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transformation from cervical
inflammation to cancer based on
tumor immune-related factors
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Introduction: Persistent high-risk human papillomavirus (HR-HPV) infection is

crucial in transforming cervical intraepithelial neoplasia (CIN) into cervical cancer

(CC) by evading immune responses. Additionally, changes in the tumor immune

microenvironment (TIME) are increasingly linked to CIN progression to CC.

Methods: In this study, we used public databases to collect transcriptome data

for CIN, CC, and normal cervix, employing LASSO regression to find TIP genes

with differential expression. We also used the CIBERSORT algorithm to analyze

immune cells in the cervix. ROC curves were plotted to assess tumor-infiltrating

immune cells (TICs) and the expression of tumor-infiltrating cell-related genes

(TICRGs) for predicting CC efficacy and identifying immune-related genes and

cells associated with cervical disease progression for future modeling. We

developed a cervical "inflammation-cancer transition" prediction model using

the random forest algorithm and assessed its accuracy with internal and external

data. Clinical samples from two hospitals were analyzed using multiplexed

immunohistochemistry (mIHC) to detect risk factors in various cervical

diseases, serving as an independent validation cohort for the model's reliability.

Results: Four genes, ARG2, HSP90AA1, EZH2, ICAM1, and two immune cells, M1

macrophages and activated CD4 memory T cells, were selected as variables, and a

predictive model was constructed. The model achieved an AUC of 1 for internal

training sets and 0.912 for testing sets. For validation cohort, the AUC was 0.864 for

GSE7803 and 0.918 for TCGA/GTEx. For external validation (GSE39001, GSE149763,

and GSE138080), the AUC was 0.703, 0.889 and 0.696. At the same time, the mIHC

experimental results also effectively validated the stability of the model.
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Discussion: In conclusion, the developed model enhances the predictive

accuracy for the progression of CIN to CC and offers novel insights for the

early diagnosis and screening of CC.
KEYWORDS

cervical intraepithelial neoplasia (CIN), cervical cancer (CC), tumor immune
microenvironment (TIME), tumor-infiltrating immune cells (TICs), tumor-infiltrating
cell-related genes (TICRGs), multiplexed immunohistochemistry (mIHC), random
forest, predictive model
1 Introduction

Cervical cancer (CC) ranks as the fourth leading cause of

cancer-related mortality among women, with approximately

604,127 new cases and 341,831 deaths reported globally in 2020

(1). Despite the consistently high incidence of CC, it remains a

preventable disease. Early diagnosis and timely intervention can

effectively prevent tumor development and progression.

It is well-established that persistent infection with high-risk human

papillomavirus (HR-HPV) represents a significant contributing factor

in the progression of cervical intraepithelial neoplasia (CIN) to CC (2,

3). Nevertheless, it is estimated that approximately 85% to 90% of

women infected with HPV achieve spontaneous viral clearance

through the body’s immune response, while only 10% to 15%

experience persistent infection (4, 5). Consequently, it can be

hypothesized that the progression to CC may depend on the

presence of additional cofactors (6). Previous studies have shown

that demonstrated that cells infected with the HPV play a crucial

role in creating a supportive and immunosuppressive post-infection

microenvironment (PIM), which promotes viral persistence and

replication by interacting with normal resident cells (7, 8). The

chronic inflammatory response elicited by persistent HPV infection

leads to recurrent local tissue injury and regeneration in the cervix. The

accumulation of various cellular damage events ultimately contributes

to the progression from CIN to CC (9, 10). Conversely, persistent HPV

infection is significantly linked to modifications in the tumor immune

microenvironment (TIME) (11). Several studies have suggested that an

imbalance of local immune cells within the cervix may facilitate

persistent HPV infection (12), with particular emphasis on the

dysregulation of CD4+ and CD8+ T cell populations. The CD4+ T

cell subset plays a pivotal role in anti-tumor immunity, tumor immune

evasion, tolerance mechanisms, TIME and the maintenance of

immune homeostasis (13). During the primary immune period

following HPV infection, CD4+T cells are activated in secondary

lymphoid organs, enhancing cellular or humoral immune responses

to eliminate pathogens through the action of T-helper 1 (Th1) and T-

helper 2 (Th2), respectively (14, 15). Dysfunctional CD4+T cells have a

weaker ability to clear viruses, while the recruitment and expansion of

regulatory T cells (Tregs) create a favorable immunosuppressive
02
environment for HPV (16), leading to the long-term presence of

HPV and increasing the risk of cervical disease progression and

malignant transformation.

