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Background: Fibroblasts can regulate tumour development by secreting various

factors. For COAD survival prediction and CAFs-based treatment recommendations,

it is critical to comprehend the heterogeneity of CAFs and find biomarkers.

Methods: We identified fibroblast-associated specific marker genes in colon

adenocarcinoma by single-cell sequencing analysis. A fibroblasts-related gene

signature was developed, and colon adenocarcinoma patients were classified into

high-risk and low-risk cohorts based on the median risk score. Additionally, the impact

of these risk categories on the tumor microenvironment was evaluated. The ability of

CAFGs signature to assess prognosis and guide treatment was validated using external

cohorts. Ultimately,we verifiedMAN1B1 expression and function through in vitro assays.

Results: Relying on the bulk RNA-seq and scRNA-seq data study, we created a

predictive profile with 11 CAFGs. The profile effectively differentiated survival

differences among cohorts of colon adenocarcinoma patients. The nomogram

further effectively predicted the prognosis of COAD patients, with low-risk patients

having a better prognosis. A higher immune infiltration rate and lower IC50 values

of anticancer drugs were significant in the high-risk group. In cellular experiments,

FollowingMAN1B1 knockdown, in cell assays, the colony formation, migration, and

invasion ability of HCT116 and HT29 cell lines decreased.

Conclusion: Our CAFG signature provides important insights into the role of CAF

cells in influencing COAD prognosis. It may also serve as a guide for selecting

immunotherapy options and predicting chemotherapy responses in COADpatients.
KEYWORDS

colon adenocarcinoma, cancer-associated fibroblasts, signature, tumor immune
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1 Introduction

Colon adenocarcinoma (COAD) is a heterogeneous neoplastic

disease characterized by diverse stromal cell population infiltration.

The progression of COAD is driven by the accumulation of oncogenic

mutations and the dynamic interactions within the tumor

microenvironment (TME) (1, 2). The TME, comprising non-epithelial

cells and extracellular matrix components, plays a critical role in tumor

development and therapy resistance. However, the traditional

pathological staging system often fails to accurately predict patient

outcomes, highlighting the need formore reliable prognosticmodels (3).

Such models are essential for assessing patient risk drug sensitivity and

guiding personalized immunotherapy and chemotherapy regimens.

TME includes a variety of non-cancerous cells, with cancer-

associated fibroblasts (CAFs) being the most important and common

type (4). CAFs can regulate blood vessel production and cell

metabolism, subsequently driving tumors’ onset and transfer (5, 6).

CAFs promote tumor immunosuppression through interactions with

immune cells in the tumor immune microenvironment (7). Despite

their importance, CAFs exhibit considerable heterogeneity, which is

reflected in the diversity of their subpopulation markers. Commonly

used markers such as aSMA and FAP are not exclusive to CAFs, as

they are also expressed in pericytes and fibroblastic reticular cells

(8, 9). This underscores the need to identify specific markers for CAFs

to enable targeted therapeutic strategies for COAD.

Recent advances in single-cell RNA sequencing (scRNA-seq) have

provided new insights into the heterogeneity of CAFs across various

cancers, revealing potential therapeutic targets. By integrating single-cell

and bulk RNA-seq analyses, we identified 11 CAF-related genes that

may serve as promising targets for COAD treatment. Further in vitro

experiments confirmed the expression of MAN1B1 in COAD cells,

suggesting its potential as a therapeutic target. This study explores the

functional roles of these genes and their implications for COAD therapy.
2 Materials and methods

2.1 Data collection

We selected 23 tumour samples by downloading scRNA-seq data

of GSE132465 via the GEO database. RNA-seq data in FPKM format

and survival information for 430 TCGA-COAD cases were retrieved

from the UCSC Xena platform (https://gdc.xenahubs.net). The

normalized FPKM values were converted into TPM and further

transformed using log2 (TPM+1) conversion. We also obtained

normalized gene expression profiles and clinical details from the

GEO database of 177 cases in the GSE17536 dataset and 171 cases in

the GSE159216 dataset, averaging the values if a gene matched

multiple probes.
2.2 Single-cell RNA-sequence analysis

The ‘Seurat’ toolkit (version 4.3.0) in R was used to standardize

the scRNA-seq data’s downstream processing (10). For the scRNA-
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seq dataset, each genemust be expressed in at least three cells, with no

