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Background: Epitranscriptomics, with m6A as the most prevalent in mammals, is

a novel treatment target for inflammatory diseases, including cardiovascular

diseases. However, little is known about m6A RNA-regulation during

myocardial infarction (MI).

Methods: In this explorative sub-study of the ASSAIL-MI trial, we used whole

blood samples from patients with acute ST-elevation MI (STEMI) (n=6) at

admission and after 3–7 days, and from healthy control subjects (n=3). RNA

was isolated, and m6A sites were analyzed using human m6A single nucleotide

resolution microarray analysis. mRNA levels were analyzed using RNA

sequencing analysis.

Results: Compared with controls, patients with STEMI had a strikingly different

pattern of m6A deposition. In total, 845 m6A methylation sites in whole blood

RNA were hypomethylated and 36 were hypermethylated compared with

controls. Of the hypomethylated transcripts, 194 transcripts were lower

expressed, while 197 transcripts were higher expressed. The m6A pattern

changed from an overall hypomethylation at admission to an overall
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hypermethylation 3–7 day after admission. Anti-inflammatory treatment with

tocilizumab further altered the m6A deposition.

Conclusions: In this hypothesis generating study, m6A deposition differs STEMI

patients and healthy controls. The m6A pattern changes over the course of 3–7

days. This response is, at least to some degree, is modulated by blocking the IL-6

receptor. Our data may suggest that this post-transcriptional regulation of RNA is

involved in the immune response during STEMI, highlighting its potential as a

target for therapy in MI.
KEYWORDS

N6-methyladenosine (m6A), epitranscriptome, RNA methylation, STEMI,
inflammation, tocilizumab
Background

Cardiovascular disease (CVD) is one of the foremost causes of

mortality worldwide and is associated with large healthcare costs

(1). Ischemic heart disease, including myocardial infarction (MI), is

the most prevalent manifestation of CVD (1). Although survival

after MI has improved, many patients have extensive myocardial

damage and recurrent acute events, at least partly involving

persistent inflammatory responses following MI (2). Percutaneous

coronary intervention (PCI) has improved outcomes after MI, but is

associated with ischemia/reperfusion injury that may further

aggravate inflammation (2).

Patients with MI have localized as well as systemic inflammation

(3). Inflammation within the myocardium behaves as a double-edged

sword, and a correct immune response is crutial for the long term

consequences. Some degree of inflammation is necessary for infarct

healing, while an exaggerated and persistent response can be

detrimental (4). In the ASSAIL-MI (ASSessing the effect of Anti-IL-

6 treatment in Myocardial Infarction) trial we showed that mitigation

of inflammation by blocking the interleukin-6 (IL-6) receptor with the

monoclonal antibody tocilizumab leads to improved outcomes in

patients with MI (5). Tocilizumab reduced C-reactive protein (CRP)

and improved myocardial salvage (MSI) and the extent of

microvascular obstruction in ST-elevation MI (STEMI) patients (5).

In contrast to our previous study in NSTEMI patients (6), tociizumab

did, however, not significantly reduce TnT levels as assessed as AUC

during hospitalization in the STEMI study (5, 6).

The post-transcriptional RNA modification where methylation of

the adenosine base at the nitrogen-6 position, forming N6-

methyladenosine (m6A) RNA, is the most prevalent of the reversible

epitranscriptomic modifications in mammals (7). This
vascular disease; IL-6,

essenger RNA; PCI,

elevation myocardial
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epitranscriptomic modification is shown to affect splicing, translation,

stability, transcription level, and degradation of mRNA (8).

Evidence suggests a complex interplay between m6A deposition

and inflammation in the pathogenesis of various diseases, including

autoimmune diseases, cancers, and metabolic disorders (9). The m6A

deposition is installed by methyltransferases, and new compounds

affecting these enzymes shows promise in pre-clinical trials in cancer

treatment (10). Data on m6A modification in CVD are scarce. In

atherosclerosis, however, our research has indicated that the

regulators of and the bulk levels of m6A are lower in RNA

extracted from atherosclerotic carotid plaques than in RNA from

healthy arteries (11). Reports suggest that several of the m6A

methylation regulators are altered in MI, and that there is an

interaction with immunity (12–16). The study by Yang J et al. is of

particular interest, using data from the Gene Expression Omnibus

(GEO) database to show that m6A modification, including its effects

on the immune microenvironment, could play a key role in the

pathogenesis of STEMI (12). In rodents, several of the m6A regulators

may play a role in cardiac regenerative ability and heart function (17–

23). A knockdown mouse model of the methyltransferase Wilms

tumor 1 associated protein (WTAP), involved in m6A regulation,

reduced hypoxia/reoxygenation-induced injury within the

myocardium (24). Together, this underscore the potential for

targeting this mechanism as a treatment target also in CVD.

