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Exploring shared pathogenic
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inflammatory bowel disease
through bioinformatics and
machine learning
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2Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun,
Jilin, China
Background: The coexistence of hepatic fibrosis (HF) and inflammatory bowel

disease (IBD) represents a significant clinical concern due to their poorly

characterized shared pathogenic mechanisms. Current limitations in identifying

common biomarkers for comorbid cases impede early dual diagnosis and

therapeutic interventions.

Methods: Differentially expressed genes (DEGs) were screened, followed by

Weighted Gene Co-expression Network Analysis (WGCNA) to identify disease-

associated modules. The key diagnostic biomarkers were determined via a

protein-protein interaction (PPI) network combined with two machine learning

algorithms. The logistic regression model was subsequently developed based on

these key genes. Immune cell infiltration profiling of both diseases was assessed

via the CIBERSORT algorithm. The construction of genes-miRNAs and genes-TFs

(Transcription Factors) regulatory networks were based on the NetworkAnalyst

website. Potential drug-gene interactions were predicted utilizing the DSigDB

database. The expression and distribution of these genes were validated through

single-cell sequencing analysis.

Results: A sum of 119 up-regulated genes and 17 down-regulated genes were

screened, which were enriched in categories associated with immune cell

infiltration and chemotaxis, cytokine regulation, metabolic processes,

enzymatic activity, and extracellular matrix deposition, based on enrichment

analysis. WGCNA revealed four disease-associated gene modules. Four shared

diagnostic genes for both diseases were screened, including MMP2, COL1A2,

STAT1, and CXCL1. ROC curve analysis confirmed robust diagnostic performance

as AUC > 0.7 for individual genes and AUC > 0.85 for combined model. M1

macrophages were significantly increased in both pathologies of diseases. A total

of 462 drugs were predicted targeting these biomarkers in the DSigDB database.
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The four key diagnostic gene expression patterns across diverse cell

subpopulations were visualized by single-cell sequencing analysis.

Conclusion: MMP2, COL1A2, CXCL1, and STAT1 were identified as shared

biomarkers for IBD and HF, providing a molecular basis for early diagnosis and

precision medicine approaches. It elucidated the similarities between HF and IBD

in terms of immunity, metabolism, and fibrosis.
KEYWORDS

hepatic fibrosis, inflammatory bowel disease, biomarkers, WGCNA, machine
learning algorithms
1 Introduction

Hepatic fibrosis (HF) arises from an imbalance between

synthesis and degradation of the extracellular matrix during

chronic liver injury and repair processes, leading to aberrant

amass of fibrous liver tissue. Etiologies contain alcoholic liver

disease, viral hepatitis (such as hepatitis B and C), and non-

alcoholic fatty liver disease (NAFLD) (1). Inflammatory bowel

disease (IBD), encompassing ulcerative colitis and Crohn’s disease

(CD), is featured with ongoing and recurrent intestinal

inflammation. While the precise pathogenesis of IBD remain

elusive, they are closely related to environmental, genetic,

infectious, and immune factors (2). Prolonged intestinal

inflammation can ultimately progress to intestinal fibrosis and

stricture formation. Reports indicate that, within a decade of

being diagnosed, surgical intervention is necessary for 70% of

Crohn’s disease patients, with half of these cases attributed to

developed intestinal strictures (3).

As the most widespread chronic diseases affecting the digestive

system, their concurrence is not rare. Recent research has shown

that 42.00% of IBD patients have metabolic-associated fatty liver

disease (MAFLD), with 9.50% progressing to advanced hepatic

fibrosis. The study also indicated that IBD independently predicts

MAFLD (adjusted odds ratio [aOR], 1.99; P<0.001) and serves as an

independent risk factor for advanced hepatic fibrosis (aOR, 5.55;

P<0.001) (4). Moreover, primary sclerosing cholangitis is an

immune-mediated hepatobiliary disorder pathologically defined

by peripheral fibrosis of intrahepatic and extrahepatic bile ducts,

progressing to cirrhosis during its advanced stages. It is indicated to

be related to IBD, with prevalence rates reaching up to 88% in

affected cohorts (5). Furthermore, the use of immunosuppressants,

a common therapeutic approach for IBD, may predisposes patients

to hepatitis virus reactivation in those co-infected with both IBD

and viral hepatitis. This drug-induced hepatotoxicity induces

potential liver dysfunction and accelerates hepatic fibrosis

progression, as exemplified by anti-TNF-a agents (6, 7). Studies

have also reported that advanced hepatic fibrosis, namely cirrhosis,
02
independently negatively impacts the prognosis of hospitalized IBD

patients (8). In summary, the co-occurrence of HF and IBD

warrants attention, and it holds significant research priority when

delving into their convergent mechanisms and potential shared

therapeutic targets.

