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Comprehensive molecular
analyses of an autoimmune-
related gene predictive model
and immune infiltrations using
machine learning methods in
intracranial aneurysma
Minxue Zhang, Lin Zhou, Yuying Zhao, Yanling Wang,
Zhuobo Zhang* and Zhan Liu*

Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
Background: Increasing evidence indicates a connection between intracranial

aneurysm (intracranial aneurysm, IA) and autoimmune diseases. However, the

molecular mechanisms from a genetic perspective remain unclear. This study

aims to elucidate the potential roles of autoimmune-related genes (ARGs) in the

pathogenesis of IA.

Methods: Three transcription profiles (GSE13353, GSE26969, and GSE75436) for

intracranial aneurysm (IA) were obtained from GEO databases. Autoimmune-

related genes (ARGs) were sourced from the Genecards databases. Differentially

expressed ARGs (DEARGs) were identified using the “limma” R package. GO,

KEGG and GSEA analyses were performed to uncover underlying molecular

functions. Three machine learning methods—LASSO logistic regression, random

forest (RF), and XGBoost—were employed to identify key genes. An artificial

neural network was used to develop an autoimmune-related signature predictive

model for IA. Immune characteristics, including immune cell infiltration, immune

responses, and HLA gene expression in IA, were investigated using ssGSEA.

Additionally, the miRNA-gene regulatory network and potential therapeutic

drugs for hub genes were predicted. In certain sections of the written content

of this manuscript, the authors have utilized text generated by an AI technology.

The specific name, version, model, and source of the generative AI technology

used are as follows: Generative AI Technology Name: ChatGPT, Version: 4.0,

Model: GPT-4, Source: OpenAI.

Results: A total of 39 differentially expressed ARGs (DEARGs) were identified

across the GSE13353, GSE26969, and GSE75436 datasets. From these, two key

diagnostic genes were identified using three machine learning algorithms:

ADIPOQ and IL21R. A predictive neural network model was developed based

on these genes, exhibiting strong diagnostic capability with a ROC value of 0.944,

and further validated using a nomogram approach. The study focused on

intracranial aneurysm (IA), revealing significant insights into the underlying

genetic mechanisms.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1531930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1531930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1531930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1531930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1531930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1531930/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1531930&domain=pdf&date_stamp=2025-04-17
mailto:liuzhanhrb@yeah.net
mailto:zzbzzx@163.com
https://doi.org/10.3389/fimmu.2025.1531930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1531930
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2025.1531930

Frontiers in Immunology
Conclusion: The results of bioinformatics analysis in our study elucidated the

mechanism of intracranial aneurysm (IA), identifying two key differential genes.

Our research highlights the significant roles of immune infiltration and the

regulatory networks between genes, miRNAs, and drugs in IA. These findings

not only enhance our understanding of the pathogenesis of IA but also suggest

potential new avenues for its treatment.
KEYWORDS

intracranial aneurysma, machine learning, bioinformatics, immune infiltration,
autoimmune-related genes
Introduction

Intracranial aneurysms (IA) are localized dilatations of cerebral

arteries, posing a significant risk of rupture and subsequent

subarachnoid hemorrhage (SAH), a life-threatening condition

with high morbidity and mortality (1, 2). While research has

traditionally focused on structural and hemodynamic aspects of

IA development, the potential role of immune responses in IA

formation and progression has been increasingly recognized (3).

Inflammation is considered an important aspect of IA

pathophysiology (4). Recent studies have revealed a heightened

risk of IA in individuals with autoimmune diseases (5, 6),such as

systemic lupus erythematosus and rheumatoid arthritis, suggesting

a potential link between autoimmune responses and IA

pathogenesis (7, 8).

Autoimmune-related genes (ARGs) are integral to the

regulation of various immune responses, including inflammation,

immune cell activation, and apoptosis, all of which could contribute

to IA development (9). Immune complexes, a hallmark of

autoimmune disorders, can trigger vasculitis, leading to narrowed

or occluded vessels, a process implicated in IA formation (10).