To our knowledge, no studies have so far addressed the role of

m6A methylation in whole blood from patients with STEMI, and

data on how anti-inflammatory therapy modulates this methylation

pattern are lacking. In this sub-study of the ASSessing the effect of

Anti-IL-6 treatment in Myocardial Infarction (ASSAIL-MI) trial,

we aimed to explore differences in m6A methylation sites between

healthy individuals and patients with STEMI at time of

hospitalization, and how this affected gene expression of the

targeted mRNA. We also aimed to explore the alterations in m6A

methylation 3–7 days after hospitalization compared with

hospitalization, and the influence of the IL-6 receptor blocker

tocilizumab on m6A methylation in STEMI.
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Methods

Patients and study design

This study comprises six subjects enrolled in the ASSAIL-MI

trial and three healthy control subjects. These analysis were a sub-

study of the ASSAIL-MI trial, registered in ClinicalTrials.gov,

number NCT03004703. The demographics of the patients and

controls in this sub-study are shown in Table 1. All controls were

characterized as healthy based on the disease history and no use on

regular medication.

The ASSAIL-MI trial investigated whether a single intravenous

dose of tocilizumab could improve myocardial salvage in patients

admitted with acute STEMI. The key inclusion criterion was first-

time STEMI with symptom onset less than 6 hours before PCI.

Patients were excluded if they had previous MI; chronic infection,

or chronic inflammatory or autoimmune disease; uncontrolled

inflammatory bowel disease; ongoing infectious or immunologic

disease; major surgery within the past eight weeks; or treatment

with immunosuppressants other than low-dose steroids (equivalent

to a systemic exposure to 5 mg prednisone per day). In addition, all

patients in both treatment arms were treated according to current

established guidelines for STEMI patients. The exclusion criteria of

no previous MI mean that the data should be interpreted with

caution in relation to patients with recurrent MI. Details about the

study design and participants have been described elsewhere (5, 25).

The trial participants were allocated 1:1 to treatment with

tocilizumab 280 mg i.v or matching placebo in a double-blind

manner. Immediately after randomization and the initiation of

study drug administration, patients underwent PCI of the culprit

vessel and provided optimal standard medical therapy (5, 25).

Explorative sub-studies on inflammation were pre-specified in

the originally approved study protocol (25). Although the present

sub-study could fits into this category, the analyses of m6A were

not predefined.
Blood sampling protocol

Whole blood samples for total RNA isolation were collected in

PAXgene™ Blood RNA tubes (BD, Franklin Lakes, NJ). Arterial

samples were taken at admission (prior to PCI, before unfractionated

heparin and tocilizumab/placebo were administered at the

catheterization laboratory). Venous samples were drawn after 3–7

days. Venous blood samples were collected once only from the healthy

control subjects.
RNA isolation and sequencing

We have previously published the main results of RNA

sequencing from whole blood in the ASSAIL-MI trial (26). Total

RNA was isolated from the BD PAXgene™ Blood RNA samples

with the MagMAX™ for Stabilized Blood Tubes RNA Isolation Kit

(Invitrogen™, Waltham, MA) following the manufacturer’s
Frontiers in Immunology 03
instruction. Novogene (UK) Company limited used a ribosomal