Studies indicate that the immune system has a dual role in

cancer: it can both eliminate cancer cells and promote tumor

growth by creating a supportive microenvironment (17, 18). As

CC advances, it has the potential to create an immunosuppressive

microenvironment, thereby undermining the host’s anticancer

immune response. The phenomenon of immune escape is

intricately linked to alterations in tumor-infiltrating immune cells

(TICs) and the expression of tumor-infiltrating cell-related genes

(TICRGs) within the tumor microenvironment of CC. For instance,

prior research has demonstrated that the progression of CC is

frequently associated with an elevated presence of regulatory T cells

(Tregs) and an upregulation of the CTLA-4 gene expression (19,

20). Therefore, exploring key immune factors in cervical

inflammation-cancer transformation is crucial for developing a

CC predictive model. Recently, more molecules important for CC

development and prognosis have been identified (21–23).

This study employed the Random Forest algorithm on public

transcriptomic data to identify crucial immune factors in the

cervical “inflammation-cancer transition” and create a predictive

model, validated with internal and external data. multiplexed

immunohistochemistry (mIHC) (24) was used to assess immune-

related gene and cell expression in clinical samples, confirming the

model’s reliability. Our goal is to analyze the gene expression levels

and immune cell infiltration status in HPV-infected patients. This

analysis will help assess their likelihood of developing cervical

cancer, enabling early diagnosis and treatment by clinicians.
2 Materials and methods

2.1 Data collection

2.1.1 Public database data collection
The datasets GES63514, GSE7803, GSE39001, GSE149763 and

GSE138080 were obtained from the Gene Expression Omnibus (GEO)

repository. Specifically, the GSE63514 dataset includes 24 normal
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cervical samples, 62 CIN samples, and 28 CC samples, the GSE7803

dataset contains 10 cases of normal cervical samples, 7 CIN samples,

and 21 CC samples, while the external verification queue (GSE39001,

GSE149763 and GSE138080) contains 22 normal cervical samples, 18

CIN samples, and 56 CC samples. Additionally, the transcriptomic data

and clinical information of 306 cases of CC and 13 cases of normal

cervical tissues were acquired from The Cancer Genome Atlas (TCGA)

and the Genotype-Tissue Expression (GTEx) databases. The GSE63514

dataset was used to train the “inflammation-cancer transformation”

model, and its accuracy was validated using the GSE7803 and TCGA/

GTEx datasets, as detailed in Supplementary Table 1.

1.1.2 Collection clinical data and tissue samples
This study used 31 paraffin-embedded CC samples from untreated

patients at Guangxi Medical University Cancer Hospital and who had

not undergone any other treatments. These patients had their first

cervical resection with a pathologically confirmed CC diagnosis

between 2016 and 2018. The samples used were approved by the

Ethics Committee of Guangxi Medical University Cancer Hospital

(No. KY2024560). Pathological sections comprising 22 CIN samples

and 21 normal cervical samples were procured fromWuming Hospital

of Guangxi Medical University, with ethical clearance granted by the

Ethics Committee of Wuming Hospital of Guangxi Medical University

(Approval No. WM-2024(218)). (See Supplementary Table 2).
2.2 Screening of TICRG predictors and TIC
predictors

2.2.1 LASSO regression screening of TICRGs
From the Tumor Immunophenotyping (TIP) database, 178

TICRGs were analyzed. Using the GSE63514 cohort, 166 of these

genes were identified as potential candidates, with 28 CC patients as

the positive group and 62 CIN patients as the negative group

(Supplementary Figure 1A). The 166 TICRGs underwent down-

conversion using Least Absolute Shrinkage and Selection Operator

(LASSO) regression (25, 26) via the “glmnet” R package. The model

was cross-validated and run 1,000 times, with l= 0.01258, achieving

the highest model Area Under the Curve (AUC) value. This process

identified 31 TICRGs with non-zero and correlated coefficients could

be identified, as illustrated in Supplementary Figure 1 and Table 3.