Currently, the diagnostic paradigms of hepatic fibrosis primarily

relies on histopathological evaluation of pathological biopsy, along

with non-invasive examination methods based on serological or

ultrasonic indicators (9, 10). The diagnosis of IBD encompasses

serum and fecal testing, intestinal ultrasonography, endoscopic

visual inspection, and histopathological confirmation, among others

(11–13). However, these methodologies are inadequate to provide

accurate diagnoses at the early stages of diseases, with the presence of

false positives or false negatives, and they do not offer profound

insights into their underlying mechanisms. Identifying shared

biomarkers for both diseases could help overcome these limitations,

especially in cases where IBD coexists with hepatic fibrosis.

Additionally, predicting pharmacological agents that target shared

biomarkers may facilitate the treatment of both conditions, thereby

enabling dual-purpose therapeutic strategies, minimizing the risk of

polypharmacy, and enhancing clinical outcomes for patients with

concurrent HF and IBD.

Recent evidence highlights bidirectional gut-liver crosstalk as a

mechanistic bridge: impaired hepatic bile acid synthesis in fibrosis

modifies the composition of intestinal microbiota, leading to dysbiosis

and barrier dysfunction (14–16). Conversely, gut-derived bacterial

metabolites and pathobionts translocate via portal circulation,

triggering hepatic inflammation through pattern recognition receptors

(17, 18). However, existing studies predominantly emphasize

phenomenological associations rather than systematic identification of

shared molecular drivers. Critical gaps persist in three aspects (1): No

integrative analysis of disease-specific transcriptomes to pinpoint

overlapping pathways; (2) Lack of shared biomarkers capable of dual

diagnosis and therapeutic interventions; (3) Limited exploration of

immune-microenvironment interplay across both diseases.

To overcome these gaps, we employed a comprehensive analysis

of integrating HF and IBD transcriptomic profiles derived from
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microarray datasets in the GEO database. Using bioinformatic

methods, we screened for differentially expressed genes (DEGs)

and identified gene modules common to both diseases. Then, we

established a protein-protein interaction (PPI) network and utilized

machine learning algorithms to find out the key diagnostic genes.

We also explored the correlations between these genes and various

immune cells, established genes-miRNAs and genes-TFs regulatory

networks, and predicted corresponding drugs for the key diagnostic

genes utilizing the DSigDB database. Finally, we verified the

expression and distribution of these genes through single-cell

data. Overal l , our study offers fresh perspect ives on

comprehending the shared pathogenic mechanisms of HF and

IBD, and identifies shared biomarkers for these two disorders.
2 Materials and methods

2.1 Data collection

We chose three HF-related datasets, with GSE84044 serving as

the training set, which includes 43 samples at stage 0 and 28 samples

at stages 3-4. The datasets GSE49541 and GSE6764 were used as

validation sets. Specifically, GSE49541 comprises 40 samples at

stages 1–2 and 32 samples at stages 3-4, while GSE6764 includes 10

normal samples and 13 samples of cirrhosis. These three datasets

are all relevant to gene expression profiles of human liver tissue

samples through microarray technology, with the platform

being GPL570.

For IBD, two datasets were selected. GSE126124 served as the

training set, with 57 IBD samples and 21 normal samples.