RNA depletion library on the isolated RNA samples. The fastp

(v0.23.0) was used to remove contaminated adapters and low-

quality reads with phred score below 30 in the pair-end mode

(27). Filtered reads were mapped to the human transcriptome

(Gencode Human Release H37), and transcripts were quantified

with 200 bootstrap iterations by Salmon (v1.5.2) (28, 29). The

Salmon outputs were summarized to gene-level and imported into

DESeq2 (v1.34.0) via tximeta (v.1.12.3) (30, 31). For better accuracy,

hemoglobin mRNAs were removed before the analysis of

differentially expressed genes (DEGs) (32). DEGs were uploaded

to Metascape for pathway analyses.
m6A single nucleotide array

m6A sites were analyzed using human m6A Single Nucleotide

resolution microarray analysis by Arraystar Inc (Rockville, MD,

USA). We used Nanodrop ND-100 for total RNA quantification

and Bioanalyzer 2100 and Mops electrophoresis to control RNA

integrity. Arraystar’s standard protocols were used for sample

preparation and microarray hybridization. Briefly, the total RNA

was split into two fractions: “MazF-digested” and “MazF-

Undigested”. The “MazF-Digested” fraction was treated with the

RNA endoribonuclease MazF to cleave unmodified m6A sites. The

“MazF-Undigested” fraction was not treated with MazF for both

modified and unmodified sites. The “MazF-Digested” RNAs were

labeled with Cy5, and the “MazF-Undigested” RNAs were labeled

with Cy3 as cRNAs in separate reactions using Arraystar RNA

Labeling protocol. The two cRNA fractions were then combined

and hybridized onto Arraystar Human m6A Single Nucleotide

Array (8x15K, Arraystar). The slides were washed and scanned in

two-color channels by an Agilent Scanner G2505C.

Agilent Feature Extraction software (version 11.0.1.1) was used

to analyze the acquired array images. The average of log2-scaled

Spike-in RNA intensities was used for normalization of the raw

intensities of MazF-Digested (Cy5-labelled) and MazF-Undigested

(Cy3-labelled) RNA. Then, probe signal with Present (P) or

Marginal (M) QC flags in at least 3 out of 15 samples were

retained for “m6A site abundance” analyses. The “m6A site

abundance” was calculated for the m6A methylation amount

based on the normalized intensities of the MazF-Digested (Cy5-

labelled) samples. Differentially m6A-methylated sites between the

groups for comparisons were identified by filtering on the fold
TABLE 1 Baseline characteristics of the patients and healthy controls
included in the m6A single nucleotide array.

Baseline
Characteristics

Hospitalized STEMI
(n=6)

Healthy
(n=3)

Age, years 63 ± 7 59 ± 4

Men 2 (33,3) 2 (66)

Time from symptom onset to
arrival at PCI center, min

144 ± 45
fr
Values are mean ± SD or n (%).
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change (FC) and statistical significance (p-values) thresholds. The

data was also filtered based on m6A methylation site position in

mRNAs, and further into the 5’UTR, CDS, and 3’UTR regions. The

default thresholds were |FC| ≥ 2.0 and p-values < 0.05. To show the

distinguishable m6A-methylation pattern among samples,

hierarchical clustering was performed. All m6a modifications are

adjusted for the total number of transcript.
Statistics

For the RNA-sequencing data, we performed false discovery

rate (FDR) adjustment and report adjusted p-values. It is important

to notice that patient number (given as n) varies slightly at different

time-points for RNA analyses due to quality issues of missing

samples. However, the amount of missing data was evenly

distributed between the placebo and tocilizumab groups, and the

missing values are assumed to be missing at random. mRNA

transcript counts from genes involved in m6A regulation were

analyzed using t-test and 2-way ANOVA, and p-values < 0.05

were considered statistically significant. Statistical analyses were

performed in GraphPad Prism 8.3.0 (GraphPad Software, La

Jolla, CA).
Results

Of the 11,237 possible m6A sites analyzed in the array, whole

blood RNA from patients with acute STEMI had at hospital admission

845 hypomethylated m6A sites and 36 hypermethylated sites, as

compared with RNA from whole blood from healthy controls

(Figure 1A). The transcript with the highest fold change in the

hyper methylated sites is the HSP90AA1, coding for the stress

induced heat shock protein Hsp90A (33), while the transcript with

the highest fold change of the hypomethylated sites is an

methyltransferase forming m7A, METTL1 (34) (Supplementary

Table S1). Heatmap cluster analysis of all analyzed m6A sites partly

separated patients with acute STEMI from healthy controls

(Figure 1B). We found that most m6A hypomethylation in mRNAs

occurred in the coding sequence (CDS) and the 3’ untranslated region

(UTR), while less than 10% of the sites were found in the 5’UTR

(Figure 1C). In contrast, the hypermethylated sites comprised of only

20 sites in the CDS and 14 sites in the 3’UTR (Supplementary Figure

S1). As shown in Figure 1D, the average degree of m6A methylation

was significantly lower in both CDS and 3’UTRs, but not in 5UTR, in

patients with STEMI compared with healthy controls (p < 0.0001 for

both CDSs and 3’UTRs, Figure 1D). Although the 3’UTR of the

mRNA transcripts has regulatory functions important for mRNA

stability, localization, and translation (35).