GraphPad Prism (version 8.0.2) was used to create receiver

operating characteristic (ROC) curves for the 31 TICRGs with non-

zero coefficients in the GES63514, GSE7803, and TGGA datasets. CC

samples served as positive controls, while normal cervix/CIN II/CIN

III samples were negative controls. TICRGs showing significant

progression from CIN to CC were identified with criteria of P <

0.05 and AUC > 0.6. Statistically significant TICRGs that are

common across the three datasets will be incorporated into the

model. We define the filtered TICRGs as TICRG predictors.

Using LM22 as a reference matrix, the CIBERSORT (27)

algorithm analyzed raw gene expression data from the GSE63514,
Frontiers in Immunology 03
GSE7803, TCGA/GTEx, GSE39001, GSE149763, and GSE138080

cohorts to identify 22 TICS profiles. ROC curves were generated

with GraphPad Prism (8.0.2) to compare these profiles across

datasets. Each cohort was assessed for significant TICS progression

from CIN to CC, using criteria of P < 0.05 and AUC > 0.6, with CC

samples as positive controls and normal cervix/CIN samples as

negative controls. The datasets GSE63514, GSE7803, and TCGA/

GTEx included significant TICS predicting “inflammation-cancer

transformation”, named TIC predictors, used for further modeling.
2.3 Development of the predictive model
for cervical “inflammation-cancer
transformation”

The predictive model used 28 CC samples as positive controls and

76 CIN/normal samples as negative controls from the GSE63514

cohort. Expression profiles of specific genes and cell types were

divided into training and validation sets at various ratios. A Random

Forest algorithm was employed, with the 7:3 ratio model proving to be

the most optimal. The program was configured with 500 trees, and

stability was achieved with more than 250 trees. The ROC curve was

plotted, and the model’s AUC was calculated for evaluation. Validation

cohort was performed using the GSE7803 and TCGA/GTEx cohorts,

along with experimental data. Variables were analyzed for expression

differences across disease stages, and Pearson’s correlation analysis was

conducted on the model’s variables (28). Logistic regression and

Pearson’s correlation analyses were also performed on the data from

the experimental cohort.
2.4 mIHC assay

Six variables were analyzed in 74 clinical samples using mIHC with

TSA. Cervical tissues, embedded in paraffin and sectioned at 5 mm, were

deparaffinized, dehydrated, and underwent high-pressure antigen

retrieval with 1 mM Tris-EDTA buffer (pH 9.0) for 18 min. The

samples were blocked using blocking solution (Beyotime, Cat. P0102).

The primary and secondary antibodies were applied, incubated at 37°C

for 2 hours, and rinsed three times with PBS, followed by TBST washing.

A 1:100 diluted PPD520 TSA fluorescent dye (PANOVUE,

Cat.10005100100) in TSA signal amplification solution (PANOVUE,

Cat.10021001050), was added. The secondary antibody and second

fluorescent stain (PPD570 or PPD650, PANOVUE, Cat.10008100100

or Cat.10010100100) were added following the same procedure as the

first antibody. Detection of ICAM1 monoclonal antibody (ZenBio,

Cat.R24650), HSP90AA1 monoclonal antibody (ZenBio, Cat.R24635),

ARG2 polyclonal antibody (ZenBio, Cat.R389341), EZH2 monoclonal

antibody (ZenBio, Cat.R24813), CD68 polyclonal antibody (ZenBio,

Cat.250019), CD163 monoclonal antibody (ZenBio, Cat.R50062),

iNOS polyclonal antibody (ZenBio, Cat.340668), CD4 monoclonal

antibody (ZenBio, Cat.R50028), CD44 monoclonal antibody (ZenBio,
frontiersin.or
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Cat.R50120), CD206 monoclonal antibody (ZenBio, Cat.R51183), and

CD45RO (Santa Cruz Biotechnology, Cat.sc-1183) expression. After

fluorescence staining, nuclei were stained with a 1:500 DAPI solution

(Solarbio, Cat.C0060) in PBS for 10 min at room temperature, and slices

were sealed with enhanced antifluorescence quenching sealer

(PANOVUE, Cat. 10022001010).