less than 200 genes per cell. Furthermore, the amount of

mitochondria was kept to less than 14%. The LogNormalize

method was used for data normalization. After performing PCA,

we employed UMAP, a non-linear dimensionality reduction

technique. Subsequently, clustering was conducted using the

‘FindNeighbors’ function with a dimensionality parameter set to 1,

followed by the ‘FindClusters’ function with parameters dim set to 20

and resolution set to 0.2 (11). Subsequently, we identified the marker

genes unique to each cluster by utilizing the ‘FindAllMarkers’

function, setting a threshold of an absolute log2 fold change (FC)

of at least 0.5 and requiring a minimum cell population percentage of

0.25 (minpct = 0.25) for each cluster. Following this, we employed the

‘SingleR’ tool (version 1.10.0) to annotate the cell types based on the

identified markers (12).
2.3 GO and KEGG pathway examination

To investigate the biological functions and pathways associated

with CAFs-related key genes, we utilized the R tools org.Hs.eg.db

(version 3.15.0) and clusterProfiler (version 4.9.0). GO functional

enrichment evaluation was performed to identify differences and

similarities across BP (Biological Process), CC (Cellular

Component), and MF (Molecular Function) categories.

Furthermore, an enrichment analysis of KEGG pathways was

carried out to highlight the most prevalent pathways.
2.4 Creating and validating a predictive
gene signature correlated with CAFs

We developed a prognostic model for COAD by identifying

CAF marker genes from scRNA-seq data. We identified genes

significantly correlated with overall survival (OS) through

univariate Cox regression (P<0.05). To refine the model, we

employed LASSO Cox regression with the glmnet package

(version 4.1-6)and followed with multivariate Cox regression (13,

14). The risk score was calculated as the aggregate of the products

obtained by multiplying gene expressions by their respective

coefficients. We employed the timeROC package (version 0.4) to

evaluate the model’s predictive accuracy and further validated its

performance in separate cohorts.
2.5 Development of nomogram

We initially conducted univariate and multivariate Cox regression

analyses on clinical and risk factors to develop a nomogram tool for

clinical use. Factors with p<0.05 in the multivariate Cox analysis were

selected to generate the column-line diagram for predicting COAD

prognosis with the rms package (version 6.5-0). The final nomogram

was developed based on CAF characteristics, M stage, and patient age.

Its predictive performance and accuracy were then assessed through

ROC and calibration curves to confirm reliability.
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2.6 Immune infiltration analysis

The ESTIMATE technique was used to assess stromal and

immune cell infiltration levels. RNA sequencing data from the

TCGA-COAD cohort were analyzed using the ESTIMATE

computational method to generate stromal, immune, estimate, and

tumor purity scores.Wilcoxon tests were conducted to compare these

scores across different risk groups. Fibroblast infiltration levels were

determined through the Microenvironmental Cell Population

Counting (MCP-counter) algorithm, utilizing the MCP-counter

package (version 1.2-0) (15). The infiltration levels of 28 immune

cell types were measured through single-sample Gene Set enrichment

analysis (ssGSEA) (16). To evaluate the disparities in immune

checkpoint blockade responses between the two groups, we

employed the ‘ggpubr’ software package (version 0.6.0).
2.7 Identification of CAFs relevant
mutations and analysis of drug sensitivity

Somatic mutation information of COAD patients was obtained

from the TCGA repository. For each person, the rates of genetic

mutations and the lengths of exons were determined. To compare

mutations across various risk categories, waterfall plots were created

utilizing the ‘maftools’ R package and visual representations of

tumor mutational burden (TMB) values. The Wilcoxon test

assessed the differences in TMB values between these categories.