Annotation analysis of mRNAs with differentially enriched m6A

sites (both hyper- and hypomethylated) showed that “chromatin

organization” (GO: 0006325) was the most significantly regulated

pathway between the patients with STEMI and the healthy controls

(Figure 1E). Intriguingly, recent studies suggest that dysfunction in

chromatin regulators may be an important mechanism of MI (36).
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Other pathways relevant for the processes during STEMI, potentially

influenced by m6A, included “signaling by Rho GTPases, Miro

GTPases and THOBTB3” (R-HSA-9716542), “hemopoiesis”

(GO:0030097), and “regulation of I-kappaB kinase/NF-kappaB

signaling” (GO:0043122). All these pathways are important for a

correct immune responses and inflammation during STEMI. It is,

however, important to underscore that all pathways in Figure 1E is

significantly regulated at m6Amethylation sites. This means that these

pathways is potentially regulated by this RNA modification, but not

necessarily the most relevant pathological pathway in MI and we

should avoid grading of the biological importance of the different

pathways based on p value alone.

To examine whether m6A methylation in patients with STEMI

had an impact on the mRNA levels, we compared the fold difference

of m6A methylation to log2fold difference of the corresponding

mRNA levels (Figure 2A, Supplementary Table S3). Notably, we

observed that 48.3% of the differentially methylated transcripts were

also differentially expressed between the two groups. Of the

hypomethylated transcripts, 194 transcripts were down-regulated

while 197 transcripts were up-regulated in the patients with STEMI

than in the healthy controls. For the hypermethylated transcripts, 4

mRNA transcripts were down-regulated and 18 mRNA transcripts

were up-regulated.

m6A is suggested to be a mark for degradation of the mRNA

(37), suggesting that less m6A will lead to a higher amount of the

mRNA in question. The 197 hypomethylated mRNAs that were

associated with higher mRNA transcript levels in Figure 2A follow

this pattern. To assess the biological function of the genes coding for

these mRNAs, we performed an additional annotation analysis

(Figure 2B). “Chromatin modifying enzymes” (R-HSA-3247509)

was the most significant, but again we should avoid grading of the

importance of the different pathways based on p value alone.

However, several pathways were related to myocardial injury and

healing, such as “hemopoiesis” (GO:0030097), “positive regulation

of cell migration” (GO:0030335), and “regulation of lipid metabolic

process” (GO:0019216) (38–40) were also altered and could

therefore be regulated trough the m6A methylation pathway.

The 3’UTR of the mRNA transcripts has regulatory functions

important for mRNA stability, localization, and translation (35). 86

mRNAs were hypomethylated in the 3’UTR and were expressed at a

lower log2fold level in patients with STEMI then in healthy controls,

while 67 hypomethylated mRNAs were expressed at a higher

log2fold level in STEMI (bottom quadrants, Figure 3A). A small

proportion of the genes were hypermethylated at the 3’UTR in

STEMI versus healthy controls, with log2fold transcript levels lower

in 2 and higher in 7 of the transcripts (upper quadrants, Figure 3A).

Annotation analysis of the transcripts with altered m6A

methylation in the 3’UTR, revealed that the most significantly

altered metabolic pathways were “protein domain specific

binding” (GO:0019904) and “positive regulation of cell migration”

(GO:0030335) (Figure 3B).

