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Gut microbiota and other factors
associated with increased T cell
regulation in HIV-exposed
uninfected infants
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Marta C. Nunes4†, Shabir A. Madhi4,5, Daniel N. Frank2
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1Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United
States, 2Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora,
CO, United States, 3Department of Pathology, University of Colorado Anschutz Medical Campus,
Aurora, CO, United States, 4South African Medical Research Council Vaccines and Infectious Diseases
Analytics Research Unit and Department of Science and Technology/National Research Foundation
South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences,
University of the Witwatersrand, Johannesburg, South Africa, 5African Leadership in Vaccinology
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Introduction: Infants exposed to HIV and uninfected (HEUs) are at higher risk of

infectious morbidity than HIV-unexposed uninfected infants (HUUs). Multiple

immune defects of unknown origin were observed in HEUs. We hypothesized

that HEUs have more regulatory and inhibitory checkpoint-expressing T cells

(Treg, Tici) than HUUs, which may dampen their immune defenses

against pathogens.

Method: We used flow cytometry to measure 25 Treg/Tici subsets in HEUs and

HUUs at birth, 6, 28, and 62 weeks of life. We used maternal and infant gut

microbiome data reported in a previous study to establish correlations with the

Treg/Tici.

Results: At birth, 3 Treg subsets, including the prototypic CD4+FOXP3+ and CD4

+FOXP3+CD25+, had higher frequencies in 123 HEUs than in 117 HUUs, and 3

subsets had higher frequencies in HUUs. At 28 and 62 weeks of age, 5 Treg/Tici

subsets had higher proportions in HEUs than HUUs. The frequencies of the Treg/

Tici subsets that diverged between HEUs and HUUs at birth correlated with

differential relative abundances of bacterial taxa in the maternal gut microbiome.

The Treg/Tici subsets with significantly different frequencies at subsequent visits

correlated with the concurrent composition of the infant gut microbiome. In

vitro, treatment of HUU peripheral blood mononuclear cells (PBMC) with

bacterial taxa most abundant in HEUs expanded Treg/Tici subsets with higher

frequencies in HEUs than HUUs, recapitulating the in vivo correlations.

Conversely, in vitro treatment of HEU PBMC did not increase Treg/Tici

frequencies. Other factors that correlated with increased Treg/Tici frequencies
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were low maternal CD4+ T cells in HEUs at birth and male sex in the HUUs at 28

weeks of life.

Discussion: This study shows that maternal and infant gut dysbiosis are central to

the increase in Treg/Tici in HEUs andmay be targeted by mitigating interventions.
KEYWORDS

regulatory T cells, gut microbiome, human immunodeficiency virus, HIV-exposed
uninfected infants, Blautia wexleraea, Klebsiella pneumoniae, Enterobacter cloacae,
Ruminococcus bromii
Introduction

Due to extraordinary advances in the prevention of HIV vertical

transmission, 2 million infants exposed to HIV and uninfected

(HEUs) are born every year. However, compared with HIV-

unexposed infants (HUUs), HEUs have a higher incidence of

hospitalization and death due to severe infections during the first

1-2 years of life (1–3). The introduction of universal 3-drug

antiretroviral therapy (ART) during pregnancy in 2012

moderately improved the clinical and infectious outcomes of

HEUs in Sub-Saharan Africa, but growth and increased

hospitalizations in early childhood continued to be reported more

than five years after maternal 3-drug ART was implemented,

including 20% more stunting at 18 months of age and 2- to 3.5-

fold higher rates of hospitalizations due to infections in the first 6

months of age compared with HUUs (4–8). In the US and other

regions of the Northern Hemisphere, hospitalizations are increased

in HEUs compared to HUUs (9, 10).

HEUs have multiple immunologic dysfunctions that may

contribute to their increased risk of severe infection,

hospitalization, and death, including increased numbers of

regulatory T cells (Treg) (11–24). Due to the broad spectrum of

Treg activity, which may dampen T cell, B cell, and antigen

presenting cell function, the increase in Treg abundance provides

a potential unifying mechanism for the increased susceptibility to

severe infections in HEUs. People with HIV also have multiple

immunologic abnormalities, including excessive T cell regulation

due to high frequencies of Treg and other T cells expressing

immunologic checkpoint inhibitors (Tici), which have been

associated with accelerated disease progression and high

susceptibility to severe infections (25–28). In the general

population, Treg/Tici have been associated with decreased

immune protection against tumors and viral infections (29–31).

We hypothesized that high Treg/Tici frequencies in HEUs may

increase their susceptibility to infections in early childhood.