GSE47908 was treated as the validation set, including 39 IBD

samples and 15 normal samples. The samples selected from the

aforementioned two datasets are both human colon biopsy samples,

and the gene expression profiles were detected through microarray

technology. The platform for GSE126124 is GPL6244, while the

platform for GSE47908 is GPL570.
2.2 Screening of DEGs and enrichment
analysis

We utilized the “limma” R package to identify DEGs between

groups in the GSE84044 and GSE126124 datasets. The criteria for

screening DEGs were “|log2 Fold Change (FC) | > 0.5, the adjusted

p-value< 0.05”. Subsequently, we plotted volcano plots of DEGs via

the “ggplot” R package, with genes satisfying “|log2 FC| ≥ 2 and the

adjusted p-value< 0.01” highlighted. Heatmaps were generated via

the “pheatmap” R package to display the expression patterns of the

top 50 genes with the smallest p-values in each dataset. Venn

diagrams were drawn via the ‘VennDiagram’ R package to illustrate

the intersection of the up-regulated DEGs between the two datasets,

as well as the intersection of the down-regulated DEGs. GO and

KEGG enrichment analyses were deployed by the enrichGO and

enrichKEGG functions in the “clusterProfiler” R package,
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respectively, and their visualizations were conducted via the

dotplot function of “enrichplot” R package.
2.3 WGCNA

We applied the “WGCNA” R package to conduct Weighted

Gene Co-expression Network Analysis (WGCNA), which aimed at

identifying gene modules that are jointly relevant to hepatic fibrosis

and IBD. To facilitate a better analysis, we merged the GSE84044

and GSE126124 datasets and eliminated batch effects via the

“Combat” function of “sva” R package. Hierarchical clustering of

samples was developed utilizing the “hclust” function from the

“stats” R package. Outlier samples were excluded by applying the

“cutreeStatic” function from the “WGCNA” R package, with the

parameter “cutHeight” set at 65 and parameter “minSize” at 10. The

“pickSoftThreshold” function was utilized to identify the

appropriate soft threshold for constructing networks. Based on

the optimal soft threshold selected, network construction and

modu l e i d en t ifi c a t i on we r e c a r r i ed ou t u s i ng th e

“blockwiseModules” function, with parameter “minModuleSize”

set at 60 and parameter “mergeCutHeight” at 0.25. We deployed

the Pearson correlation coefficient to describe the correlations

between gene modules and disease traits, which were then

visualized using a heatmap. Gene modules that were positively or

negatively correlated with both diseases were selected. “Gene

significance” was used as a metric to quantify the association

between genes and disease phenotypes, while “module

membership” represented the correlations between genes and a

given module. Additionally, genes from the modules commonly

associated with both diseases were extracted and subjected to GO

and KEGG enrichment analyses via the “clusterProfiler” R package.
2.4 Construction of PPI network and
machine learning-based screening of key
diagnostic genes

The identified common DEGs were submitted to the STRING

website (https://string-db.org/) to establish a PPI network,

following which genes without connections were eliminated.

These genes were subsequently imported into the Cytoscape

software, where the MCC algorithm, embedded within the

cytohubba plugin, was applied to select the 30 most prominent

genes. Two machine learning algorithms were applied to identify

key diagnostic genes. The Random Forest (RF) algorithm was

implemented using the “randomForest” R package, while Support

Vector Machine- Recursive Feature Elimination (SVM-RFE)

algorithm was executed through the “e1071” and “MSVM-RFE” R

packages. The genes screened by both algorithms for the two

diseases were intersected, and the outcomes were visualized

through the “ggvenn” R package. Meanwhile, to further

demonstrate the comprehensive diagnostic capabilities of these

genes, we developed a logistic regression model from the key
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genes using the “lrm” function from the R package “rms”, and

subsequently developed a nomogram using the “nomogram”

function. To assess the diagnostic effectiveness of these key genes

and the prognostic model for two diseases, ROC curves were

generated across various datasets via the “pROC” R package, with

the AUC values serving as indicators. Additionally, box plots

illustrating gene expression levels across different groups were

obtained utilizing the “ggboxplot” function from the “ggpubr”

R package.
2.5 Immune infiltration analysis

The CIBERSORT algorithm was deployed to identify the

proportions of infiltrated immune cells within the tissues. Violin

plots visualized immune cell composition disparities between

disease and control groups. The correlations of the obtained key

diagnostic genes with immune cells were represented by Pearson

correlation coefficients and displayed through a heatmap.
2.6 Construction of the genes-miRNAs and
genes-TFs regulatory networks, and
prediction of candidate drugs