K-M analysis was used to examine OS variations between the two

groups. Additionally, the chemotherapy response of COAD

individuals was analyzed using the Genomics of Drug Sensitivity

in Cancer (GDSC) database (17). The “pRRophetic” package (18)

was employed to estimate the 50%maximal inhibitory concentration

(IC50) to evaluate chemotherapy sensitivity.
2.8 TIMER database analysis

MAN1B1 expression in COAD and adjacent normal tissues

were examined through the TIMER database, which includes 10,897

samples from 32 distinct cancer types. The DiffExp module was

employed to evaluate MAN1B1 expression in a pan-cancer context.
2.9 Cell culture, transfection and reverse
transcription-quantitative PCR

The COAD cell lines, HCT116 and HT29, were acquired from

the Chinese Cell Culture Collection and cultured in RPMI 1640

medium supplemented with 10% fetal bovine serum (FBS) and 100

units per milliliter of penicillin-streptomycin. MAN1B1

knockdown was confirmed by qRT-PCR. Cells treated with NC,

siMAN1B1-1, and siMAN1B1-2 to inhibit MAN1B1 expression

were used in subsequent experiments (19). Supplementary Table S1

contains the primer sequences.
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2.10 Colony formation assay

Four hundred transfected cells were cultured in 6-well plates for

approximately 14 days. The samples underwent fixation with 4%

paraformaldehyde for 15 minutes, which was succeeded by a 20-

minute staining process using Crystal Violet (Solarbio, China).

Following the staining, the cells were allowed to air-dry at room

temperature, and then the cell count in each well was determined.
2.11 Wound healing assay

After plating the transfected cells into 6-well plates, then cultured

in a cell incubator until achieving 95% confluence. A straight line was

then drawn using a sterile 200 mL pipette tip. Then, carefully wash

away any detached cells and debris with PBS. Subsequently, the cells

were moved into a cell growth medium devoid of serum. Finally,

Image J was used to estimate the breadth of the scratches after

pictures were taken at the same location at 0 and 48 hours.
2.12 Transwell experiment

Transwell experiments were employed to evaluate cell invasion

and migration. Treated cells were placed in the upper chamber in

200 ml of medium without serum, with 5×104 cells per well. The

upper chamber was coated with Matrigel solution to evaluate

invasive and migratory capacity, while the lower chamber

contained 700 ml of complete medium. Photographs and counts

of the successfully moving cells were taken.
2.13 Statistical analysis

The data are presented as the mean ± standard deviation. To

evaluate the differences between groups, a Student’s t-test was applied,

and all experiments were conducted at least three times. The statistical

analyses used GraphPad Prism version 9.1.1 and R version 4.1.1.
3 Result

3.1 Single cell RNA-seq analysis

Quality control preprocessing of scRNA-seq data was

conducted according to appropriate metrics, and the quality

control results are shown in Supplementary Figure S1. 47285.

High quality cell samples were isolated from 23 COAD tissues

screened for subsequent further examination. Following data

normalization, we chose the 2000 most variable genes

(Figure 1A). Dimensionality reduction was executed employing

the PCA technique (Figure 1B), and the 20 most significant PCs

with p< 0.05 were selected for additional examination (Figure 1C).

We successfully classified the cells into 15 distinct clusters based on
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the top 20 major components and identified 5356 differentially

expressed marker genes across these clusters, which are listed in

Supplementary Table S2. The heatmap illustrates the expression

values of the five most significant marker genes within every cluster

(Figure 1D). The IMAP technique also represented the multi-

dimensional scRNA sequencing data (Figure 1E). We annotated
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the cell subpopulations using the “SingleR” package as recognized

cell types (Figure 1F). The main cell categories include T cells,

epithelial cells, NK cells, B cells, DCs, fibroblasts, and endothelial

cells, with cluster 6 identified as the fibroblasts subpopulation.

Finally, we identified 1025 significant expression marker genes of

COAD-associated fibroblasts based on a threshold adjPval < 0.05.
FIGURE 1

scRNA-seq analysis to identify fibroblasts marker genes. (A) The top 2000 highly variable genes are highlighted in red dots. (B) PCA was used to
decrease dimensionality. (C) The top 20 PCs were identified with the P-value < 0.05. (D) The heatmap indicated the relative gene expression of 15
clusters. Genes with high expression are depicted in yellow, whereas genes with low expression are highlighted in purple. (E) Fifteen clusters were
visualized using the UMAP technique. (F) Cell subpopulations identified by marker genes. Different color areas represent different cells.
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3.2 Functional assessment of GO and
KEGG of fibroblasts-associated genes