The gut microbiome has emerged as a central element in the

education of local and systemic immune responses (32). The human

gut harbors 12 to 20% of the total lymphocytes, and most importantly,

it is a critical site of innate and adaptive T-cell maturation, second only

to the thymus (33, 34). Bacterial taxonomic groups, such as segmented
02
filamentous bacteria, E. coli, B. fragilis and diverse clostridia (e.g.,

Ruminococcaceae and Lachnospiraceae), alter the balance between Treg

and conventional T cells (35–38). Studies revealed that bacterial

products, such as short-chain fatty acids (SCFAs), tryptophan

catabolites, and B. fragilis-derived polysaccharide A, promote Treg

differentiation and expansion (39–42). The composition of the infant

gut microbiome undergoes sequential changes after birth, influenced

primarily by the delivery mode, maternal microbiome, and maternal

and infant diet (43–51). Previous studies showed differences in the

composition of the gut microbiota of people with and without HIV

(52–58) and between HEUs and HUUs (59, 60). Moreover, in the same

cohort that the current study is based on, we showed significant

differences in the gut microbiota of HEUs and HUUs and that infant

gut microbiota extensively overlapped with maternal gut

microbiota (59).

The Treg hallmark is the transcription factor FOXP3, which

inhibits IFNG and IL2 gene transcription and thereby prevents

conventional T-cell differentiation (61). Particular importance in

the inheritance of Treg characteristics during cell division has been

attached to a FOXP3 intronic regulatory element, conserved non-

coding sequences 2 (CNS2), which is completely demethylated in

Treg (62). In addition to FOXP3+ Treg, multiple other Treg subsets

have been previously validated, including markers shared with Tici

(12, 29, 63–65). The goal of this study was to undertake a

comprehensive analysis of the relative abundance of Treg/Tici in

HEUs and HUUs during the first year of life and to identify factors

associated with differences between the two groups, including

maternal HIV infection characteristics; infant sex and birth

weight; DNA methylation of CNS2 and other loci; and gut

microbiome composition.
Materials and methods

Study design and approval

The study was approved by the Human Research Ethics

Committee at the University of the Witwatersrand (approval

number: M171185) and the Colorado Multiple Institutions

Review Board (COMIRB 17-0306). Written informed consent was
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obtained prior to participation in the study. Women with and

without HIV were recruited during labor at Chris Hani

Baragwanath Academic Hospital in Johannesburg, South Africa.

The inclusion criteria for all women were singleton term gestation,

planned vaginal delivery, and intent to breastfeed. Women with

HIV had to have been prescribed antiretrovirals but not

cotrimoxazole during pregnancy. After providing informed

consent, maternal and infant metadata were collected from

medical records and by interviewing the study participants at 6,

28, and 62 weeks after delivery. Maternal blood was obtained at

delivery for CD4+ T-cell and HIV plasma RNA measurements at

the local laboratory. Infant cord blood and peripheral blood

obtained at 6, 28 and 62 weeks of life were used to measure Treg

subsets. Infant rectal swabs obtained at 6, 28, and 62 weeks of life

and maternal rectal swabs at delivery were used for microbiome

analysis. Mothers and infants who received antibiotic therapy

within one month prior to the rectal swab collection, with the

exception of cotrimoxazole in HEUs, were excluded from the

microbiome analysis.
Treg/Tici characterization by
flow cytometry

PBMC were cryopreserved for viability as previously described

and stored at ≤-150°C until use (66, 67). Cryopreserved PBMC/cord

blood mononuclear cells were thawed, counted, and processed

immediately for phenotypic assessment using two staining panels.

Panel A consisted of surface staining with Zombie yellow (viability),

CD25 FITC (BioLegend), Lag3 PE (Invitrogen), CTLA4 PE-CF594

(BD Biosciences), CD4 PerCP-Cy5.5 (BD Biosciences), and CD3

Ax700 (BD Biosciences), followed by fixation and permeabilization

using the eBioscience Foxp3/Transcription Factor Staining Buffer

Set (eBioscience). Intracellular staining was then performed with

FoxP3 Ax647 (BD Biosciences), Granzyme B (GranzB) APC-fire750

(BioLegend), IL-10 BV421 (BioLegend) and TGFb PE-Cy7

(BioLegend). Panel B consisted of surface staining with Zombie

yellow (viability), CD4 FITC (BioLegend), CD3 PE-CF594 (BD

Biosciences), GITR PerCP-Cy5.5 (BioLegend), TNFR2 PE-Cy7

(BioLegend), CD39 Ax700 (R&D Systems), PD1 APC-Cy7

(BioLegend) and TIGIT BV421 (BioLegend). Intracellular staining

consisted of FoxP3 Ax647 (BD Biosciences) and IL-35 PE

(BioLegend) antibodies. Analysis was performed using a Galios

instrument (Beckman Coulter). The gating strategy is shown in

Supplementary Figure S1.