The prediction of regulatory miRNAs and transcription factors

(TFs) of the key diagnostic genes were carried out using the TarBase

and JASPAR databases, respectively. The regulatory networks of

genes-miRNAs and genes-TFs were developed via the

NetworkAnalyst website (https://www.networkanalyst.ca/). Key

diagnostic genes were input into the Enrichr website (https://

maayanlab.cloud/Enrichr/), and the DSigDB database was applied

for predicting drugs related to these key diagnostic genes.
2.7 Single-cell sequencing data analysis

We downloaded the single-cell sequencing dataset GSE136103

related to liver cirrhosis and selected three liver cirrhosis samples

and three normal samples for subsequent analysis. Additionally, the

IBD-related single-cell sequencing dataset GSE214695 was

downloaded, and three Crohn’s disease samples along with three

normal samples were chosen. The “Seurat” R package was used for

data processing. Data quality control standards were established as “

200 < nFeature_RNA < 4000, percent.mt < 10, and percent.HB < 3”.

Following this, the data were normalized. We scaled the 2000 most

variable genes using the “ScaleData” function and then performed

dimensionality reduction using the “RunPCA” function. We

utilized the “harmony” R package to eliminate batch effects

among samples. Cell clustering was conducted by applying the

“FindNeighbors” and “FindClusters” functions, and subsequently

visualized using the UMAP plot. Cell annotation was carried out

through the “singleR” R package, followed by manual correction.

The “FeaturePlot” function was employed for UMAP visualization

of key diagnostic genes. The “Dotplot” function was utilized to
Frontiers in Immunology 04
visualize the proportions of cells expressing key diagnostic genes

and their average expression levels across different cell types.
3 Results

3.1 Acquisition of the common DEGs

As illustrated in the volcano plots, we screened 1312 up-

regulated genes and 462 down-regulated genes in GSE84044

dataset (Figure 1A), while 412 up-regulated genes and 270 down-

regulated genes in GSE126124 dataset (Figure 1B). The heatmaps

display the expression patterns of top 50 genes with the statistical

significance in each dataset, respectively (Figures 1C, D). As

depicted in the Venn diagram, there are 119 common up-

regulated genes and 17 common down-regulated genes between

GSE84044 and GSE126124 datasets (Figures 1E, F).
3.2 Enrichment analysis of the common
DEGs

In Figure 2A, the enrichment results of the common up-

regulated genes in BP are mainly associated with immune cell

migration and chemotaxis, in CC they mainly relate to extracellular

matrix components, and in MF they are predominantly linked to

extracellular matrix components and cytokine activity. As shown in

Figure 2B, the common up-regulated genes are primarily enriched

in pathways of Chemokine signaling pathway, Cytokine-cytokine

receptor interaction, and NOD-like receptor signaling pathway.

Additionally, they encompass pathways associated with other

diseases, including Rheumatoid arthritis, Coronavirus disease -

COVID-19, and Leishmaniasis. As illustrated in Figure 2C, the

GO enrichment results of the common down-regulated genes are

primarily associated with metabolic processes and enzyme activity.

In Figure 2D, under the condition of the adjusted p-value < 0.05, the

KEGG analysis of the common down-regulated genes enriched in

only four terms, with “Drug metabolism-cytochrome P450” being

the most significant.
3.3 Acquisition of gene modules related to
both diseases through WGCNA

After merging the GSE84044 and GSE126124 datasets and

addressing batch effects, we employed the “cutreeStatic” function

with a threshold set at 65 to exclude six outlier samples, retaining a

total of 143 samples (Supplementary Figure 1; Figure 2). Taking

into account both the scale-free topology fit index and the average

connectivity, the optimal soft-thresholding value (b) was 7

(Figure 3A). As depicted in the “cluster dendrogram”, a sum of

18 gene modules were determined (Figure 3B). The heatmap

displayed the correlation coefficients and corresponding p-values

between each gene module and disease traits (Figure 3C). Notably,

the blue module exhibited positive correlations with both diseases
frontiersin.org
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(HF: r=0.18, p=0.03; IBD: r=0.43, p=1e-07), and the magenta

module also exhibited a positive relationship (HF: r=0.28, p=8e-

04; IBD: r=0.4, p=7e-07). Conversely, the red module was negatively

associated with both diseases (HF: r=-0.33, p=6e-05; IBD: r=-0.29,

p=5e-04), consistent with the black module (HF: r=-0.23, p=0.006;
Frontiers in Immunology 05
IBD: r=-0.25, p=0.002). The genes within these modules were

considered to have close associations with both diseases.