GO and KEGG functional assessments were conducted to

investigate the functions and pathways of fibroblasts-associated

genes. Figure 2A displays the 10 most significantly enriched GO

terms. For BP, the enriched terms included “extracellular structural

organization,” “extracellular matrix organization,” and “external

encapsulating structure organization.” In the CC category, genes

were enriched in “collagen-containing extracellular matrix,” “focal

adhesion,” and “cell-substrate junction.” MF terms were primarily

associated with “actin binding,” “extracellular matrix structural

constituent,” and “cadherin binding.” Additionally, the top 20

enriched KEGG pathways were displayed in Figure 2B, which

included pathways such as “PI3K-Akt signaling pathway,” “focal

adhesion,” “proteoglycans in cancer,” “regulation of actin

cytoskeleton,” “ECM-receptor interaction,” “protein digestion and

absorption,” “tight junction,” “adherens junction,” “leukocyte

transendothelial migration,” and “gap junction.”
3.3 CAFGs signature construction and
verification

A Cox proportional hazards analysis was performed on CAF

marker genes in the TCGA-COAD dataset, identifying 144 genes

with P<0.05. Following this, LASSO Cox regression analysis

(Figures 3A, B) was conducted on the genes, resulting in the

selection of 11 prognostic genes with significant non-zero

coefficients (Figure 3C). Risk Score =(-0.66451*CTNNA1

express ion)+(0.25692*HSPA1A express ion)+(0.72129*

P4HA1 expression)+(-0.72811*PPP2CB expression)+(0.85761
Frontiers in Immunology 05
*MAN1B1 expression)+(-0.74474*LRRC59 expression)+(1.17154*

CCPS7A expression)+(0.52996*SLC9A3R2 expression)+(1.21188*

RAB7A expression) +(-0.92288*CAMTA1 expression)+(-0.39307*

WIPI1 expression). Among the 11 identified prognostic genes, six

(HSPA1A, P4HA1, MAN1B1, CCPS7A, SLC9A3R2, and RAB7A)

were classified as risk-associated genes (HR > 1), while CTNNA1,

PPP2CB, LRRC59, CAMTA1, and WIPI1 were regarded as

protective genes (HR < 1). The CAFG risk score was calculated

for each person by leveraging these genes. Subsequently, the TCGA-

COAD, GSE17536, and GSE159216 cohorts were separated into

low-risk and high-risk groups based on the median risk scores.

Studies revealed that individuals belonging to the low-risk group

showed better OS outcomes in comparison to those in the high-risk

group (TCGA, HR = 3.272, 95% CI: 2.008-5.332, P < 0.001;

GSE159216, HR = 1.924, 95% CI: 1.197-3.092, P = 0.031;

GSE17536, HR = 1.496, 95% CI: 1.708-2.075, P = 0.005,

Figures 3D-F). The distribution and scatter plot of CAFGs risk

score showed that as risk score grew, OS declined while mortality

increased (Figures 3G-I). The AUC of the 1-, 3-, and 5-year TCGA-

COAD cohorts were 0.762, 0.796, and 0.852, respectively. In the

GSE159216 cohort, the 1-, 3-, and 5-year AUCs were 0.660, 0.588,

and 0.599. The AUC of the GSE17536 were 0.913, 0.635, and 0.587,

respectively (Figures 3J-L). The CAFG signature model

demonstrated an effective and dependable method for forecasting

OS in COAD patients.
3.4 CAFGs signature is an independent
prognostic indicator

In the TCGA-COAD cohort, univariate and multivariate Cox

regression analyses were performed to evaluate whether the
FIGURE 2

Analysis of functional enrichment. (A) Function enrichment analysis based on BP, CC, and MF, three different viewpoints. (B) The top 20 pathways of
KEGG analysis. The darker the color, the smaller the P value, and the larger the shape, the larger the number.
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prognostic relevance of CAFGs-associated gene signature was

autonomous of factors like age, gender, and TNM stage. As

shown in Figures 4A, B, both analyses confirmed that the CAFGs

signature is an independent prognostic indicator. By utilizing the

risk scores calculated by the Cox regression coefficients for the 11
Frontiers in Immunology 06
genes associated with CAFs, combined with clinical attributes like