Ex vivo induction of Treg/Tici. Blautia wexlerae (Cat# BAA-

1564, ATCC), Lactococcus lactis (Cat# 19435, ATCC) and

Ruminococcus bromii (Cat# 27255, ATCC) were subcultured onto

Brucella agar plates (Cat# RO1253, Remel) and incubated at 37°C in

an anaerobic chamber until colony growth was observed. Clinical

isolates of Klebsiella pneumoniae, Enterobacter cloacae, and Proteus

mirabilis from the Microbiology Clinical Laboratory at the

University of Colorado Hospital were subcultured onto sheep

blood agar plates (Cat# RO 1202, Remel) and incubated overnight

at 37°C. A bacterial suspension was generated for each organism by

transferring the bacterial colonies to sterile saline and equilibrating
Frontiers in Immunology 03
them to a 0.5 McFarland standard as measured by a turbidity meter

(68). Bacterial suspensions were UV-inactivated for 15 min,

aliquoted, and stored frozen at -80°C until use. For stimulation

assays, cryopreserved PBMC were thawed, washed, counted with a

Guava EasyCyte instrument (Luminex), and resuspended in RPMI

1640 (Corning) supplemented with 10% FBS (Gemini), 2 mM L-

glutamine (Gemini), 20 mM HEPES buffer (Corning), and 1%

penicillin/streptomycin solution (Gemini) at 106 PBMC/mL. The

cells were incubated with bacteria under preoptimized conditions at

a multiplicity of infection of 10 colony-forming units per viable

PBMC for 7 days at 37°C in a CO2 incubator (Thermo Fisher).

During the last 16 h of incubation, Brefeldin-A (5 µg/ml; Sigma

−Aldrich) was added, after which the cells were washed with PBS

(Corning), stained with Zombie Aqua Fixability dye (BioLegend),

washed with PBS+1% BSA (Millipore Sigma−Aldrich) and stained

for surface markers with GITR BV711, PD1 BV785, Lag3 APC-Cy7

(BioLegend), CD4 PerCP-C75.5, CD25 PECF594, and CD3 Ax700

(BD Biosciences) in BD Horizon Brilliant Stain Buffer Plus (BD

Biosciences). The cells were then washed and fixed/permeabilized

with the eBioscience FOXP3/Transcription Factor Staining Buffer

Set (Invitrogen). The cells were washed with the kit-provided buffer

and stained for intracellular markers with IL-10 BV421, CTLA4

BV605, GranzB FITC, FOXP3 PE, TGFb PE-Cy7 (BioLegend), and

IL-35 APC (R&D Systems) in BD Horizon Brilliant Stain Buffer

Plus. The cells were then washed and resuspended in PBS+1%

paraformaldehyde before acquisition on a NovoCyte Quanteon

cytometer (Agilent). PBMC from a study-dedicated leucopack

control were used in each run to ensure interassay

reproducibility. The data analysis was performed in FlowJo (BD

Biosciences). The Treg/Tici% was calculated using live PBMC as the

parent. Gating strategy in Supplementary Figure S3.

Analysis of DNA methylation was performed on CD4+ T cells

purified using Miltenyi Biotech CD4 isolation kit (Cat#130-096-

533) as per manufacturer’s instructions. The methylation analysis

used the Infinium® MethylationEPIC BeadChip (Illumina) as per

manufacturer’s instructions.
Microbiome profiling

The fecal microbiota was profiled by 16S rRNA gene

sequencing. Methods and results were previously published (59).

All the sequences and corresponding metadata were deposited in

the NCBI Sequence Read Archive under BioProject accession

number PRJNA816484.
Statistical analysis

T cell subset group comparisons
T cell subsets with frequencies <0.001% at all time points were

excluded from the analysis through an a priori decision based on the

analytical sensitivity of the flow cytometry method. Relative

frequencies were used to identify differences in HEUs and HUUs at

birth, 6 weeks, 28 weeks, and 62 weeks. These cross-sectional analyses

used Wilcoxon rank sum tests from the rstatix package (69), and the
frontiersin.org
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FDR was used to correct for multiple comparisons for each visit.

Additional analyses examining the effects of covariates such as sex and

viral load (<50 or >50 HIV RNA copies/ml of plasma) were also

conducted as described above. Spearman’s rank correlation coefficient

was used to quantify the strengths of the relationships between

continuous variables such as birthweight and CD4 count and the

various Treg/Tici subsets. Longitudinal analyses of flow cytometry

data used relative frequencies for each cell type andweremodeled with

a linear mixed effects model (LMM) to account for repeated

measurements within each infant. The LMM assumed a normal

distribution for the relative frequencies, used a random intercept for

infant ID, and included terms for exposure, time (treated as categorical

to allow more flexibility) and the interaction between exposure and

time. Differences in trends between groups were determined by

evaluating F tests for the exposure-by-time interaction. An FDR

threshold of <0.1 was used to determine statistical significance for

all tests. All analyses were conducted using R version 4.1.3 (70).

