosis-inducing therapies,

alternative PCD mechanisms, such as ferroptosis, warrant

exploration (40). The expression of SLC7A11 and NQO1 is

positively regulated by the transcriptional factor NRF2, whereas

they are negatively regulated by the NRF2 suppressor gene KEAP1

(41). NRF2, a transcription factor, plays a crucial role as a major

regulator of the antioxidant response. It promotes the transcription

of SLC7A11 and NQO1 under conditions such as oxidative stress,
TABLE 1 General and clinical characteristics of liver cancer
patients (N=96).

Fall Group
(n=86)

Control Group
(n=10)

Characteristics Mean±SD or n (%)

Age 50.95±9.95 35.60±10.16

Sex

F 15 (0.17) 7 (0.70)

M 71 (0.83) 3 (0.30)

Grage

2 42 (0.51) – –

2-3 2 (0.02) – –

3 38 (0.46) – –

Stage

I 10 (0.12) – –

II 62 (0.72) – –

III 9 (0.10) – –

IV 5 (0.06) – –
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as evidenced by references (42, 43). Notably, NRF2 enhances the

mRNA level of xCT by binding to the antioxidant response element

(ARE), which is also recognized as the electrophilic response

element (EpRE), located in the proximal promoter region of the

xCT gene (43). Upon receiving oxidative signals, NRF2 translocates
Frontiers in Immunology 16
to the nucleus, where it binds to ARE to enhance the mRNA level of

NQO1 within the promoter regions of numerous phase II

detoxification and antioxidant genes (44). Furthermore, NRF2

and the inflammasomes it activates are responsible for

inflammasome-dependent HMGB1 release (45). HMGB1, in turn,
FIGURE 10

The expression levels of NRF2, SLC7A11, and NQO1 in HCC are higher in HCC than those in healthy individuals. (A) Representative images of mIHC
staining of NRF2, SLC7A11, and NQO1. (B) mIHC statistical analysis of NRF2, SLC7A11, and NQO1 in all liver cancer and healthy individuals. (C) mIHC
statistical analysis of NRF2, SLC7A11, and NQO1 in HCC and healthy individuals. (D) The expression of NRF2, NQO1, and SLC7A11 in different grades
and TNM stages.
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promotes ferroptosis by modulating the Nrf2/HO-1 pathway (46).

It is also worth mentioning that the inhibition of the p53/SLC7A11/

GPX4 pathway, which is mediated by HMGB1, can effectively

inhibit ferroptosis (47). Additionally, the inhibition of PTGS2

expression, coupled with the activation of the NRF2 signaling

pathway and its downstream ferroptosis-related proteins, such as

SLC7A11, can lead to a reduction in lipid peroxidation. This, in

turn, alleviates ferroptosis induced by iron overload (45).

Our study seeks to confirm the regulatory role of NRF2 on

SLC7A11 and NQO1 during HCC development and to evaluate the

potential of DIC to enhance HCC susceptibility to IKE-induced

ferroptosis. SLC7A11 and NQO1 have been identified as inhibitory

genes of ferroptosis in previous studies. System Xc-, composed of

SLC3A2 and SLC7A11 (xCT), facilitates cystine import and

glutamate export. Elevated SLC7A11 expression in myeloma cells

increases susceptibility to erastin-induced ferroptosis (48).

Overexpression of SLC7A11 can promote tumor growth by

inhibiting ferroptosis (49) and evade ferroptosis through post-

transcriptional mechanisms. The inhibition of SLC7A11 has been
Frontiers in Immunology 17
shown to induce ferroptosis in tumor cells (30, 50). Activation of

mTORC1 enhances ferroptosis resistance and tumor progression by

up-regulating SLC7A11 (51). Decreased sensitivity to ferroptosis

activators such as erastin has been observed in myocardial

infarction models (52). IKE, an erastin analog, is recognized as an

effective and metabolically stable inhibitor of the system Xc-, which

can serve as a novel anti-tumor drug to inhibit tumor growth by

inducing ferroptosis. The use of polyethylene glycol-poly (lactic-co-

glycolic acid) nanoparticles (PEG-PLGA NPs) to facilitate IKE

delivery has been highlighted in previous studies, demonstrating

low toxicity in diffuse large B cell lymphoma (DLBCL) xenograft

models (53). These findings suggest that the efficacy of IKE can be

enhanced and its toxicity can be reduced through a specific drug

delivery system, which is crucial for clinical application. NQO1, a

cytoplasmic flavoprotein, is overexpressed in various cancers,

including breast, pancreatic, hepatocellular, bladder, ovarian,

thyroid, colorectal, cholangiocarcinoma, cervical, melanoma, and

lung (54–58). Its overexpression is associated with larger tumor

sizes, advanced stages, and poor survival rates (56, 58, 59).
FIGURE 11

Correlation of NRF2 with NQO1 and SLC7A11 in human liver and HCC tissues. (A, B) The correlation analysis of NRF2, NQO1, and SLC7A11 in all
subjects and HCC patients. (C, D) mIHC MFI statistical analysis of NQO1 and SLC7A11 in the local scan of all subjects and HCC patients with high
and low expression of NRF2. (E) mIHC MFI statistical analysis of NRF2 in full scan between all liver cancer patients and normal people. (F) The
different MFIs of NQO1 and SLC7A11 in HCC patients with high and low expression of NRF2.
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FIGURE 12