However, the precise role and mechanisms of ARGs in IA

pathogenesis remain poorly understood.

To delve deeper into the role of ARGs in IA, this study utilizes a

comprehensive bioinformatics approach to analyze differentially

expressed ARGs (DEARGs) using three transcriptome datasets

(GSE13353, GSE26969, and GSE75436) obtained from the GEO

database. We perform functional enrichment analyses, including

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses, to uncover the biological

processes and pathways involving DEARGs. Furthermore, we

employ three machine learning methods, LASSO logistic regression,

random forest (RF), and XGBoost, to identify key DEARGs that could

serve as potential diagnostic biomarkers for IA. An artificial neural

network model is constructed based on these key genes to predict IA

risk and further validated using a nomogram approach.

To elucidate the immune landscape of IA, we investigate

immune cell infiltration, immune responses, and HLA gene
02
expression using single-sample gene set enrichment analysis

(ssGSEA). Additionally, we predict miRNA-gene regulatory

networks and potential therapeutic drugs targeting hub genes,

providing novel insights into potential therapeutic interventions

for IA.

This study aims to comprehensively analyze the role of ARGs in

IA pathogenesis and develop an ARG-based predictive model for

IA. Our findings may provide novel insights into the

pathophysiology of IA and pave the way for the development of

new diagnostic and therapeutic strategies.
Materials and methods

Data acquisition

The gene expression proffling data of aneurysm samples

GSE13353, GSE26969 (11), and GSE75436 (GPL570 platform),

was obtained from the NCBI GEO database (https://

www.ncbi.nlm.nih.gov/geo/) and was retrieved by our team. The

datasets include 37 intracranial aneurysm patients and 18 age- and

gender-matched control samples of normal superficial temporal

artery. If multiple probes matched the same gene, the probe with the

highest median expression value was annotated to the

corresponding homologous gene symbol through the platform’s

annotation information.

Normalization was performed on the raw GEO data via the

“NormalizeBetweenArray” R package. It was determined that the R

utility known as “Limma” was the best tool for analyzing

Differentially Expressed Genes (DEGs) comparing normal and

sample samples. P-values that were either <0.05 or were equal to

0.05 itself were regarded as statistically significant. In order to

determine whether genes displayed differential expression, we

employed the LogFC (log fold change) > 1 and adjusted P

0.05 criteria.

ARGs were obtained from the Genecards database (https://

www.genecards.org/) after deleting duplicate genes. Filter

relevance socre>3.
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Identification of differentially expressed
autoimmune-related genes

We conducted a principal component analysis (PCA) using the

factoextra package in R to explore the data structure. To identify

differentially expressed DEARGs, we utilized the limma package in R

to perform differential expression analysis. This allowed us to detect

differentially expressed genes (DEGs) between the intracranial

aneurysm (IA) and control groups. DEGs were identified based on

the criteria of |log2FoldChange| > 1 and a p-value < 0.05. For

visualization, volcano plots and clustering heatmaps were generated

using the ggplot2 and ComplexHeatmap packages, respectively. To

identify DEARGs, we intersected the identified DEGs with aging-

related genes (ARGs) and visualized the overlap using the

VennDiagram package in R.
PPI network analysis

Leveraging the full capabilities of the STRING website

facilitated the creation of a graphical representation of PPIs,

encompassing 39 nodes and 138 edges. Subsequently, this

network was imported into the Cytoscape application for

further analysis.
Gene ontology and Kyoto encyclopedia of
genes and genomes analysis

We performed a comprehensive analysis of the identified genes

using widely recognized bioinformatics tools and databases to

explore their functional implications and potential involvement in

critical biological processes related to intracranial aneurysms (IA).

Utilizing the clusterProfiler R package (v4.0), we conducted Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses to gain valuable insights into

the biological functions and pathways associated with these genes.