Methylation analyses
Intensity data (IDAT) files containing the methylation data were

read with R and analyzed using the procedure described byMaksimovic

et al. (71). Quality control showed that the average detection p values

were <0.006 and below the described cutoff. To minimize variation

between samples, data normalization was conducted using the

preprocessQuantile method. Filtering was then used to remove the

poor-performing probes. Probes were removed if they failed in one or

more samples (n = 5,741), were on sex chromosomes (n = 10,185), were

in known SNPs (n = 28,298), or were known to be cross-reactive (n =

24,688), resulting in a final list of 796,947 probes. Differential

methylation analysis was subsequently used to identify differences in

CpG sites between HEUs and HUUs. M-values were calculated using

the lmFit function from the limma package (72), and an FDR cutoff of

<0.1 was used to determine significant differences. To interpret the

significant CpG sites, gene ontology (GO) analysis was conducted. In

addition to identifying differentially methylated CpG sites, differentially

methylated regions were also analyzed using the DMRcate package (73).

Correlation analyses
Spearman correlation analyses were used to determine the

relationships between the microbiome and the Treg/Tici subsets. All

significant microbiome data from our previous analysis (59) were

compared with the Treg data at 6 weeks, 28 weeks, and 60 weeks. The

maternalmicrobiomewas used to correlate with infant Treg data at birth.

The Treg data weremodeled using HIV exposure status as a confounder,

and the residuals of themodel were used to evaluate the relationship with

themicrobiome data. Spearman’s rank correlation coefficient was used to

identify the strength of the associations, and an FDR of <0.1 was used to

determine statistical significance. All multiple comparison adjustments

were performed by visit. Chord diagrams were subsequently constructed

for visualization using the Circlize package (74).
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TABLE 1 Participant characteristics at delivery#.

Mothers

Mothers
with HIV

Mothers
without HIV p-value

(N=123) (N=117)

Age (years)

Median [Q1, Q3] 30.0 [26.0, 34.5] 25.0 [22.0, 30.0] < 0.01

Previous Pregnancies

Median [Q1, Q3] 2.00 [1.00, 3.00] 1.00 [0, 2.00] < 0.01

Missing 2 (1.6%) 5 (4.3%)

BMI at 62 Weeks

Median [Q1, Q3] 23.9 [20.5, 28.1] 27.1 [21.7, 31.1] 0.02

Missing 51 (41.5%) 59 (50.4%)

Smoking During Pregnancy

No 114 (92.7%) 113 (96.6%) 0.18

Alcohol During Pregnancy

No 112 (91.1%) 109 (93.2%) 0.55

CD4+ Cells/µl

Median [Q1, Q3] 347 [227, 499] not applicable

Missing 7 (5.7%) not applicable

Log HIV RNA copies/ml

Median [Q1, Q3] 1.00 [0, 2.06]* not applicable

Missing 10 (8.1%) not applicable

Compliant with ART

Yes 122 (99.2%) not applicable

Infants
HEU HUU

(N=123) (N=117)

Sex

Female 65 (52.8%) 56 (47.9%) 0.44

Mode of Delivery

Vaginal 116 (94.3%) 116 (99.1%) 0.07

Gestational Age (weeks)

Mean (SD) 39.1 (2.22) 39.3 (1.52) 0.48

Missing 4 (3.3%) 1 (0.9%)

Birth Weight (g)

Mean (SD) 3070 (423) 3250 (437) < 0.01
fr
#Maternal BMI was measured at 62 weeks postpartum.
*Target not detected was assigned a numeric of 0 and <20 a value of 10 copies/ml.
ART, antiretroviral treatment; BMI, Body mass index; HIV, Human immunodeficiency virus;
HEU, HIV-exposed uninfected; HUU, HIV-unexposed uninfected.
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Ex vivo induction of Treg/Tici
Nonparametric paired comparisons of bacteria-treated and

untreated cells were performed using Prism 10.1.1 for MacOS

software (GraphPad).
Results

Characteristics of the study population

This study enrolled 240 mother–infant pairs from Soweto,

including 123 mothers with HIV and 117 without HIV, between

June and December 2017. Notable differences between mothers in

the two groups were greater chronological age and parity and lower

body mass index (BMI) in mothers with HIV (Table 1). There were

no differences in alcohol or tobacco use or education level between

the two groups. Mothers with HIV had a median of 347 CD4+ T

cells/µl of blood and <50 HIV RNA copies/ml of plasma.

At birth, the HEUs and HUUs had similar gestational ages

according to the study design, with an average of 39 weeks. The sex

distribution was also similar (Table 1). The HEUs had significantly

lower birth weights, with a mean of 3070 g, than the 3250 g in

HUUs, but no infants met criteria for small for gestational age or

large for gestational age. Seven HEUs and one HUU were delivered

by emergency C-section for obstetrical indications identified after

the initiation of labor.

Infant diet and antibiotic usage, including cotrimoxazole inHEUs,

were recorded at each visit (Supplementary Table S1). There were no

appreciable differences in infant diets between HEUs and HUUs.