Furthermore, we investigated the association between “Gene

Significance” and “Module Membership” of the genes in these

modules. As revealed in the scatter plots, all exhibited
FIGURE 1

Screening for the common DEGs between GSE84044 and GSE126124. (A, B) Volcano plots of the DEGs in GSE84044 and GSE126124.
(C, D) Heatmaps of the top 50 genes with the most significance in GSE84044 and GSE126124. (E) Venn diagram showcasing the intersection of the
up-regulated genes between GSE84044 and GSE126124. (F) Venn diagram showcasing the intersection of the down-regulated genes between
GSE84044 and GSE126124.
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significantly positive correlations with statistical difference

(Supplementary Figure 3).
3.4 Enrichment analysis of gene modules
jointly associated with both diseases

To identify the underlying biological functions of these gene

modules, we applied the genes for GO and KEGG analyses. In

Figure 4A, the blue gene module is primarily enriched in cell

adhesion-related terms in BP, terms associated with cell

membrane structure and extracellular matrix components in CC,

and terms related to cytokine receptor binding in MF. As illustrated
Frontiers in Immunology 06
in Figure 4B, the KEGG enrichment analysis results for the blue

gene module encompass pathways such as Chemokine signaling

pathway, Cytokine-cytokine receptor interaction, and Cell adhesion

molecules. Additionally, it includes some pathways associated with

other diseases, such as Epstein-Barr virus infection, Tuberculosis,

and Toxoplasmosis. In Figure 4C, the red gene module

predominantly enriches in terms associated with metabolic

processes in BP, terms related to mitochondria, peroxisomes, and

microsomes in CC, and terms linked to enzyme activity in MF. As

demonstrated in Figure 4D, the KEGG enrichment analysis results

of the red gene module still include several metabolism-related

pathways. However, both the magenta and black gene modules,

under the condition of the adjusted p-value < 0.05, enrich only a few
FIGURE 2

Enrichment analysis of common DEGs. (A) GO analysis of the up-regulated genes, presenting the top 7 terms with the smallest p-values in BP, CC
and MF. (B) KEGG analysis of the up-regulated genes, presenting the top 20 pathways with the most significance. (C) GO analysis of the down-
regulated genes, presenting the top 7 terms with the most significance in BP, CC and MF. (D) KEGG analysis of the down-regulated genes. In (C), the
section marked with # has been omitted, and the full term is “oxidoreductase activity, acting on paired donors, involving the incorporation or
reduction of molecular oxygen, with reduced flavin or flavoprotein serving as one donor, and incorporating one atom of oxygen”.
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terms (Supplementary Tables 1-3), and no pathways were found for

KEGG enrichment analysis of black gene modules.
3.5 Construction of PPI network for the
common DEGs

To identify key diagnostic genes for both diseases, we input 136

DEGs into the STRING website and removed the nodes without

connections to establish a PPI network (Figure 5A). Further, we

utilized the MCC algorithm in Cytoscape to select the top 30 genes,

which served as candidate genes for identifying key diagnostic

genes (Figure 5B).
3.6 Screening of key diagnostic genes via
machine learning algorithms

Subsequently, we employed two algorithms to select diagnostic

genes. The RF algorithm identified the top 10 genes in GSE84044

and GSE126124, with a gene importance scale presenting the top 20

genes (Figures 6A–D). The SVM-RFE algorithm selected 21 genes

with the lowest 5-fold cross-validation (CV) error and the best 5-

fold CV accuracy in GSE84044 (Figures 6E, F), and 29 genes with

the same criteria in GSE126124 (Figures 6G, H). By considering the

intersection of these genes, we finally obtained four genes MMP2,

COL1A2, STAT1, and CXCL1 (Figure 6I). They are considered to
Frontiers in Immunology 07
have the most diagnostic performance for HF and IBD. To further

verify the comprehensive diagnostic capability, we constructed

logistic regression models using key diagnostic genes in the

training sets. The model formula established in the GSE84044

was expressed as (3.784*CXCL1 + 3.588*MMP2 + 0.665*COL1A2

+ 0.327*STAT1), while the model developed in the GSE126124 was

formulated as (1.228*CXCL1 + 0.735*MMP2 + 0.248*COL1A2 +

0.879*STAT1). Figure 7 presents the nomograms of the models.
3.7 Validation of diagnostic efficacy of key
diagnostic genes and the model