age and M stage from the TCGA-COAD dataset, a nomogram was

constructed to predict the 1-, 3-, and 5-year OS rates for COAD

patients (Figure 4C). We assessed the discriminatory power of the

nomogram using ROC and the AUC for the CAFGs risk grouping
FIGURE 3

The prognostic model is constructed and validated. (A, B) LASSO regression analysis. (C) Multivariate Cox regression results are plotted in a forest.
(D–F) The Kaplan-Meier curves in TCGA-COAD, GSE159216 and GSE17536 cohorts. (G–I) Distribution of CAFGs risk score and scatter plot of the OS
of each patient in TCGA-COAD, GSE159216 and GSE17536 cohorts, respectively. (J–L) The AUC at 1-, 3-, and 5-years of prognostic models in
TCGA-COAD, GSE159216 and GSE17536 cohorts.
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model was 0.77 (Figure 4D). To assess the reliability of the risk

model, we calculated the area beneath the time-dependent ROC

curve for OS. The AUC values were 0.820, 0.786, and 0.815 for the

one-year, three-year, and five-year predictions (Figure 4E). The

calibration curve demonstrated that the model’s OS predictions

aligned with the dataset’s outcomes (Figure 4F).
Frontiers in Immunology 07
3.5 Tumour immune infiltration

Differences in the expression levels of the stroma score, estimate

score, immune score, and tumor purity were identified across the

low-risk and high-risk groups (Figures 5A-D). Using the

MCPcounter algorithm, the abundance of 10 cell categories,
FIGURE 4

Nomogram construction and evaluation. The correlations between OS and CAFGs risk scores and other clinical indicators in TCGA-COAD
populations were examined using univariate (A) and multivariate (B) Cox regression analyses. (C) The nomogram was applied to predict the 1-, 3-,
and 5-year OS and the total score on the bottom scale implies the probability of OS. (D) ROC curves to evaluate the age, M stage and CAFGs risk
group accuracy for predicting in patients. (E) ROC curves to evaluate the nomogram accuracy for predicting 1-, 3-, and 5-year OS in patients.
(F) Calibration curves of the nomogram for predicting survival rates at 1-, 3-, and 5- years.
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comprising eight immune cells, endothelial cells and fibroblasts,

were compared between these two groups (Figure 5E), revealing a

significantly higher prevalence of fibroblasts in the high-risk group.

Additionally, results from the ssGSEA algorithm showed that

central memory CD4+ T cells, NK cells, and macrophages

showed higher expression in the high-risk group (Figure 5F).

Given the importance of immune checkpoint inhibitors (ICIs) in

immunotherapy, we analyzed the expression of eight common ICI-

related genes in both groups. The analysis showed that PDCD1,

PDCD1LG2, TIGIT, and HAVCR2 were more highly expressed in

the high-risk group (Figure 5G). These results indicate that

individuals in the high-risk group might be better candidates for

ICI therapy.
3.6 Evaluation of somatic mutations and
TMB analysis

Figure 6A illustrates the comprehensive genetic alteration

landscape of COAD. In addition, somatic mutation interactions
Frontiers in Immunology 08
were detected, as shown in Figure 6B, where most genes had co-

occurring mutations. In both the low-risk and high-risk

categories, APC, TP53, and TTN emerged as the most

commonly mutated genes (Figures 6C, D). Additionally, an

analysis of TMB across groups revealed no substantial

differences (P = 0.49) (Figure 6E). The K-M analysis indicated

that the outcome of the low TMB group was better than that of the

high TMB group (P=0.038) (Figure 6F). Notably, following the

integration with our model, the outcome of the high-risk + high

TMB group was considerably worse than that of the low-risk + low

TMB group (Figure 6G).
3.7 Response to drug sensitivity predicted
by CAFG signature