Mothers and infants who received antibiotics within 1 month prior

to stool collection with the exception of cotrimoxazole in HEUs were

excluded from the microbiome analyses.

The analysis of the infant gut microbiome at 6, 28, and 62 weeks,

maternal gut microbiome at delivery and 62 weeks postpartum, and

breastmilkmicrobiome at 6weeks postpartum, described in a previous

manuscript (59), showed significant differences between HEUs and

HUUs and between mothers with and without HIV.
Treg/Tici subset distribution in HEUs
and HUUs

CD4+ and CD8+ Treg/Tici subsets were identified by the

expression of previously described Treg/Tici markers (12, 29, 63–

65) FOXP3 and/or CD25, CD39, CTLA4, GITR, granzyme B

(GranzB), IL10, IL35, LAG3, PD1, TGFb, TIM3, TIGIT, and/or

TNFR2 using two 10-color flow cytometry panels referred to here as

panels A and B (gating strategy and fluorescence minus one shown

in Supplementary Figure S1).

The comparison of Treg/Tici subsets in cord blood between the

two groups (Figure 1, Supplementary Table S2) revealed significantly

greater proportions of CD4+FOXP3+, CD4+FOXP3+CD25+, and

CD4+GITR+ Treg in HEUs than HUUs and greater proportions of

CD4+FOXP3+GranzB+, CD4+TGFb+, and CD8+TGFb+ Treg in

HUUs than in HEUs after adjusting the analysis for multiple

comparison using the Benjamini-Hochberg false discovery rate
Frontiers in Immunology 05
(FDR) with p<0.1. Notably, despite higher FOXP3 expression in

HEUs, we found an increased frequency of CD4+FOXP3+GranzB+

% in HUUs due to much higher expression of GranzB in this group

(not depicted). There were no significant differences at 6 weeks of life.

At 28 and 62 weeks, the Treg/Tici subsets that significantly differed

between the two groups were invariably greater in HEUs than HUUs

and included CD4+GITR+, CD4+IL35+, CD4+TGFb+, CD8+IL35+,
and CD8+TGFb+.
Effect of maternal HIV disease
characteristics on the distribution of Treg/
Tici in HEUs

We investigated the relationship between maternal CD4+ cell

numbers and plasma HIV RNA copies/ml at delivery and the

frequency of Treg/Tici subsets in HEUs. Spearman correlation

analysis of maternal CD4+ cell numbers with all Treg/Tici subsets at

all visits revealed significant correlationsonlyatbirth and foronly three

Treg/Tici subsets: CD4+TGFb+, CD8+TGFb+ and CD8+CTLA4+

(Figure 2). The frequencies of the three Treg subsets increased with

decreasing maternal CD4+ cell numbers, with rho values of -0.27 to

-0.35, rawp values of 0.0005 to 0.01, andFDR-adjusted p values of 0.03

to 0.08. There were no appreciable differences in the Treg/Tici subset

frequencies between HEUs born to mothers with HIV plasma RNA

<50 copies/ml or ≥50 copies/ml (not depicted).
Differential DNA methylation of CD4+ T
cells in HEUs and HUUs at birth

We hypothesized that differential Treg distributions between

HEUs and HUUs starting at birth might reflect variability in

patterns of DNA methylation acquired in utero. This hypothesis

seemed particularly appropriate for explaining the excess

expression of FOXP3 in HEU CD4+ T cells, which has been

associated with hypomethylation of several DNA loci (61).

However, the analysis of differentially methylated regions in CD4

+ T cells from the cord blood of 40 HEUs and 40 HUUs revealed

significant differences in a single gene, thioredoxin-interacting

protein (TXNIP), which was hypomethylated in HEUs compared

with HUUs (Supplementary Table S3). Pathway analyses using the

GO and KEGG databases did not reveal any significant differences.
Effect of infant sex and birth weight on the
frequency of Treg/Tici

We investigated the relationships of birth weight and sex with

Treg/Tici distribution. We did not find any relationship between

birth weight and Treg/Tici frequencies in HEUs or HUUs (not

depicted). We found a significant effect of sex only in HUUs and

only at 28 weeks of life, with males showing higher proportions of

CD4+FOXP3+GranzB+ and CD8+FOXP3+ Treg (Figure 3).