GO analysis allowed us to systematically categorize and annotate

the genes based on their associated biological processes, molecular

functions, and cellular components. By applying rigorous GO

analysis, we aimed to uncover the fundamental biological

processes and functions these genes contribute to within the

context of IA development and progression. This detailed

ontological classification provided us with a comprehensive

understanding of the molecular intricacies underlying this

complex disease. Additionally, we employed the KEGG database

to unravel the intricate network of signaling pathways that these

genes participate in. By performing KEGG pathway enrichment

analysis with a significance threshold of P < 0.05, we identified

crucial biological pathways significantly enriched among these

genes. This analysis was essential for comprehending the

interconnectedness of these genes within specific cellular

processes and molecular cascades relevant to IA, offering valuable

insights into potential dysregulation and perturbations during IA
Frontiers in Immunology 03
development and suggesting potential therapeutic targets

and strategies.

We conducted principal component analysis using the

factoextra R package. Differential expression analysis was

performed with the limma package in R to detect DEGs between

the AI and control groups in datasets GSE13353, GSE26969, and

GSE75436. DEGs were screened with the criteria of |

log2FoldChange| > 1 and p < 0.05. Volcano plots and clustering

heatmaps were prepared to visualize the differences using the

ggplot2 and Complex Heatmap packages in R. We intersected the

DEGs with ARGs to identify DEARGs and visualized them with the

VennDiagram package.
Feature selection of characteristic
biomarkers via three machine learning
methods

Results

In order to identify characteristics that could serve as diagnostic

biomarkers for IA, we employed LASSO, XGBoost, and RF

methodologies. To develop the LASSO model, we utilized the

glmnet package, incorporating tenfold cross-validation along with

a tuning/penalty parameter to optimize feature selection. This

process helped to identify a preliminary set of potentially relevant

features. XGBoost is a powerful gradient boosting machine learning

algorithm, was employed to further refine and enhance the feature

set identified by LASSO. Specifically, XGBoost’s ability to capture

complex interactions and non-linear relationships within the data

allowed us to identify features that might have been missed by

LASSO alone. This approach also helped to improve the overall

predictive performance of the model. The RF approach, a

randomization algorithm designed to prevent overfitting of

individual decision trees, was implemented. RF leverages multiple

decision trees derived from the same training set to enhance model

performance and provide a robust estimate of feature importance.

To identify a set of robust and potentially clinically relevant

biomarkers, we intersected the features identified by each of the

three methods. This process, visualized in the Venn diagram

(Figure 1E), involved identifying the genes that were consistently

selected as important by LASSO, XGBoost, and RF. We identified

two diagnostic genes by overlapping the three algorithms

(Figure 1E): The detailed descriptions of the two diagnostic

signatures are listed in Table 1.
Identification of differentially expressed
autoimmune-related genes

We utilized Gene Set Variation Analysis (GSVA) with the R

package GSVA to estimate gene set enrichment variation, focusing

on immune cell types. Box plots were generated to compare

infiltration levels between control and IA groups, and statistical

significance was assessed using [specify test, e.g., t-test or Wilcoxon
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https://doi.org/10.3389/fimmu.2025.1531930
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1531930
rank-sum test], with significance levels indicated by asterisks (*p <

0.05, **p < 0.01, ***p < 0.001). Heatmaps visualized expression

changes of selected genes across cell types. Violin plots displayed the

distribution of gene expression levels for ADIPOQ and IL-21 R

between groups, highlighting differences in expression patterns.