Additionally, the differences in IC50 levels of chemotherapy

drugs between the low-risk and high-risk groups in the TCGA-

COAD cohort were investigated (Figures 7A-E). The analysis
FIGURE 5

Immune infiltration analysis. (A-D) Different expression levels of stroma score, estimate score, immune score and tumour purity between the low-
and high-risk groups. (E) The MCPcounter algorithm estimated the expression levels of ten different cell types, including fibroblasts. (F) The
association of CAFGs risk score with 28 tumor-infiltrating immune cells. (G) Differential expression levels of the immune checkpoint-related genes
between low- and high-risk groups. (ns, no significance, *P < 0.05, **P < 0.01, ***P < 0.001).
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revealed that individuals in the low-risk category had higher IC50

values for anticancer drugs such as gemcitabine, gefitinib, docetaxel,

camptothecin, and sorafenib. Comparable findings were noted in

the GSE17536 (Figures 7F-J) and GSE159216 (Figures 7K-O)

validation cohorts. These results indicate that the CAFG signature

could be a useful predictor for selecting appropriate anticancer

drugs in COAD treatment.
Frontiers in Immunology 09
3.8 Tumor-suppressive effects of MAN1B1
knockdown

Figure 8A, which examined MAN1B1 expression levels across

different malignancies, demonstrates that MAN1B1 mRNA

expression was considerably greater in COAD samples than in

normal samples. We used siRNAs to knock down MAN1B1
FIGURE 6

Somatic mutation in TCGA-COAD. (A) The general mutation profile. Different colors indicate different mutations. (B) Interaction relationship of major
mutation genes. (C) The high-risk group’s gene mutation frequency. (D) The low-risk group’s gene mutation frequency. (E) Variations in TMB
expression levels between groups. (F) The Kaplan-Meier curve between low- and high-TMB groups. (G) Kaplan-Meier analysis curves for patients
categorized by TMB and CAFGs risk group.
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expression in HCT116 and HT29 cells during in vitro experiments,

and qRT-PCR confirmed this (Figure 8B). Colony formation

experiments were conducted to evaluate the proliferative capacity

of COAD cells. The findings indicated that the colony formation

rate in the MAN1B1 knockdown group was significantly lower than

the control group (Figures 8C, D). To additionally explore the

impact of MAN1B1 on cell invasion and migration, transwell and

wound healing assays were conducted. The data revealed that

reducing MAN1B1 expression reduced cells’ invasion and

migration capabilities (Figures 8E-I). Our results demonstrate that

inhibiting MAN1B1 expression markedly suppresses COAD

cell proliferation.
4 Discussion

CAFs constitute the most prevalent cell type in connective tissue,

and their origin and function remain difficult to determine. Due to

their phenotypic and functional heterogeneity, there is currently a

lack of clear biomarkers (4, 20, 21). CAFs experience epigenetic

modifications, releasing secretory factors that affect tumor

angiogenesis, immune responses, and metabolism. Through

intricate interactions with other cells, they actively contribute to

tumor advancement (22, 23). Targeting specific CAF subtypes or

converting CAFs into normal fibroblasts or anti-tumor phenotypes

may offer therapeutic advantages for patients. However, in clinical

practice, it is not always necessary to eliminate or reprogram CAFs.

Blocking the signaling pathways from CAFs can also effectively

achieve positive clinical outcomes. For example, targeting CXCL12
Frontiers in Immunology 10
to antagonize the development of pancreatic cancer associated with

FAP-expressing cancer-associated fibroblasts (24, 25). Nevertheless,

the clinical application of CAFs in COAD presents challenges,

prompting us to explore new CAF indicators. Analyzing the single-

cell genome dataset, we identified a specific fibroblasts subset and

developed a robust 11 CAFGs-related profile. The profile can predict

prognosis, evaluate stromal components in the tumor

microenvironment, and assess treatment responsiveness in COAD

patients. Cox regression analyses established the CAFGs profile as an

independent predictor of OS. To enhance its predictive precision and

support clinical utility, we created and tested a nomogram

incorporating age, M stage, and the CAFGs profile to forecast OS.

The reliability of this model was confirmed through ROC and

calibration curves, emphasizing its potential for clinical application.

We also screened for chemotherapeutic drugs sensitive to high-risk

populations, including gemcitabine, gefitinib, docetaxel, cephalexin,

and sorafenib. These findings suggest that our model is reliable in

predicting COAD prognosis and informing treatment decisions.