Tissue samples were imaged with a microimaging system

(Tissue Gnostics, Austria) using a 20× objective lens across four

channels: DAPI, FITC, Texas Red, and CY5. Fluorescence was

quantitatively analyzed with the Strata Quest application. Sections

were analysis by selecting 3–8 random regions of interest (ROIs)

sized 0.75×0.75 from each section. After adjusting the ROI

parameters, the density of positive proteins (No./mm²) in each

ROI was calculated after the completion of the quantitative analysis.
2.5 Statistical analysis

Statistical analysis was performed using GraphPad Prism (8.0.2)

and R Studio (4.4.1) appropriate software packages. The Wilcoxon

rank-sum test compared two groups, while the Kruskal-Wallis test

was used for multiple samples. Group comparisons for measures

employed the chi-square test, with a P value of <0.05 indicating

statistical significance.
Frontiers in Immunology 04
3 Results

3.1 Screening TICRG predictors for CC
occurrence

ROC curves were generated for each of the 31 TICRGs with non-

zero coefficients from the GSE7803, TCGA/GTEx, and GSE63514

cohorts. From these analyses, 18, 9, and 13 TICRGs were identified

in the respective cohorts as statistically significant predictors of CC

occurrence, based on the criteria of an Area Under the Curve (AUC)

greater than 0.6 and a p-value less than 0.05 (Figures 1A–C). Notably,

six TICRG predictors—ARG2, HSP90AA1, EZH2, STAT1, CXCL5,

and ICAM1—were consistently identified across all three datasets as

significant individual predictors of CC (Figure 1D).
3.2 Screening TIC predictors to predict
cervical carcinogenesis

Gene expression data from the GSE63514, GSE7803, and TCGA/

GTEx cohorts were analyzed utilizing the CIBERSORT algorithm to

identify 22 distinct immune cell profiles. ROC curves were

subsequently generated for these TICs, revealing that 4, 3, and 11

cell types from the respective cohorts significantly predicted CC
FIGURE 1

Screening of TICRG predictors for the occurrence of CC. (A) The ROC curve analysis demonstrated statistical significance for the prediction of CC
using single TICRG in the GSE7803 cohort. (B) Statistically significant ROC curves were observed for single TICRG predictions of CC in the TCGA/
GTEx cohort. (C) The GSE63514 cohort exhibited statistically significant ROC curves for the prediction of CC using single TICRG. (D) The Venn
diagram illustrates TICRG predictors that are shared among the three datasets.
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occurrence, as indicated by an area under the curve (AUC) greater

than 0.6 and a p-value less than 0.05 (Figures 2A–C). Additionally,

across the three datasets GSE63514, GSE7803, and TCGA/GTEx,

macrophageM1 and activated CD4memory T cells were identified as

individual predictors of CC with statistical significance (Figure 2D).
3.3 Expression and correlation analysis of
five TICRG predictors and two TIC
predictors

A comprehensive statistical analysis was performed on datasets

from the GSE63514, GSE7803, and TCGA/GTEx cohorts, focusing

on the expression levels of ARG2, HSP90AA1, EZH2, STAT1,

ICAM1, macrophage M1, and activated CD4 memory T cells.

The findings revealed a consistent increase in the expression of

HSP90AA1, EZH2, STAT1, ICAM1, macrophage M1, and activated

CD4 memory T cells in correlation with disease progression across

all three cohorts. ARG2 shows a decreasing trend.

Among the five TICRG predictors, HSP90AA1 showed the highest

expression across all lesion stages, followed by EZH2, while ICAM1 had

the lowest expression (Figure 3). Correlation analysis in the GSE63514

cohort revealed a negative correlation between ARG2 and STAT1,

HSP90AA1, ICAM1, and macrophage M1, but a positive correlation

with activated CD4 memory T cells. The strongest correlation was

between ARG2 and STAT1 (-0.41, P < 0.0001), followed by HSP90AA1

(-0.36, P < 0.0001). STAT1 positively correlated with HSP90AA1,
Frontiers in Immunology 05
macrophage M1, ICAM1, and EZH2, and negatively with ARG2 and

activated CD4 memory T cells. Its strongest link was with macrophage

M1 (0.57, P < 0.0001), leading to STAT1’s exclusion from the model.