ROC curve analysis evaluated the predictive performance of gene

expression signatures, with the Area Under the Curve (AUC)

calculated to quantify accuracy, where values closer to 1 indicated

better discriminative ability.
Gene set enrichment analysis

The Gene Set Enrichment Analysis (GSEA) was performed on

the genes in question with the intention of understanding the

biological significance of the distinguishing genes (12). In order to

arrive at a normalized enrichment score for each analysis, one

thousand distinct gene set permutations have to be done. Reference

gene sets included hallmark, c2kegg, c2biocartar and c5go. The

screening conditions were |normalized enrichment score (NES)| >

1, nominal (NOM) p-value < 0.05 and FDR q-value < 0.25.
Construction of an aneurysm-related
genetic and nomogram

The R package ‘rms’ (version 6.5.0) was employed to construct a

nomogram for predicting the risk of intracranial aneurysms. This
Frontiers in Immunology 04
involved integrating genetic markers with clinical features identified

in the training dataset to generate a comprehensive risk prediction

model. The nomogram assigned point values to each variable,

which were then summed to provide an overall risk score.

Calibration curves were generated using the R package

‘PredictABEL’ (version 1.2.4) to assess the accuracy of the

nomogram. These curves compared predicted probabilities of

aneurysm risk with observed outcomes, ensuring the model’s

reliability. The ROC curve was used to evaluate the model’s

discriminative ability, with the area under the curve (AUC)

calculated to quantify performance.
Construction of regulatory networks

Network Analyst was used to construct the Gene-miRNA

interactions, Protein-drug interactions and Protein-chemical

interactions based on signature genes.
Results

Differential expression analysis

The study flowchart is depicted in Figure 2. Principal component

analysis showed that the IA tissues and controls could be clearly

distinguished in the GSE13353, GSE26969, and GSE75436 dataset

(Figure 3A). Differential expression analysis was further performed to
FIGURE 1

Identification of key diagnostic biomarkers using LASSO, XGBoost, and Random Forest (RF) methodologies. (A) Importance of variables determined
by the Random Forest method, shown for the top 15 genes using the MeanDecreaseGini index. (B) Coefficient paths for the LASSO model across
varying log lambda values. (C) Cross-validation results for the LASSO model, displaying binomial deviance against log(lambda) values. (D) Feature
importance as determined by the XGBoost algorithm. (E) Venn diagram illustrating the intersection of selected genes from LASSO, XGBoost, and RF
methodologies. Two genes were consistently identified across all three methods.
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screen for DEGs. Based on the selection criteria, 189 DEGs (79

upregulated and 110 downregd) were identified (Figure 3B). The

expression patterns of these DEGs were visualized through a

hierarchical clustering heatmap (Figure 3C).
Construction of gene-gene interaction
network of DEARGs

We overlapped the DEGs with the 2,500 ARGs obtained from

GeneCards, resulting in 189 DEARGs in IA (Figure 4A). To

elucidate the molecules’ functional associations, we imported

these genes into the STRING database to construct a PPI

network. The PPI network with 39 nodes and 138 edges was

constructed (Figure 4B).
Functional enrichment analysis of DEGs

The findings of the GO analysis were classified into three

categories: biological processes, cellular components, and

molecular functions. For intracranial aneurysm (IA) and normal

samples, the enrichment of cellular components, such as the

endoplasmic reticulum lumen, contractile fiber, and sarcoplasmic

reticulum membrane, indicates a strong focus on muscle and

structural components (Figure 5A). This suggests significant

alterations in cellular architecture and stress response

mechanisms associated with IA. In terms of molecular functions,

differentially expressed genes (DEGs) show enrichment in activities

such as G protein-coupled receptor binding, cytokine and

chemokine activity, and components of the extracellular matrix

(Figure 5B). These functions are essential for signaling pathways

and cellular communication, which are frequently disrupted in IA.

Enrichment is highlighted in biological processes related to the

muscle system, such as muscle contraction and regulation of blood

circulation (Figure 5C). Additionally, processes like calcium-

mediated signaling and chemokine-mediated pathways are

prominent. These findings suggest that alterations in vascular

muscle function and inflammatory responses play a critical role

in the pathophysiology of intracranial aneurysms. The

dysregulation of these processes may contribute to structural

weaknesses and inflammatory environments that predispose

indiv iduals to aneurysm formation and progress ion.