The ASSAIL-MI trial participants were randomized to 280 mg

tocilizumab or placebo prior to revascularization by PCI. In both

the placebo and tocilizumab group, there was a marked shift in the

m6A methylation pattern from hospital admission to 3–7 days after
frontiersin.org
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FIGURE 1

m6A distribution in patients with STEMI prior to PCI vs healthy controls. (A) Absolute numbers of significantly hypo- or hypermethylated m6A sites in
total RNA from whole blood between patients with STEMI at hospitalization and healthy controls. (B) Heatmap showing the degree of m6A
methylation in total RNA between the groups. (C) Distribution of regulated hypomethylated m6A sites in mRNAs between patients with STEMI at
hospitalization and healthy controls. (D) Average m6A methylation percent for all sites in the different sections of protein coding transcripts. ****p <
0.0001 (2-way ANOVA with Tukey’s multiple comparisons test). (E) Metascape analysis of GO biological processes and Reactome pathways for all
significantly differentially methylated mRNAs.
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admission. There was a shift to increased hypermethylation (516

sites and 729 sites; placebo and tocilizumab, respectively) and

decreased hypomethylation (12 sites and 33 sites; placebo and

tocilizumab, respectively) compared with what was observed at

the time of hospital admission (Figure 4A, Supplementary Table

S2). At day 3-7, 3 m6A sites were significantly hypermethylated and

230 m6A sites were significantly hypomethylated in the tocilizumab

arm versus the placebo arm (Figure 4A). Heatmap cluster analysis

of all methylated sites in whole blood RNA from the placebo and

tocilizumab treated groups showed incomplete separation of the

two treatment arms (Figure 4B).

Hypermethylated sites in protein-coding mRNA in the placebo

arm were mostly positioned in the 3’UTR (200 sites) and the CDS

(284 sites) (Supplementary Figure S2). A similar pattern was

observed in the tocilizumab arm (CDS 423 sites and 3’UTR 264

sites) (Supplementary Figure S3). The average methylation percent

for all sites was higher for 5’UTR, CDS, and 3’UTR after 3–7 days

for both treatment arms than at the time of hospitalization

(Supplementary Figures S2, S3). There were no differences
Frontiers in Immunology 06
between the treatment groups regarding the average m6A

methylation percent for 5’UTR, CDS, or 3’UTR (Supplementary

Figure S4).

Annotation analyses comparing transcripts with significantly

regulated m6A sites (both hyper- and hypomethylated) between

tocilizumab and placebo showed that the pathway that was

regulated most differently between the treatment arms was

“Neutrophil degranulation” (R-HSA-6798695). This pathway is

highly relevant for the immune response after STEMI and IL-6

inhibition by tocilizumab as also shown in the ASSAIL-MI trial

(26). Amongst the differently methylated sites we find the

transcripts for CD14 and Toll like reseptor 2 (TLR2), two protein

shown to be important for priming the neutrophils in response

granulocyte macrophage colony stimulating factor (GM-CSF) (41).

Although the authors tested these mechanisms in responses på

pathogen associated molecular pattern, we believe that similar

mechanisms will be operating in response to danger associated

molecular pattern such as during STEMI. Further, other relevant

methylated transcripts for Disintegrin and metalloproteinase domain-
FIGURE 2

Comparison of RNA sequencing and m6A array for all mRNAs with significantly regulated m6A sites between patients with STEMI at hospitalization
and healthy controls. (A) Transcripts with altered m6A methylation and their transcript level between patients with acute STEMI and healthy controls.
Only genes/targets found in both analyses are included. (B) Metascape analysis of GO biological processes and Reactome pathways for the 197
hypomethylated and upregulated genes in (A).
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containing protein 10 (ADAM10) and CSTB, which induce

production of cystatin B, are both related to extracellular matrix

remodeling (42, 43), and Fibrinogen Like 2 (FGL2) is related to

formation of neutrophil extracellular traps (NETs) (44). Other

interesting pathways related to the immune system and cell

maintenance that were regulated differently between the two

treatment arms were “Response to cytokine stimulus” (GO:0060759)

and “Membrane organization” (GO:0061024) (Figure 4C).