We subsequently validated the diagnostic performance of these

four genes and the model across different datasets using ROC

curves. The results confirmed that the AUC values were greater

than 0.7 in each dataset (Figure 8), demonstrating excellent

diagnostic efficacy of these four genes for both diseases. The

model exhibited good diagnostic performance with AUC values

above 0.85 in both training and validation sets (Figure 8).
3.8 Validation of expression levels of key
diagnostic genes

We visualized the alterations in the four gene expression levels

in the GEO database. The findings revealed that the expression
FIGURE 3

WGCNA. (A) Selection of appropriate soft threshold. (B) Gene clustering dendrogram. (C) Heatmap of correlations between gene modules
and diseases.
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levels of these four genes exhibited a consistently upward trend in

the disease groups compared to the control groups across all

datasets for both diseases (Figure 9).
3.9 Immune infiltration analysis

According to Figure 10A, with p-value < 0.05, in the hepatic

fibrosis dataset GSE84044, activated NK cells, CD8+ T cells, gdT
cells, and M1 macrophages were significantly increased in the

disease group, while resting NK cells, resting memory CD4+ T

cells, and M2 macrophages were significantly decreased. In the IBD
Frontiers in Immunology 08
dataset GSE126124, plasma cells, M0 macrophages, and M1

macrophages were significantly elevated in the disease group

(Figure 10B). The investigation into gene-immune cell

relationships in GSE84044 unveiled that the four genes were

significantly inversely linked with resting NK cells, M2

macrophages, while positively linked with CD8+ T cells

(Figure 10C). The genes STAT1, CXCL1, and COL1A2 were

significantly positively linked with gdT cells (Figure 10C). In

GSE126124, the four genes were significantly inversely associated

with CD8+ T cells, regulatory T cells (Tregs), activated NK cells,

and monocytes, while positively associated with activated memory

CD4+ T cells, resting NK cells, neutrophils, M1 macrophages, and
FIGURE 4

Enrichment analysis of gene modules related to both diseases. (A) GO analysis of the blue gene module, presenting the top 7 terms with most
significance in BP, CC and MF. (B) KEGG analysis of the blue gene module, presenting the top 20 pathways with the most significance. (C) GO
analysis of the red gene module, presenting the top 7 terms with the smallest p-values in BP, CC and MF. (D) KEGG analysis of the red gene module,
presenting the top 20 pathways with the most significance.
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M0 macrophages (Figure 10D). Additionally, COL1A2, CXCL1,

and STAT1 were significantly inversely linked to resting mast

cells (Figure 10D).
3.10 Construction of regulatory networks
for genes-miRNAs and genes-TFs

In the TarBase database, 172 regulatory miRNAs were predicted

for the COL1A2, 165 for STAT1, 112 for the MMP2, and 65 for

CXCL1. The genes-miRNAs regulatory network comprises a sum of

306 nodes and 514 edges, with 18 miRNAs exhibiting regulatory

effects on four genes (Figure 11A; Supplementary Table 4). In the

JASPAR database, 10 TFs were predicted for CXCL1, 8 for

COL1A2, 7 for STAT1, and 6 for MMP2. The genes-TFs

regulatory network encompasses 23 nodes and 30 edges, where

GATA2 acts on MMP2, CXCL1, and STAT1, while FOXC1

influences MMP2, CXCL1, and COL1A2 (Figure 11B;