Understanding these pathways provides valuable insights into

potential therapeutic targets for managing intracranial aneurysms.

The enrichment of pathways such as cytokine-cytokine receptor

interaction, ECM-receptor interaction, and the role of the

cytoskeleton in muscle cells is evident (Figure 5D). Additional

pathways, including viral protein interactions with cytokines,
Frontiers in Immunology 05
rheumatoid arthritis, and various infections, highlight the

complex interplay between immune responses and the pathology

of intracranial aneurysms. These findings underscore the

multifaceted nature of IA pathogenesis, involving both structural

and immune-related mechanisms.
Construction and validation of Random
Forest, the lasso model and XGBoost,
Random Forest methodologies

During our study, we employed multiple powerful machine

learning methodologies to identify key diagnostic biomarkers for

IA. Using the Random Forest (RF) approach (Figure 1A), we

assessed the significance of various genes, identifying the top 15

with the highest MeanDecreaseGini scores, reflecting their

substantial contribution to the prediction model. Through the

LASSO model (Figure 1B), we examined coefficient paths across

different log lambda values. As regularization increased, the

coefficients of less significant features shrank toward zero, refining

the feature set. We conducted tenfold cross-validation in the LASSO

analysis (Figure 1C), selecting the optimal lambda where the

binomial deviance was minimized, thus balancing model

simplicity and accuracy. The XGBoost algorithm (Figure 1D)

offered an additional perspective on feature importance. We

found that genes such as AGTR1 and MAL were consistently

highlighted across two clusters, emphasizing their potential

relevance in diagnosing IA.

Finally, by intersecting the features identified by LASSO,

XGBoost, and RF, as shown in the Venn diagram (Figure 1E), we

pinpointed two genes consistently selected by all three methods.

These genes, representing the intersection set, may serve as robust

and clinically relevant biomarkers for IA. Our comprehensive

analyses, integrating multiple machine learning techniques,

underscore the significant potential of these biomarkers for

further investigation and characterization.
Immunological analysis of aneurysm

In our immunological analysis of aneurysm samples, we

employed several techniques to identify key genes associated with

aneurysm development. We conducted a boxplot analysis

(Figure 6A) comparing immune cell infiltration levels between

control and IA groups. Significant differences were observed in

various immune cell populations, such as increased infiltration of

activated B cells, central memory CD4 T cells, and regulatory T cells

in the IA group, indicating altered immune responses in IA. A

heatmap analysis (Figure 6B) was used to visualize correlations
TABLE 1 Detail information about the two hub genes identified by machine learning.

Gene Description Chromosome logFC P.Value Change

ADIPOQ Adiponectin, C1Q And Collagen Domain Containing 3 -2.825 1.82×10−9 DOWN

IL21R Interleukin 21 Receptor 16 1.662 4.29×10−7 UP
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between immune cell types and the expression levels of candidate

genes, ADIPOQ and IL21R, which emerged as potential biomarkers

due to their distinct expression patterns in IA samples. IL21R

showed positive correlations with activated CD4 T cells and

activated B cells, highlighting its potential role in the immune

landscape of aneurysms. Violin plots (Figure 6C) illustrated the

expression differences of ADIPOQ and IL21R between control and

IA groups. Both genes showed significantly higher expression levels
Frontiers in Immunology 06
in the IA group, suggesting their potential roles in the

pathophysiology of aneurysms. Receiver operating characteristic

(ROC) curves (Figure 6D) were generated to evaluate the diagnostic

potential of ADIPOQ and IL21R. Both genes demonstrated high

specificity and sensitivity, with area under the curve (AUC) values

indicating strong diagnostic performance for IA. The detailed

descriptions of the six diagnostic signatures are listed in Table 1.