Activated CD4 memory T cells negatively correlated with EZH2,

STAT1, ICAM1, and macrophage M1 (Figure 3D).
3.4 Development of a predictive model for
the transformation from cervical
inflammation to cancer

3.4.1 Random forest algorithm for predicting CC
transformation

The random forest model, built using the GSE63514 cohort,

achieved an AUC of 1 in the training set and 0.912 in the test set

(Figure 4A). The cervical “inflammation-cancer transition”

prediction model’s accuracy was confirmed using the GSE7803

and TCGA/GTEx cohorts, showing AUCs of 0.864 and 0.918,

respectively (Figures 4B, C). The accuracy of the cervical

“inflammation cancer transition” prediction model was further

confirmed using external cohorts GSE39001, GSE149763, and

GSE138080, with AUCs of 0.703, 0.889 and 0.696 (Figures 4D–F).

This suggests the random forest model effectively predicts CIN

progression to CC. Six variables were included in the model, ranked

by Gini coefficient. This analysis demonstrated that the ARG2 gene

exhibited the highest weight ratio within the random forest

model (Figure 4G).
FIGURE 2

Screening of TIC predictors for their predictive potential in cervical carcinogenesis. (A) Significant ROC curves for individual TICs predicting CC in
the GSE63514 cohort. (B) Significant ROC curve for single immune cell prediction in the GSE7803 cohort. (C) Significant ROC curve for individual
TICs in the TCGA/GTEx cohort. (D) Venn diagram showing TIC predictors significantly predicting cervical carcinogenesis based on three datasets.
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3.5 mIHC assay confirms predictive model
for cervical inflammation progression to
cancer

3.5.1 Six variables in a predictive model for
cervical inflammation-cancer transition across
various pathology stages

To validate the predictive model for cervical “inflammation-

cancer transformation,” we conducted mIHC analysis on six

variables across 74 clinical paraffin-embedded samples. Figure 6

presents the expression profiles of HSP90AA1, ICAM1, EZH2, and

ARG2 in various stages of cervical pathology, including normal

cervix, CIN II, CIN III, and CC. Macrophage M1 phenotype was

characterized by the markers CD68+, INOS+, CD206-, and CD163-
Frontiers in Immunology 06
, whereas activated CD4 memory T cells were identified by the

markers CD4+, CD44+, and CD45RO+. The distribution and

expression of cell types across different stages of cervical disease

are shown in Figure 7.

3.5.2 The predictive model for the “inflammation-
cancer transition” developed utilizing clinical
cohort data and mIHC analyses, effectively
anticipates the progression from CIN III to CC

The experimental results were analyzed by comparing the

percentage of cells expressing target genes to the total cell count

or the number of gene-expressing cells in the sample tissues

(Figure 5A). The study found that as cervical disease advanced,

the protein expression of genes HSP90AA1, ICAM1, and ARGE
FIGURE 3

Predictive potential of each variable for cervical cancer across three cohorts and a correlation analysis. Panels (A1, A2) depict the expression of
seven variables within the GSE63514 cohort at various stages of cervical disease. Similarly, panels (B1, B2) present the expression of these variables in
the GSE7803 cohort, while panels (C1, C2) display the expression in the TGGA cohort, each at different stages of cervical disease. Panel (D) provides
a correlation analysis of the seven variables within the predictive model, with significance levels indicated as follows: *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.
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increased, except for EZH2, as shown in Figure 5B. Similarly,

Activated CD4 memory T cells and Macrophage M1 populations

also rose with disease progression, as depicted in Figure 5C.

Comparing CIN III and CC groups, significant differences were

noted in HSP90AA1, ICAM1, EZH2, ARG2, and Macrophages M1

(P<0.01).These findings indicate a potential link between these

variables and the progression from CIN III to CC.

The experimental results from six variables via mIHC served as

an independent validation cohort. Using the method from section

2.3.1, a prediction model for “inflammation-cancer transition” was

developed for 17 CIN III and 31 CC samples. ROC curves assessed

the models, with the random forest model achieving an AUC of 1 in

both the training and testing sets (Figure 5D). The prediction model

for the “inflammation-cancer transition,” developed using the

experimental cohort, demonstrated the highest weight ratio for

ARG2, aligning with the findings from the training cohort

(Figure 5E). This suggests that the model, which is based on six

variables, functions as an effective tool for predicting the

progression from CIN III to CC.