Supplementary Table 5).
3.11 Prediction of drugs related to key
diagnostic genes

In the DSigDB database, 462 drugs were predicted with the

adjusted p-value<0.05 (Supplementary Table 6). The top 10 drugs

with the smallest p-values include: “N-Acetyl-L-cysteine CTD

00005305”, “Dinoprostone BOSS”, “PD 98059 CTD 00003206”,

“Arsenious acid CTD 00000922”, “Phenylarsine oxide CTD

00001378 ” , “Ace tovan i l l one CTD 00002374 ” , “22 -

Hydroxycholesterol CTD 00000121”, “alpha-Neu5Ac BOSS”,

“Cyclohexanecarboxamide, 4-(1-aminoethyl)-N-4-pyridinyl-,
Frontiers in Immunology 09
t rans- CTD 00003513” , and “Electrocorundum CTD

00005364” (Table 1).
3.12 Validation of expression and
distribution of key diagnostic genes in
single-cell sequencing data

In the single-cell data of IBD, all cells were partitioned into 18

clusters (Figure 12A), and through cell annotation, a total of 9

distinct cell populations were obtained: T cells, plasma cells,

epithelial cells, neutrophils, myofibroblasts, mononuclear

phagocytes, B cells, mast cells, and endothelial cells (Figure 12B).

Detailed annotation information is provided in the Supplementary

Materials (Supplementary Figure 4). The bubble plot (Figure 12C)

revealed that MMP2 and COL1A2 were primarily expressed in

myofibroblasts, while STAT1 exhibited a certain level of expression

across all cell types, with particularly high expression in

myofibroblasts, and mononuclear phagocytes. Additionally, the

expression of CXCL1 was mainly elevated in myofibroblasts and

Neutrophils. The UMAP plot (Figures 12D–G) illustrated the

expression and distribution of these four genes among different

cell populations.

In the single-cell data of HF, all cells were categorized into 16

clusters (Figure 13A). Subsequent cellular annotation revealed 12

cell populations: NK cells, mononuclear phagocytes, T cells,

endothelial cells, cholangiocytes, smooth muscle cells, plasma

cells, B cells, myofibroblasts, hepatocytes, mast cells, and dendritic

cells (Figure 13B). Comprehensive annotation details are available

in the Supplementary Materials (Supplementary Figure 5). The

bubble plot (Figure 13C) showed that MMP2 and COL1A2 was

primarily expressed in myofibroblasts. STAT1 was expressed in
FIGURE 5

Construction of PPI network. (A) PPI network of common DEGs, excluding genes without connections. (B) Top 30 genes obtained by
MCC algorithm.
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almost all cell populations, with significantly high expression in

hepatocytes and cholangiocytes. CXCL1 was primarily highly

expressed in Hepatocytes and cholangiocytes. The UMAP plot

(Figures 13D–G) illustrated the expression and distribution of

these four genes among different cell populations.
4 Discussion

A growing body of research has indicated a high prevalence of

coexisting HF and IBD, which complicates the management and

treatment of these conditions. Furthermore, these two diseases

interact through the gut-liver axis and exhibit numerous
Frontiers in Immunology 10
similarities in their pathological mechanisms. To investigate the

common pathogenic mechanisms underlying both diseases and to

identify shared biomarkers, we conducted a series of analyses

utilizing cutting-edge bioinformatic methods.

We screened for common DEGs between the two diseases and

identified gene modules that were correlated with both diseases

through WGCNA analysis. Further analysis was employed to

elucidate the functional enrichment of the key genes. The results

indicated that terms related to the extracellular matrix, such as

“collagen-containing extracellular matrix” were significantly

enriched among the up-regulated genes. The amass of

extracellular matrix is a hallmark of fibrosis. Hepatic stellate cells

(HSCs) are integral to the pathogenesis of HF, where they can
FIGURE 6

Feature gene selection using machine learning algorithms. (A, B) Feature gene selection in GSE84044 using Random Forest(RF). (C, D) Feature gene
selection in GSE126124 using Random Forest(RF). (E, F) Feature gene selection in GSE84044 using SVM-RFE. (G, H) Feature gene selection in
GSE126124 using SVM-RFE. (I) Intersection of feature genes selected by both machine learning algorithms.
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transform into myofibroblasts under the influence of profibrotic

factors, releasing large amounts of collagen and extracellular matrix

(ECM) degradation inhibitors, thereby promoting ECM deposition

(19). Intestinal fibrosis represents a pathologically significant

sequela of IBD, where mesenchymal cells, upon stimulation by

profibrotic factors, can differentiate into activated myofibroblasts,

which subsequently generate substantial amounts of ECM, thereby

promoting the development of fibrosis (20). In addition, pro-

fibrotic factors such as TGF-b, PDGF, and IGF-I, which can be

produced by multiple cell types, are capable of effectively activating

myofibroblasts (20). These studies are consistent with our findings,

which further confirm that the fibrotic process is a common feature

of both HF and IBD.