These analyses collectively highlight ADIPOQ and IL12-R as
FIGURE 2

The schematic block diagram of the entire workflow of this study.
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critical genes in aneurysm pathology and potential targets for

further investigation and therapeutic intervention.
Estimation of IA immune cell infiltration

In our study, we performed a gene set enrichment analysis

(GSEA) to investigate the roles of ADIPOQ and IL21R in aneurysm

pathophysiology, focusing on their involvement in immune-related

pathways. The GSEA results (Figure 7A) revealed that ADIPOQ is

significantly associated with pathways involved in immune

regulation, including B cell receptor signaling and autoimmune

thyroid disease. These findings suggest that ADIPOQ may

modulate immune responses in the aneurysm microenvironment,

potentially influencing inflammatory and autoimmune processes.

By affecting these pathways, ADIPOQ could play a crucial role in

the progression or stabilization of aneurysms. Similarly, the

enrichment plot for IL21R (Figure 7B) shows a strong association

with pathways linked to immune cell cytotoxicity, such as

those involving natural killer cells and systemic lupus
Frontiers in Immunology 07
erythematosus.IL21R may enhance cytotoxic and inflammatory

responses, suggesting its involvement in immune surveillance

mechanisms within aneurysms. This could contribute to both

protective and pathological immune activities in the disease context.
Construction of a nomogram for
prognostic prediction

In our study, a nomogram was constructed to predict the risk of

aneurysm development using key biomarkers ADIPOQ and IL21R

(Figure 8A). This nomogram was designed to estimate the

probability of aneurysm occurrence based on individual patient

profiles. The calibration curve (Figure 8B) demonstrated excellent

agreement between the predicted probabilities and actual outcomes.

The apparent and bias-corrected lines closely aligned with the ideal

line, indicating the nomogram’s accuracy in predicting aneurysm

risk. The ROC curve (Figure 8C) further validated the nomogram’s

predictive performance, with an area under the curve (AUC) of

0.944. This high AUC value signifies strong specificity and
FIGURE 4

Identification and PPI network construction of DEARGs. (A) A venn plot show 189 DEARGs in IA. (B) PPI network of DEARGs. The blue nodes
represent the down-regulated genes and the red nodes represent the up-regulated genes. The dot size indicates the degree of the nodes. DEARGs,
differentially expressed autoimmune-related genes.
FIGURE 3

PCA and DEG analysis between IA tissues and controls. (A) Principal component analysis between IA tissues and controls. (B) A volcano plot shows
the DEGs. Blue dots show the down-regulated genes and red dots represent the up-regulated genes. (C) A heat map shows the expression patterns
of DEGs. PCA, principal component analysis; DEGs, differentially expressed genes; IA, intracranial aneurysma disease.
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sensitivity, underscoring the nomogram’s robustness as a

diagnostic tool.
Establishment of miRNA-gene and drug
gene regulatory networks

We constructed networks of gene-miRNA, protein-drug, and

protein-chemical interactions (13), as demonstrated for the two

genes in Figure 9. Figure 9A suggest that numerous miRNAs are

involved in regulating these diagnostic genes, and Figure 9B

highlights many drugs with therapeutic relevance to these genes.

This provides a potential theoretical foundation for future research

and targeting strategies.n
Discussion

This study expands upon the growing body of evidence linking

immune responses to cerebrovascular diseases by focusing on the

role of autoimmune-related genes (ARGs) in intracranial aneurysm

(IA) pathogenesis. Leveraging bioinformatics analysis and machine

learning, we identified significant dysregulation of ARG expression

within IA tissues compared to controls, suggesting a potential role

for autoimmune responses in IA development.
Frontiers in Immunology 08
In addition, elevated levels of inflammatory cytokines and

chemokines, such as Tumor Necrosis Factor-a (TNF-a),
Interleukin-6 (IL-6) (14, 15), and Transforming Growth Factor-b
(TGF-b) (16), were detected in the blood and cerebrospinal fluid of