Establishment of subcutaneous tumor model. (A) The image shows the Hep G2, Hep 3B, HCCLM3, and Huh-7 were treated with IKE (0, 1, 2, 4, 8 mM)
and IKE (0, 1, 2, 4, 8 mM) + Fer-1 (2 mM) respectively. Cell death was measured following 24-h treatment of IKE and Fer-1. (B) The image shows the
Hep G2, Hep 3B, HCCLM3, and Huh-7 were treated with IKE (4 mM), IKE (4 mM)+Fer-1 (2 mM), IKE (4 mM)+DIC (4 mM), and IKE (4 mM)+DIC (4 mM)+
Fer-1 (2 mM) respectively. Cell death was measured following 24-h treatment of IKE, DIC, and Fer-1. n = 3 biologically independent samples per
condition. (C) The expression of target protein in Hep G2, Hep 3B, HCCLM3, and Huh-7. (D) Protein expression of target molecules of HCCLM3
cells. (E) Immunofluorescence staining of SLC7A11 and NQO1 in HCCLM3 cells. Scale bars for others, 100 mm. (F) The establishment of a
subcutaneous tumor model schematic diagram. (G) Subcutaneous tumor volume monitoring. (H) Protein expression of target molecules in
subcutaneous tumor. (I) Multiple immunohistological staining of SLC7A11 and NQO1 in subcutaneous tumor. Scale bars for others, 100 mm.
(J) Multiple immunohistological staining positive rate statistics of SLC7A11 and NQO1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Triggering ferroptosis via NQO1 can also combat tumor drug

resistance (30). DIC, as an NQO1 inhibitor and an FDA-

approved drug, was identified as a potential therapeutic agent

targeting core ferroptosis-related genes in polycystic ovary

syndrome (60). Our study explores the potential of DIC to reduce

IKE resistance and enhance HCC susceptibility to ferroptosis.

However, no literature has reported the synergistic effect of

combining these two inhibitors to enhance the susceptibility of

HCC cells to ferroptosis, thereby exerting an inhibitory effect on

tumor growth. We hypothesize that the mechanism by which DIC

enhances ferroptosis sensitivity to IKE may be related to the

increase in non-heme iron levels. It is crucial to acknowledge that

the subcutaneous xenograft model may not perfectly mimic the
Frontiers in Immunology 19
complex tumor microenvironment. Furthermore, since these

models are typically established in immunodeficient mice, they

may give rise to tumors that exhibit characteristics distinct from

those of human cancers (61). Our subsequent studies will further

verify the roles of IKE and DIC through patient-derived xenograft

(PDX) models and patient-derived organoid (PDO) models. These

models are expected to provide a more accurate representation of

human cancers, allowing for a deeper understanding of the

mechanisms and therapeutic potential of ferroptosis in HCC.

Although we have shown that DIC can reduce IKE resistance

and increase HCC susceptibility to ferroptosis, it is essential to

further verify the safety and efficacy of the combination of DIC and

IKE in a larger cohort of clinical trials. This verification process
FIGURE 13

DIC enhances susceptibility to IKE-induced ferroptosis by increasing non-heme iron. (A) DAB-enhanced Prussian blue staining for iron in sections
obtained from subcutaneous tumors. (B) Representative images of mIHC of HMGB1 and PTGS2 in subcutaneous tumors. (C) mIHC positivity
statistical analysis of HMGB1 and PTGS2 in a partial scan of mice. **p<0.01, ***p<0.001, ****p<0.0001.
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should include evaluating drug interactions, determining maximum

tolerated doses, assessing pharmacokinetic and pharmacodynamic

properties, and considering possible long-term side effects.

In this study, we have successfully developed a nomogram model

that is designed to calculate the Risk Score for HCC patients based on

the expression levels offive genes that have been rigorously pre-screened

for their relevance in HCC. Application of this model provides a

comprehensive elucidation of the molecular signaling events that are

pivotal in the pathogenesis of HCC, and it offers valuable insights into

the realm of targeted therapy. Furthermore, it identifies potential

biomarkers that could be utilized for the prediction of therapeutic

efficacy.While significant strides have been made in the development of

targeted therapies for HCC, there are still formidable challenges to be

addressed in the implementation of therapeutic strategies that are both

effective and precise.We put forward the hypothesis that the application

of DIC could enhance the sensitivity of HCC cells to ferroptosis, a form

of regulated cell death that has been implicated in cancer treatment.

This enhancement could potentially serve as a critical reference point in

the development of novel treatment approaches for HCC, offering a

new avenue for improving patient outcomes.
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