The tumor microenvironment and immunotherapy are crucial

factors in the progression and treatment of COAD. Multiple studies

have revealed the dynamic changes among various cell types and

their interactions inside the COAD microenvironment through

single-cell RNA sequencing and spatial transcriptomics

technologies (26–29). Fibroblasts, as a key element of the tumor

microenvironment, exhibit heterogeneity essential in regulating the

tumor’s immune environment (30). Cancer-associated fibroblasts

expressing MMP14 within the tumor immune microenvironment

could be a promising therapeutic option in advancing stage III

COAD (31). Our findings indicate that infiltration levels of
FIGURE 7

Drug sensitivity assessment. In the TCGA-COAD (A-E), GSE17536 (F-J) and GSE159216 (K-O) cohorts, the IC50 values of Gemcitabine (A, F, K),
Gefitinib (B, G, L), Docetaxel (C, H, M), Camptothecin (D, I, N), and Sorafenib (E, J, O) were compared between low-risk and high-risk groups.
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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immunosuppressive cells within the tumor tissues of high-risk

COAD patients are significantly increased, including CD8 T cells,

regulatory T cells, and tumor-associated macrophages. TAMs

attract regulatory T cells (Tregs) by secreting the chemokine

CCL2, establishing an immunosuppressive microenvironment in

COAD (32, 33). Conversely, high-risk COAD patients have fewer

NK cells in their tumor microenvironment. NK cells function as
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cytotoxic innate lymphocytes that kill tumor targets and coordinate

immune responses through cytokines and chemokines (34, 35).

Combining cetuximab with IL-2 and IL-15 boosts the cytotoxic

activity of NK cells against COAD cell lines (36). We observed a

notable increase in the expression of various immune checkpoint

genes in the high-risk subgroup relative to the low-risk group,

including PDCD1, PDCD1LG2 (PD-L1), TIGIT, and HAVCR2.
FIGURE 8

The impact of MAN1B1 in HCT116 and HT29. (A) The mRNA expression level of MAN1B1 in pan malignancies. (B) Following MAN1B1 knockdown,
qRT-PCR showed a reduction in MAN1B1 expression. (C, D) As demonstrated by the cell colony formation experiment, cell proliferation was
suppressed. (E-I) The capacity for invasion and migration dramatically reduced following the MAN1B1 knockdown. (**P < 0.01, ***P < 0.001).
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The overexpression of PD-L1 can reduce the cytolytic function of T

cells, thereby greatly enhancing tumor progression (37). The anti-

PD-1/PD-L1 interaction has proven effective in COAD

immunotherapy (38). Based on our findings, COAD patients in

the high-risk group could be more suitable candidates for immune

checkpoint blockade treatment.

MAN1B1, a newly identified tumor-associated gene, encodes a

class I alpha-1,2-mannosidase. Alterations in this gene are known to

result in autosomal-recessive intellectual disability (39–41). Studies

suggest MAN1B1 as a potential cancer therapy target, promoting

bladder cancer progression and linked to poor outcomes (42).

Hepatitis B virus facilitates liver cancer development by increasing

MAN1B1 expression (43). A separate study indicated that miR-125b

regulates liver cancer formation by targeting the product of the

MAN1B1 gene (44). MAN1B1 was identified as a harmful predictor,

highly expressed in most malignant tumors. In vitro studies showed

that MAN1B1 knockdown reduced COAD cell growth and colony

formation. Furthermore, cell migration and invasion capabilities were

significantly diminished. These results suggest that MAN1B1 may

contribute to the onset and advancement of COAD. Nonetheless,

this research has certain constraints. Further validation of the CAFGs

signature in larger, independent clinical cohorts to confirm its

prognostic accuracy and clinical utility. Additionally, mechanistic

studies are needed, particularly its interactions with stromal and

immune cells in the tumor microenvironment. Finally, exploring the

combination of CAFGs-based therapies with existing treatments, such

as immune checkpoint inhibitors, could provide synergistic benefits

and improve outcomes for COAD patients.
5 Conclusion

In this research, we developed and confirmed a CAFGs-related

signature, a prognostic marker for individuals with COAD.

Additionally , we showcased MAN1B1 ’s role in colon

adenocarcinoma via in vitro assays, suggesting its suitability as a

potential target for COAD therapeutics. These results offer valuable

insights for studies on anti-CAFs therapies, especially for

individuals unresponsive to existing treatment strategies.
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