Finally, we reanalyzed previous published transcriptome

analyses on enzymes involved in in m6A regulation from whole

blood in the ASSAIL trial which is the basis of the present

manuscript (26). Transcriptome data were available 14 healthy

controls, 37 STEMI patients at hospital admission and of these

patients 19 received tocilizumab and 18 received placebo during

follow-up. As shown in Supplementary Figure S5, STEMI patients

had decreased transcript levels of the writer METTL16 and

increased levels of the writer WTAP, and an even more complex

regulation of the readers with up-regulation of YTHDF3 and

PRRC2A and down-regulation of YTHDF1, YTHDF2 and

IGF2BP2 in STEMI patients. Moreover, analyses of samples
Frontiers in Immunology 07
collected 3–7 days after hospital admission showed an up-

regulation of the readers METTL16 and RBM15 and a down-

regulation of the writers YTHDF3 and HRNPC in the

tocilizumab group (Supplementary Figure S6). The regulation of

m6A by these enzymes are complex (7) and the net effects of these

changes are at present uncertain. These data, at least in some degree,

support changes of the m6A regulating machinery in STEMI and

notably, some of these changes (regulation of METTL3 and

YTHDF3) were reversed by tocilizumab.
Discussion

Very recently, Chao et al. showed data on the m6A regulators

during MI (45). Moreover, data from Yang J e al suggest that m6A

modification could contribute to the pathogenesis of STEMI,

including effects on the myocardial microenvironment (12).

Furthermore, a recent review summarized clinical and preclinical

data, supporting a role of m6A modification in aterogenesis,

ischemia-reperfusion injury and MI (46). To the best of our
FIGURE 3

Comparison of RNA sequencing and m6A array for all transcripts with altered m6A methylation in the 3’UTR between patients with STEMI at
hospitalization and healthy controls. (A) Transcripts with differently altered m6A sites in the 3’UTR and their transcript levels between patients with
acute STEMI and healthy controls. Only genes found in both analyses are included. (B) Metascape analysis of GO biological processes and Reactome
pathways for all 3’UTR genes in (A).
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knowledge, however, no reports have previously described the m6A

methylation landscape over time in patients with STEMI. In this

explorative sub-study of the ASSAIL-MI trial, we found that these

patients had an m6A pattern that was strikingly different from that

of healthy controls, with a general hypomethylation of transcripts in

patients with STEMI. Intriguingly, the same patients showed an

overall hypermethylation 3–7 days after hospitalization and PCI

treatment compared with at admission. Despite similarities between

the placebo and the tocilizumab group, anti-inflammatory

treatment with tocilizumab altered m6A deposition after STEMI.

At hospital admission, the patients with STEMI had less m6A

methylation than healthy controls. The distinctly different profile of

m6A methylation could reflect m6A distribution as a participant in

the regulation of the immune response during STEMI. Vausort et al.

showed that patients who developed heart failure after MI had lower

levels of m6A in the blood (47). This, in addition to our results,

points to that m6A levels might play important roles in the immune
Frontiers in Immunology 08
response to MI, and could possibly also predict outcomes after

an MI.

We found that over all, our patients with acute STEMI had less

m6A methylation (i.e., more hypomethylation) than healthy

controls. On the other hand, a study on peripheral blood

mononuclear cells from patients with STEMI, non-STEMI, and

unstable angina showed increased m6A methylation (i.e., more

hypermethylation) in all three conditions (16). This study did not

include neutrophils, the most dominating cell type in whole blood,

playing an important role in acute MI (26). The discrepancy

between these results might therefore reflect that different

immune cell subtypes in the blood have different m6A profiles

during MI.

Mo et al. have shown that m6A-single nucleotide polymorphisms,

which can result in gain or loss of the m6A methylation site, are

associated with coronary artery disease (CAD) (48). It is therefore

likely that m6A methylation might play a causal role in the
FIGURE 4

Longitudinal m6A distribution in patients with STEMI and the effect of IL-6 receptor inhibition. (A) Absolute numbers of significantly hypo- or
hypermethylated sites in total RNA from whole blood 3–7 days after percutaneous coronary intervention (PCI) treatment, versus time at
hospitalization for placebo treated (Plac), for patients receiving tocilizumab (Toc) and tocilizumab vs placebo at day 3-7 (Toc vs Plac). (B) Heatmap
showing the degree of m6A methylation in total RNA in the placebo and tocilizumab group 3–7 days after treatment. (C) Metascape analysis of GO
biological processes and Reactome pathways for all significantly differentially methylated mRNAs between placebo and tocilizumab treated patients.
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development of this disorder. Accordingly, m6A methylation could be

a target for therapy in CAD and potentially also other forms of CVD

(48), as suggested in cancer (49). Indeed, it has also been suggested

that m6A could represent a novel target for therapy in MI (46).