Because all infants were born at term according to the study

design, we could not evaluate the effect of gestational age.
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FIGURE 1

Comparison of Treg/Tici subset frequencies in HEUs and HUUs. Data were derived from a longitudinal cohort of 123 HEUs and 117 HUUs. (A) Treg/
Tici subsets listed on the y ordinate were compared between HEUs and HUUs using Wilcoxon rank-sum test. The dots represent differences in each
Treg/Tici subset at the time points indicated on the graph (top). N (bottom) indicates the number of HEUs in red font and HUUs in blue font that
contributed data at each time point. Red dots indicate significant differences with FDR-adjusted p<0.1. The size of each dot is inversely proportional
to the unadjusted p value. The distance between each dot and 0 is proportional to the size of the estimated difference. Please see Supplementary
Figure S1 for the gating strategy and Supplementary Table S2 for a listing of medians and p values. (B) Typical examples of the magnitude of
differences between HEUs and HUUs Treg/Tici subsets. Graph titles indicate time points and the Treg/Tici subsets. The violin plots show individual
data points and medians. HEUs are represented by red dots and HUUs by blue dots.
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Relationship of microbiota with the
differential frequencies of Treg/Tici in
HEUs and HUUs

We tested the hypothesis that differences in Treg/Tici subsets

between HEUs and HUUs could be explained by differences in

maternal or infant gut microbiota, which we previously showed to
Frontiers in Immunology 07
significantly differ between HEUs and HUUs (59) (Supplementary

Figure S2). To address this hypothesis, we correlated the relative

abundances of maternal gut bacterial genera with infant Treg/Tici

subsets at birth and the infant microbiota with Treg/Tici subsets at

concurrent study visits at 6, 28 and 62 weeks of life. Both analyses

focused on bacterial taxa and Treg/Tici subsets that differed

between mothers with and without HIV at delivery and/or
FIGURE 2

Effect of maternal CD4+ cell numbers on HEU TregTici subsets. Data were derived from 99 HEUs. Graphs show the correlations between maternal
CD4+ cell numbers at delivery and frequencies of the Treg/Tici subsets denoted in the title of each graph. The graphs display coefficient of
correlations and raw p values calculated by Spearman’s test. FDR p values were ≤0.08.
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between HEUs and HUUs. The results revealed multiple significant

associations (Figure 4, Supplementary Table S4). The number of

associations decreased over time, due in part to the convergence of

the gut microbiota of HEUs and HUUs over time and the reduction

in the number of Treg/Tici subsets with differential frequencies. The

subsets that correlated with the relative abundance of bacterial taxa

in the gut expressed CD25, CTLA4, FOXP3, FOXP3 and GranzB,

IL-10, IL-35, Lag3, PD-1, TGFb, and/or TNFR2. Multiple bacterial

taxa correlated with the frequencies of Treg/Tici (Figure 4,

Supplementary Table S4), some of which exhibited significant

correlations at multiple time points.

We further postulated that if the relationships between

microbial products and Treg/Tici frequencies were causal, they

would be reproducible in vitro. To test this hypothesis, we identified

bacterial taxa with higher abundance in HEUs than HUUs and

significant positive correlations with Treg/Tici subsets and classified

them as Category A bacteria. Conversely, we classified as Category B

bacteria, the taxa with higher abundance in HUUs than HEUs and

significant Treg/Tici positive correlations. We reasoned that if our

hypothesis was correct, in vitro treatment of PBMC from HUUs

with Category A bacterial products would increase the frequencies

of Treg/Tici generally higher in vivo in HEUs than HUUs.

Conversely, in vitro treatment of HEU PBMC with Category B

bacterial products would increase the frequencies of Treg/Tici

generally higher in vivo in HUUs. The bacterial taxa included in

Category A were Lactococcus , Klebsiel la , Blautia , and

Ruminococcus. Blautia is a Firmicute that belongs to the family of

Lachnospiraceae (75) and an SCFA producer (75). The relative

abundance of Blautia sp. was associated with increased expression

of FOXP3, GranzB, CTLA4, PD1, TGFb and Lag3 in our study

participants. Lactococcus is also a Firmicute that can produce

acetate and was associated with increased numbers of Treg/Tici

expressing PD1, TGFb, and CTLA4. Ruminococcus is a Firmicute

that can produce butyrate (76, 77). Its abundance was positively

correlated with the expression of IL10 and IL35 in our participants.

Bacteria included in Category B were Enterobacter and Proteus,

both belonging to the phylum Proteobacteria , family
Frontiers in Immunology 08
Enterobacteriaceae, which are commonly found in the infant gut

microbiome (78). In our study, these bacteria were associated with

increased expression of IL10, CTLA4, LAG3, PD1, and TNFr2.

The in vitro experiments were executed in accordance with

previous studies that characterized the effect of bacterial products

on immune cell subsets (79–83). Using preoptimized conditions, we

treated PBMC in vitro with the UV-inactivated equivalent of 10

colony-forming units/cell or medium control for 7 days. At the end

of the incubation, we measured the frequencies of Treg/Tici

expressing FOXP3, CD25, CTLA4, GITR, GranzB, Lag3, IL-10,

IL-35, and/or TGFb (the gating strategy is shown in Supplementary

Figure S3). PBMC from seven HUUs showed significant increases

in the proportions of CD4+PD1+ Treg/Tici when treated with L.