patients with IA. The immune system undergoes significant changes

following subarachnoid hemorrhage (SAH), potentially impacting

patient prognosis and contributing to complications (17). These

immune responses play a crucial role in the pathophysiology of

SAH. A recent study by Qiaoying Li (18) investigated the immune

landscape of SAH and demonstrated that an SVM classifier based on

nine DEGs could effectively identify SAH patients. Using

bioinformatics and statistical analysis, Dan-Dan Xu have shown

that CD6 and CCR7 in inflammation-related signaling pathways

are closely associated with IA rupture andmay play an important role

in its pathogenesis (19).This highlights the importance of

understanding the immune system’s role in SAH and its potential

as a diagnostic and therapeutic target. In one study that compared

ruptured with unruptured IA, the expression of membrane attack

complex (C activation end product) was greater in ruptured samples

and associated significantly with aneurysm wall degeneration and

inflammatory cell infiltration (20). Others research showed that

pyroptosis is closely related to the formation and rupture of IA,

and identified three potential hub genes involved in the pyroptosis

and infiltration of cells (17).

We identified 39 DEARGs, including 11 upregulated and 28

downregulated genes, highlighting a disruption of immune-related
FIGURE 5

Functional enrichment study based on DEGs, (A) analysis of the GO-CC. (B) analysis of the GO-MF. (C) analysis of the GO-BP. (D) KEGG
pathway analysis.
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FIGURE 7

Enrichment Analysis of ADIPOQ and IL21R in IA. (A) Enrichment plots for the ADIPOQ gene, highlighting significant enrichment in pathways
associated with immune functions, chemokine activity, and MHC molecules. (B) Enrichment plots for the IL21R gene, showing strong associations
with pathways related to immune response, including chemokine signaling and MHC molecule activity.
FIGURE 6

Analysis of immune cell infiltration and gene expression in control and IA groups. (A) Box plots show the infiltration levels of various immune cell
types in control (blue) and IA (red) groups. Statistical significance is indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). (B) Heatmap
illustrating the expression changes of selected genes across different immune cell types. Expression levels range from low (blue) to high (red).
(C) Violin plots depicting the distribution of gene expression levels for ADIPOQ and IL21R in control and IA groups, emphasizing differences in
expression patterns. (D) ROC curves assessing the predictive performance of gene expression signatures, with Area Under the Curve (AUC) values
indicating model accuracy.
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processes in IA (Figure 3A). Functional enrichment analyses

revealed these DEARGs are involved in critical biological

processes and pathways, such as muscle contraction, regulation of

blood circulation, cytokine-cytokine receptor interaction, and

ECM-receptor interaction (Figure 4). These observations align

with previous research demonstrating the complex interplay

between structural abnormalities and immune responses in IA

pathogenesis (1, 2). Notably, the enrichment of DEARGs in

pathways associated with autoimmune disorders like rheumatoid

arthritis further strengthens the potential link between

autoimmunity and IA development (8).

Machine learning algorithms, including LASSO logistic

regression, RF, and XGBoost, played a crucial role in pinpointing

ADIPOQ and IL21R as potential diagnostic biomarkers for IA. The

consistent selection of these genes across all three methods

underscores their potential relevance. While ADIPOQ, encoding

adiponectin, is primarily recognized for its metabolic functions (3),

it has also been associated with synovitis and chondrocyte apoptosis

in osteoarthritis (21), highlighting its broader role in inflammatory

conditions. Growing evidence suggests that ADIPOQ is involved in

inflammatory responses and vascular remodeling, processes directly

implicated in the development of intracranial aneurysms (IA).

Similarly, IL21R, encoding the interleukin-21 receptor, is

crucial for immune cell development and function, particularly in

T cell differentiation and B cell activation (9). Dysregulation of

IL21R signaling could contribute to an imbalance in immune

responses, potentially fostering an inflammatory environment that

promotes IA progression (10).