It is important to underscore that the effect of m6A on RNA is

rather complex affecting both stability, clearance, splicing and

translation (50). Furthermore, whereas hypometylation is thought to

enhance processes such as induction of RNA stability and increased

translation, the opposite may be a consequence of hypermethylatin

transcripts (50). Herein we found that in general, hypomethylation was

more closely related to alteration in the transcript level, than

hypermethylation, but with no clear differences in the number of up-

regulated or down-regulated transcripts, underscoring a complex

regulation of transcript levels by m6A modification. The mRNAs that

were hypomethylated and had higher transcript levels in STEMI govern

several pathways related to chromatin activity as well as pathways with

more direct relevance for STEMI, such as hemopoiesis, positive

regulation of cell migration, and regulation of lipid metabolic process.

In our data, most sites with different methylation patterns

between patients with STEMI and healthy controls were found in

the 3’UTR and in the CDS. This is not surprising, as in humans,

m6A sites are enriched in coding sequences and in 3’UTR, especially

near stop codons (51, 52). This shift in m6A methylation could also

contribute to the responses at the translational level, that is not

reflected by the mRNA level in the sample.

MI is associated with an inflammatory response. Opening the

infarct-related artery can cause ischemia-reperfusion injury and

further increase inflammation. Our data show that patients with

STEMI have a massive hypermethylation of m6A sites 3–7 days after

MI compared with the m6A methylation pattern at hospital

admission. Although this shift in m6A methylation pattern was

seen in whole blood samples obtain 3–7 days after hospital

admission, it is possible PCI-induced ischemia reperfusion injury

at least partly could have contributed to this pattern. m6A

regulation rapidly alters the stability, function or activity of the

mRNA transcript. Thus, the m6A pattern might mirror the rapid

and changing immune responses that occur in these patients after

an acute MI. Our findings illustrate the ability of cells to rapidly

shift their m6A methylation pattern in response to acute events.

Yang et al. recently showed that m6A regulators were correlated

with immune responses, suggesting that immune dysregulation in

STEMI was regulated by m6A methylation (12).

Previously, we have reported that tocilizumab had beneficial

effects on myocardial salvage in STEMI (5). Although there was

some overlap with the placebo group, the current study showed

differences in the RNA m6A methylation pattern between whole

blood from patients treated with tocilizumab and those receiving

placebo. Our previous report on transcriptome analyses of

neutrophils in the ASSAIL-MI trial (26), find that neutrophil

degranulation is dampend by tocilizumab. In the present study

we found that the m6A methylation between the two treatment

arms is mainly hypomethylated in the Tocilizumab compared to the

placebo arm. Further, annotation analysis of these differently

methylated transcripts show involvement in the neutrophil

degranulation process such as regulation of extracellular matrix
Frontiers in Immunology 09
remodeling, neutrophil activation including TLR2 activation and

NETs formation. We could speculate that the hypomethylation (i.e.,

activation) of these transcripts could be a regulatory mechanism to

dampen neutrophil degranulation in these patients.

Our study has several important limitations. In particular, the

small study population, including both patients and in particular

controls, and the heterogeneity within the cohort are important

limitations of the present study. This study is hypothesis generating

sub-study of the ASSAIL-MI trial examining the role of m6A

methylation in STEMI and cannot provide a complete picture of

the molecular mechanisms involved. Several of the findings such as

the enzyme data need to be confirmed at the protein level.

Moreover, associations do not necessarily mean any causal

relationship. Future studies should comprise a larger number of

patients and should also include studies in animal models as well as

in vitro and ex vivo expeients to improve our understanding of the

molecular mechanisms governing epitranscriptomics in MI and

related atherosclerotic disorders.
Conclusion

In this hypothesis generating study, we show that in vivo m6A

methylation patterns differ between patients with acute STEMI and

healthy individuals. The m6A pattern changed after 3 to 7 days. This

response was in some degree modulated by IL-6 receptor inhibition.

Our data suggest that m6A modifications play a role in the

inflammatory response after STEMI, potentially representing a

novel target for therapy in patients with MI.
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