An auxiliary validation of the model was performed using logistic

regression, with data from 17 CIN III and 31 CC samples. ROC
Frontiers in Immunology 07
curves assessed the models, which had an AUC of 1 (Figure 5F). The

equation for logistic regression is: p=EXP(X)/(1+EXP(X)), in this

equation X=-35.611ARG2 + 27.690HSP90AA1 + 20.889ICAM1-

22.393EZH2-0.11Macrophage M1 + 0.002Activated CD4 memory

T cells+1.195, cutoff is 0.889, positive when P>cutoff, negative when

p<cutoff. Correlation analysis in the experimental cohort showed that

the correlation of the six predictors was less than 0.5, indicating that

the six predictors have good application value (Figure 5G).
4 Discussion

CC is a prevalent gynecological tumor posing a significant

threat to women’s health. The progression risk of CIN I to CC

varies by grade: 60% of CIN I lesions resolve on their own, 11%

advance to carcinoma in situ, and only 1% become invasive cancer.

For CIN II and CIN III lesions, 5% and 12%, respectively, progress

to invasive cancer (29). Early-stage CIN can be effectively treated

with ablation (cryotherapy or thermal ablation) or excision (large

ring excision or cold knife cone). However, it should not be ignored

that simple cytological examination cannot accurately predict the
FIGURE 4

ROC curves and weights for predicting CIN to CC conversion using the random forest algorithm. (A) ROC curves for the cervical “inflammatory
cancer transformation” model in training and test sets. (B) ROC curves for the same model in the GSE7803 cohort. (C) ROC curves for the TCGA/
GTEx cohort. (D) ROC curves for the same model in the GSE39001 cohort. (E) ROC curves for the GSE149763 cohort. (F) ROC curves for the
GSE138080 cohort. (G) Importance weights of six variables in the GSE63514 cohort’s prediction model.
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potential of CIN to progress to CC. Thus, a predictive model for

“inflammatory cancer transformation” is needed to aid clinicians in

forecasting disease progression.

Persistent HR-HPV infection primarily causes CIN and CC, by

using viral oncoproteins E6 and E7 to deactivate tumor suppressor

genes p53 and pRB. This disruption of cell cycle control allows

unchecked cervical cell division, promoting CIN and CC

development and progression (30). Precisely because the body’s

immune system is unable to completely clear the HPV virus, CC

are infiltrated by a variety of TICs, which promote carcinogenesis (31,

32). Previous studies have shown that during the progression of CIN

to CC, TICs in TIME are gradually dominated by CD8+ T cells and

macrophages, and the CD4/CD8 ratio is reversed, which implies a

decrease in the body’s anti-tumor immunity (33). On the other hands

CC cells can induce the production of antigen-presenting cells, thus

creating an immunosuppressive microenvironment that favors the

survival of tumor cells (34). Meanwhile, TICRGs have an important

role in tumorigenesis and tumor microenvironment formation, and

their inactivation or upregulation may be associated with immune

escape (35). It has been shown that TICRGs can progress CIN to CC

by mediating inflammation and immune escape, and that certain

methylated DNAs play a key role in controlling different

transcriptional profiles in memory lymphocytes (36). In addition,
Frontiers in Immunology 08
these epigenetic mechanisms may involve antigen presentation, self/

non-self-discrimination, and the balance between tolerance and

autoimmunity (37). Therefore, identifying immune factors crucial

to CIN’s progression to CC is vital for CC’s preventive diagnosis.

In this study, we identified six immune-related factors crucial for

the progression from CIN to CC using public databases. The ARG2

gene, which encodes L-arginine acylase, is linked to cervical lesion

progression and severity (38). Overexpression of ARG2 promotes CC

cell proliferation and invasion while inhibiting apoptosis. This is

accomplished by regulating L-arginine metabolism and modulating

the tumor immune microenvironment. HSP90AA1, a molecular

chaperone protein is significantly overexpressed in CC tissues

compared to normal cervical tissues, especially in advanced CC

(39), and is closely associated with the biological behaviors of

tumor cells, including proliferation, metastasis, and drug resistance

(40–42). The utilization of HSP90 inhibitors has been demonstrated

to impede the proliferation and migration of CC cells, while

simultaneously enhancing the sensitivity of radiation therapy (43).

EZH2, a histone methyltransferase involved in chromatin

modification and gene transcription, is associated with higher

tumor malignancy, differentiation, and metastasis in CC (44–46),.