The predictive neural network model based on ADIPOQ and

IL21R expression demonstrated excellent diagnostic capabilities,

achieving an AUC of 0.944 (Figure 8). This robust performance,

further validated by a nomogram approach, highlights its potential

for IA risk assessment and early detection. The integration of these

genetic biomarkers with clinical features in the nomogram could

pave the way for personalized IA diagnosis and management.

Furthermore, our immunological analysis revealed distinct

immune infiltration patterns in IA tissues, marked by increased

infiltration of activated B cells, central memory CD4 T cells, and

regulatory T cells (Figure 1A). This altered immune landscape
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suggests a dynamic interplay of immune responses within IA,

potentially contributing to both protective and detrimental effects.

The positive correlation between IL21R expression and activated

CD4 T cells and activated B cells further supports its role in IA-

associated immune dysregulation (22).

Our GSEA analysis provided a deeper understanding of the

functional roles of ADIPOQ and IL21R in IA (Figure 7). ADIPOQ

showed significant enrichment in immune regulatory pathways,

including B cell receptor signaling and autoimmune thyroid disease,

suggesting a potential role in modulating immune responses within

the IA microenvironment. IL21R, on the other hand, exhibited

strong associations with pathways linked to immune cell

cytotoxicity, implicating its involvement in immune surveillance

mechanisms within IA.

In addition, further analysis of these signature genes, including

exploring their immune correlation and their interaction network

with miRNAs, drugs, and chemical relationships, and other

regulatory factors, could provide us with directions for

subsequent targeting and immunotherapy of IA. In the future, we

will continue to explore their potential mechanisms of action in IA

through molecular biology experiments.

This study provides a comprehensive exploration of the

molecular mechanisms underlying intracranial aneurysms (IA)

using advanced bioinformatics and machine learning techniques.

By integrating three independent GEO datasets, we successfully

identified two key immune-related biomarkers, ADIPOQ and

IL21R. However, this study has several limitations that warrant

consideration. (1) Although ADIPOQ and IL21R were identified as

key biomarkers, the absence of in vitro and in vivo functional

experiments limits the ability to confirm their specific roles in IA

pathogenesis. Functional studies are critical for validating their

involvement in vascular remodeling, immune cell infiltration, and

inflammatory processes. (2) The sample size of the GEO datasets

used in this study is relatively small, and the data were derived from

single-center studies. This may reduce the generalizability of the

findings and affect the robustness of the predictive model. Larger,

multicenter datasets are needed to validate and strengthen the

applicability of these results. (3) While this study identified

potential therapeutic targets and biomarkers, their clinical relevance
FIGURE 8

Nomogram and validation for predicting aneurysm risk. (A) Nomogram for Aneurysm Risk Prediction: This nomogram integrates the expression
levels of ADIPOQ and IL21R to estimate the risk of aneurysm development. (B) Calibration Curve shows high accuracy; predicted probabilities
closely match actual outcomes on the ideal line. (C) ROC Curve illustrates the diagnostic performance of the nomogram, with an area under the
curve (AUC) of 0.944.
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and applicability remain untested. Further research is required to

translate these findings into non-invasive diagnostic tools or

therapeutic interventions for IA patients. (4) The regulatory

networks of miRNAs and protein-drug interactions identified in
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this study remain theoretical. Experimental validation is essential to

confirm these interactions and establish their potential as therapeutic

strategies. Therefore, further experiments or trials are needed to

validate these results.
FIGURE 9

Construction of regulatory networks. (A) The gene-miRNA regulatory networks. (B) The Protein-drug/chemical interactions networks.
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Conclusion

This study elucidates the significant role of autoimmune-

related genes in the pathogenesis of intracranial aneurysms.

Through comprehensive bioinformatics and machine learning

analyses, including LASSO regression, RF, and XGBoost

methods, we identified two key ARGs, ADIPOQ and IL21R,

which serve as potential diagnostic biomarkers and offer

avenues for future therapeutic interventions. Our findings lay

the groundwork for future research into novel diagnostic

tools and therapeutic approaches aimed at improving patient

outcomes in IA.
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