lactis or K. pneumoniae compared to medium control (Figure 5). In

addition, CD4+FOXP3+CD25+ Treg were significantly increased

by K. pneumoniae, CD8+FOXP3+ by B. wexlerae, and CD4+TGFb+
by R. bromii (Figure 5). Notably, these in vitro effects largely

replicated the correlations observed in vivo (Figure 4,

Supplementary Table S4). In contrast, UV-inactivated bacterial

treatment did not significantly increase the proportions of any

Treg/Tici subsets in HEU PBMC (Supplementary Figure S4). The

results observed in HUUs were largely replicated in three

experiments using healthy donor adult PBMC (Supplementary

Figure S5).
Discussion

In this study, we identified differences in the frequencies of

Treg/Tici subsets between HEUs and HUUs in the first year of life

and established correlations with maternal and infant

characteristics. The most prominent factor associated with the

frequencies of Treg/Tici was the abundance of certain bacterial

taxa in the gut microbiome. We previously identified multiple

differences in the HEU and HUU gut microbiota (59) and

demonstrate here that these differences are associated with

divergent infant Treg/Tici development between these groups.
FIGURE 3

Effect of sex on Treg/Tici distribution in infancy. Data were analyzed in 123 HEUs and 117 HUUs. There was a significant effect of sex only in HUUs at
28 weeks of life. The graphs show the distribution of the Treg/Tici subsets identified in the titles in 18 female and 27 male infants. The asterisks
indicate nominal p values<0.01 calculated by Wilcoxon rank-sum test. The FDR adjusted p values were 0.09 for the CD4+FOXp3+GranzB+%
comparison and 0.04 for the CD8+FOXP3+% comparison.
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Notably, differences in the gut microbiota of mothers with and

without HIV were associated with differences in Treg/Tici

frequencies in HEU and HUU cord blood. These findings are in

agreement with previous studies showing that the maternal gut

microbiome plays an important role in the development of the

infant immune system (84–86). For example, Tanabe et al. showed

an association between the maternal gut microbiome and cytokine

levels in cord blood (87), and several studies both in humans and in

animal models have reported profound effects of the maternal diet

on the neonatal immune system mediated by the maternal gut

microbiome (84, 88, 89). The communication between the maternal

gut microbiome and the fetal immune system is likely to be assisted
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by bacterial metabolites that freely cross the placenta (87) and

deserves further study.

We postulated that some associations between the gut

microbiota and Treg/Tici differential frequencies between HEUs

and HUUs reflect direct effects of bacterial taxa on the immune

system. For four organisms, higher in HEUs than HUUs, including

select species of Blautia, Lactococcus, Klebsiella and Ruminococcus,

we confirmed their direct relationship with the expansion of Treg/

Tici using an in vitromodel. For two other microorganisms, Proteus

and Enterobacter, which were greater in HUUs than in HEUs, and

are commonly found in infant gut microbiomes (78), we could not

demonstrate similar relationships. The mechanism underlying the
FIGURE 4

Chord diagram of associations between Treg/Tici subset frequencies and the abundance of gut microbiota that distinguish HEUs from HUUs. Data
were derived from HEUs and HUUs with paired Treg/Tici and gut microbiome data at the time points indicated on the graph. The Treg/Tici subsets
at birth were correlated with maternal microbiota at delivery. Red chords indicate positive correlations and blue chords negative correlations with
FDR p<0.1. Treg/Tici subsets are clustered on the upper part of the circles (green) and bacteria on the lower part (grey). Rho and p values are listed
in Supplementary Table S4.
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relationships that we identified are likely to involve microbiota-

synthesized metabolites, which cross the gut epithelial barrier and

inform the immune system development through epigenetic

imprinting and post-translational modification of proteins

involved in signal transduction (90, 91).

In our previous study, we found that Blautia was more

abundant in the gut microbiomes of mothers with HIV than in

those without HIV, and its relative abundance was positively

correlated within mother-infant dyads (59), suggesting that HEUs

acquired the bacteria directly from their mothers or through shared

local conditions in the gut. In this study, the relative abundance of

Blautia sp. was associated with increased expression of FOXP3, an

effect which was reproduced in vitro. Blautia’s secondary

metabolites and their relationship with human health and disease

have raised interest in understanding its physiological properties as

well as local gut conditions that modulate its growth (75, 92).

Collectively, these observations suggest that Blautia may play a role

in the immunologic dysfunctions observed in HEUs.

Lactococcus produces acetate under low-glucose conditions,

which may contribute to T-cell differentiation via the Treg

pathway. In fact, L. lactis was associated with Treg induction in

several animal models (93–95). Less is known about the relationship

between Lactococcus and Treg in humans. In people with HIV,

Lactococcus has not stood out in the composition of the gut

microbiome but was the second most common microbe identified

in the serum of ARV-treated individuals (96). In our study,

Lactococcus was more abundant in HEUs than in HUUs but not
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in mothers with HIV compared to those without HIV (59). In vivo,

Lactococcus was associated with increased abundance of Treg/Tici

expressing PD1, which was corroborated in vitro.