The available evidence (47, 48) indicates that elevated EZH2

expression is associated with enhanced proliferation, invasion, and
FIGURE 5

Prediction model for “inflammation-cancer transition” using clinical cohorts and mIHC data. (A) Expression levels of each variable in the
“inflammation-cancer transformation” prediction model across cervical disease stages (% of individuals). (B) Four TICRG predictors protein levels in
mIHC data at various cervical disease stages. (C) Activated CD4 memory T cells and M1 macrophage counts across different cervical disease stages.
(D) ROC curves for predicting CIN progression to CC using a model based on cervical “inflammation-cancer transformation” data in training and test
sets. (E) Importance of six variables in the “inflammation-cancer transformation” prediction model. (F) Predicting ROC curves for progression of CIN
to CC using Logistic regression. (G) provides a correlation analysis of the six variables within the Logistic regression.
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metastasis of CC cells, and is linked to a poor prognosis. ICAM1 is a

cell surface protein that aids immune cells in identifying and

destroying tumor cells. Its high expression boosts immune cell

activity and infiltration, enhancing tumor surveillance. ICAM1

binds to ligands like LFA-1 and MAC-1, which play roles in

inflammation and tumor metastasis (49–51).

M1 macrophages are immune cells that can participate in the

regulation of the tumor microenvironment through the production

of cytotoxins, chemokines, and inflammatory mediators, which play

an important role in tumor growth and metastasis. It has been

demonstrated (52) that in the tumor microenvironment, M1

macrophages may be polarized to M2 macrophages by certain

factors secreted by tumor cells, including IL-10 and TGF-b,
which consequently facilitate tumor growth and metastasis.

Activated CD4 memory T cells state play a pivotal role in

tumorigenesis, and these cells are capable of recognizing and

attacking tumor cells, thereby playing a role in immune

surveillance and tumor clearance (53). Accordingly, enhancing
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the efficacy of immune surveillance by activated CD4 memory T

cells may represent a pivotal strategy for counteracting tumor

immune evasion.

This study developed a prediction model using the random

forest algorithm (54), evaluating its efficiency with the AUC under

the ROC curve. The model achieved an AUC of 1 for internal

training sets and 0.912 for testing sets. For validation cohort, the

AUC was 0.864 for GSE7803 and 0.918 for TCGA/GTEx. For

external validation (GSE39001, GSE149763, and GSE138080), the

AUC was 0.703, 0.889 and 0.696. To validate the model’s

effectiveness, this study tested six predictors in clinical cervical

disease samples using mIHC experiments. These results served as

external validation to confirm the model’s reliability. The findings

indicate that the prediction model for “inflammation-cancer

transition,” based on 4 TICRGs and 2 TIPs predictors, performed

well in both internal and external cohorts.

Although the random forest algorithm has been widely applied in

many fields, it still faces some challenges. Firstly, although random
frontiersin.or
FIGURE 6

Expression of four TICRG predictors in mIHC experiments across various cervical disease stages. As shown in the example diagram, dark blue
represents DAPI (nucleus), yellow represents HSP90AA1 protein expression, red represents ICAM1 protein expression, lake blue represents EZH2
protein expression, and green represents ARG2 protein expression. Calculate the expression level of each protein based on the ratio of its positive
fluorescence value to DAPI. HSP90AA1, ICAM1, and ARG2 showed a significant upward trend in CIN III and CC stages (P=2.3e-3, P=0.09, P=0.05),
while EZH2 showed a downward trend in CIN III and CC stages (P=4.9e-3).
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forests effectively reduce the risk of overfitting by integrating multiple

trees, overfitting may still occur in situations with high data noise or

small sample sizes. To solve this problem, model performance can be

optimized by limiting the maximum depth of the tree, increasing the

minimum number of sample splits or minimum number of sample

leaves, and adjusting hyperparameters through cross validation.