Ruminococcus spp. are butyrate producers and, therefore, have

the ability to stimulate Treg differentiation (76, 77). There is

conflicting information regarding the abundance of Ruminococcus

in people with HIV (97–100). In our previous study, we did not find

differences in the abundance of Ruminococcus in mothers with or

without HIV. Nevertheless, Ruminococcus had a greater relative

abundance in HEUs than in HUUs and was correlated with the

frequency of CD4+ and CD8+ Treg expressing IL10 or IL35. In

vitro, R. bromii expanded CD4+TGFb+ Treg. Its role in the immune

dysregulation of HEUs deserves to be further elucidated.

Klebsiella spp were shown to potentially contribute to the

enhanced inflammatory profile of people with HIV and to their

neurocognitive impairment (101–103). In our study, Klebsiella was

positively associated with increased of PD1+ both in vivo and in

vitro. PD1 is an ici that is commonly expressed on Treg and on

activated conventional T cells. When bound to its ligands, PDL1

and PDL2, the coupled receptors generate inhibitory intracellular

signals that depress the immune response (104). Collectively, these

observations suggest that the high abundance of Klebsiella in the

HEU gut microbiome may contribute to immunologic dysfunction

and may warrant studies of interventions to decrease its

representation in the gut of HEUs and/or their mothers.

Another factor associated with the excess Treg in HEUs was low

maternal CD4+ cell numbers. This association was present at
FIGURE 5

Ex vivo treatment of PBMC with bacterial isolates recapitulates in vivo associations with Treg/Tici subsets. Left panels: Data were generated using
PBMC from 7 HUUs each treated for 7 days with the UV-inactivated bacterial cultures indicated on each graph. P values were calculated with
Wilcoxon matched-pairs signed rank test. Right panels show typical flow cytometric representations of the data summarized in the left panels. Full
gating strategies are shown in Supplementary Figure S3. Please see Supplementary Figure S4 for examples of bacterial isolates that did not expand
Treg/Tici subsets in HEU PBMC and Supplementary Figure S5 for effect on adult PBMC.
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delivery, suggesting that in utero communication between mothers

and fetuses constituted the underlying mechanism. CD4+ T-cell

depletion in people with HIV is largely explained by immune

activation in addition to the viral cytopathic effect (105). There is

active communication through the placenta between the maternal

and fetal immune systems, which may explain the effect of maternal

immune activation on fetal immune responses. We have previously

shown that, compared with mothers without HIV, mothers with

HIV have increased circulating inflammatory marker levels at

delivery and that, compared with HUUs, HEUs also have

increased plasma inflammatory markers at birth (106). It is

conceivable that Treg/Tici expand in HEUs in utero to mitigate

inflammation and immune activation induced by the mother. This

notion is supported by our previous observation that plasma

inflammatory marker levels are positively correlated with the

frequencies of Treg subsets in pregnant women with HIV (64).

We found two Treg subsets that were significantly greater in

HUU males than females at 28 weeks of age. However, we did not

find similar differences at other ages in HUUs or in HEUs at any

age. Thus, additional confirmatory studies are needed to validate

these findings.

We did not find that differential DNA methylation of CD4+ T

cells played a role in the difference in Treg variance between HEUs

and HUUs. TXNIP was the only gene hypomethylated in HEUs.

Although TXNIP products play a role in hematopoietic cell

differentiation, proliferation, apoptosis, and NK cell function

(107, 108), a direct contribution to the differentiation of Treg has

not been identified to date.

Our study has both limitations and strengths. The number of

infants with Treg/Tici measurements decreased from delivery to 62

weeks of life; some of the Treg/Tici may have been in more than one

subset because of marker co-expression; and we were unable to

investigate potential associations between Treg abundance and ART

regimen because all mothers received a fixed dose combination

consisting of tenofovir, emtricitabine and efavirenz. Nevertheless,

our study has the largest cohort of HEUs and HUUs and the longest

follow-up for the comparison of the frequency of Treg/Tici in the

two groups and for the association of immunologic and gut

microbiome differences between groups. A strength of this study

was the in vitro verification of microbiome-immune interactions

initially identified by in vivo associations.

In conclusion, our study established that the frequencies of

Treg/Tici subsets differ in HEUs and HUUs from birth to 62 weeks

of life, and there is an absolute excess of Treg in HEUs between 28

and 62 weeks of life. We showed in a previous study that a greater

proportion of Treg was associated with decreased conventional

CD4+ T-cell function in HEUs (12), suggesting that the excess Treg

during infancy may underlie the increased susceptibility of HEUs to

infections. The factors associated with Treg/Tici development that

may be modified through interventions are the infant and maternal

gut microbiomes and maternal inflammation. These interventions

may result in lower Treg/Tici frequencies in HEUs and potentially

lower susceptibility to serious infections compared to the current

status quo.
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