Secondly, the decision-making process of random forests is

relatively complex, resulting in poor interpretability. To address

this limitation, the contribution of variables can be evaluated

through feature importance, or a visualization tool can be used to

interpret a single decision tree to enhance the interpretability of the
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model. In addition, parameter selection and optimization of random

forests is an important research direction, which can be automatically

optimized through grid search or randomized search to improve

model performance. Finally, random forests require a significant

amount of computational resources when training multiple trees,

especially when dealing with large-scale datasets or high-dimensional

data, resulting in high computational costs. To solve this problem, a

balance between performance and efficiency can be found by

reducing the number of trees, or by dimensionality reduction and

feature selection of the data to reduce the number of features, thereby

reducing computational complexity. Through the above methods, the
frontiersin.or
FIGURE 7

Expression of two TIC predictors in mIHC experiments across cervical disease stages. Define Macrophage M1 using CD206-, CD163-, CD68+, INOS+;
Use CD206+, CD163+, CD68+to define Macrophage M2; Use CD4+, CD4+, CD45RO+to define activated CD4 memory T cells. As shown in the
example diagram in the figure, dark blue represents DAPI (cell nucleus), and the expression level of each protein is calculated based on the ratio of its
positive fluorescence value to DAPI. Macrophage M1 showed a significant upward trend in CIN III and CC stages (P=1.7e-4), while activated CD4
memory T cells showed an upward trend in CIN III and CC stages, but the trend was not significant (P=0.95).
g
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limitations of the random forest algorithm in practical applications

can be effectively alleviated, further improving its performance

and practicality.

In mIHC experiments, protein levels of HSP90AA1, ICAM1

and numbers of macrophage M1, and activated T cells CD4

memory increased with disease severity, consistent with

bioinformatics findings. HSP90AA1 aids antigen release from

cancer cells in TIME, while EZH2, STAT1, and ICAM1 hinder

immune cell infiltration. Activated CD4 memory T cells promote

inflammation and push CIN to CC. And M1 macrophages have

anti-inflammatory effects. As the disease progresses, the anti-

inflammatory effect of macrophages increases. At the same time,

we can see that in the later stages of disease development,

Macrophage M1 cannot play a good role in tissue repair, and

Macrophage M1 will switch to Macrophage M2. The level of ARG2

protein increases as the disease progresses from CIN III to CC,

supporting the view that ARG2 mRNA expression is significantly

upregulated in women with cancer lesions. Conversely, EZH2 levels

peaked at the CIN III stage and dropped significantly in CC,

contradicting bioinformatics predictions of a steady increase, with

the highest levels in CC. The cause of this discrepancy remains

unknown. Meanwhile, we compared CIN III and CC groups and

found significant differences in HSP90AA1, ICAM1, EZH2, ARG2,

and macrophage M1, indicating these may be biomarkers for

predicting CIN III’s progression to CC.

Although the model in this study has shown some predictive

ability in preliminary validation, there are still limitations: 1. This

study mainly relies on transcriptomic data, which may not fully

capture the complexity of cervical cancer progression despite

providing comprehensive information on gene expression levels.

Therefore, future research should integrate multiple omics data to

more comprehensively reveal the molecular mechanisms of cervical

cancer. 2. The current research sample may have selection bias and

lack patient data from different races, regions, and economic

backgrounds. Therefore, future research should expand the

sample size and include more diverse patient populations to

ensure the universality and robustness of the model. 3. Current

research is mainly based on correlation analysis and lacks support

from functional experiments. Therefore, future research should

further validate the functions of these genes through in vitro and

in vivo experiments, and explore their specific mechanisms of action

in the progression of CIN, in order to provide stronger theoretical

basis for the early diagnosis and treatment of cervical cancer.
5 Conclusion

In this study, we developed a prediction model for the

“inflammation-cancer transition” using six predictors: ARG2,

HSP90AA1, EZH2, ICAM1, macrophage M1, and activated CD4

memory T cells. The model showed good predictive efficacy, as

evaluated by the area under the ROC curve. The model showed

strong predictive performance in both validation and experimental
Frontiers in Immunology 11
cohorts, suggesting it can somewhat predict CIN progression to CC.

Expression levels of HSP90AA1, EZH2, ICAM1, and macrophage

M1 increased progressively across the four cervical lesion stages,

with significant intergroup differences. These findings indicate that

the biomarkers could be useful in clinical settings. ARG2 showed a

steady decline across cervical lesion stages, suggesting it might

protect against CC. This model could help predict patient

immune status and disease progression, enabling timely

interventions at the CIN or early CC stages. Additionally, it may

provide clinicians with new insights for diagnosing cervical diseases.
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