Our analysis further revealed marked enrichment of cytokine

activity regulation within the up-regulated genes, underscoring that

there are many common cytokines and immune pathways

implicated in the pathogenesis of HF and IBD, and that both

conditions exhibit complex immune-fibrotic regulatory

networks (Figure 14).
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The NOD-like receptor (NLR) and Toll-like receptor (TLR)

signaling pathways exhibited significant enrichment among

common up-regulated genes. As members of pattern recognition

receptors (PRRs), both NLRs and TLRs play critical roles in innate

immune responses by recognizing danger signals. In the liver,

Kupffer cells can sense stimuli from injured hepatocytes and

microbial pathogens, producing IL-1b, IL-18, TNF-a, and various

chemokines to recruit other immune cells, thereby promoting

hepatic inflammatory cascades (19). In IBD, gut barrier

dysfunction enables bacterial translocation, activating

mononuclear phagocytes via PRRs. This triggers the release of IL-

1b, TNF-a, IL-6, and IL-23, initiating downstream immune

activation and perpetuating intestinal inflammation (21). Multiple

studies have demonstrated that IL-23 blockade alleviates both

Crohn’s disease and ulcerative colitis (22, 23). Our findings

further underscore the importance of NLRs and TLRs in both

diseases, implying aberrant overactivation of innate immune

responses in their pathogenesis, which provides novel insights

into the shared molecular mechanisms between these disorders.
FIGURE 7

Nomogram of the model: (A) Nomogram for the HF training dataset GSE84044; (B) Nomogram for the IBD training dataset GSE126124.
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Chemokines have a major influence on the chemotaxis and

infiltration of immune cells. Our study confirmed that up-regulated

genes are significantly enriched in “leukocyte chemotaxis” and

“chemokine signaling pathway”, suggesting that targeting the

chemokine signaling pathway would be effective for alleviating the

diseases. Chemokines such as CXCL9, CXCL10, CXCL16, and

CCL20 are involved in the recruitment of lymphocytes, while

monocytes are recruited through CCL2 (19). Monocyte-derived

macrophages play significant roles in liver inflammation. Notably,

scar-associated macrophages(SAMs) can secrete TGF-b, IL-1b, and
TNF-a to induce hepatic stellate cell activation, representing a critical

cellular population driving fibrogenesis (24). Interfering with CCR2+

monocyte recruitment through pharmacological means effectively

reduces hepatic inflammation and attenuates fibrosis (25). It has

shown that CCR2+ monocytes can promote colonic fibrosis by

producing TIMP-1, which inhibits collagen degradation (26).

Neutrophil infiltration is mediated by CXCL1 and CXCL8 (27, 28),

Neutrophils can secrete IL-17 to promote the activation of hepatic

stellate cells in HF (19, 29), and in IBD, they can produce IL-1 and IL-

22, exacerbating intestinal inflammatory responses (21). Our studies

reveal shared genetic networks governing leukocyte migration and
Frontiers in Immunology 12
chemotaxis between HF and IBD, establishing a conceptual

framework for future in-depth mechanistic investigations.

Cytokines such as IFN-g, IL-17, and IL-22 secreted by

lymphocytes also play crucial roles in the processes of

inflammation and fibrosis. In our study, the IL-17 signaling and

Th17 cell differentiation pathway were significantly enriched among

the up-regulated genes, indicating Th17 responses as a shared

pathogenic feature for both diseases. Evidence has verified that

IL-1, IL-6, and IL-17 exert pro-inflammatory activities in HF and

IBD, while IL-10 and IL-35 demonstrate anti-inflammatory

activities (30, 31). A recent study reported that PBX1 promotes

HF through IL-17 signaling transduction in hepatic stellate cells

(32), and the development of liver fibrosis would be alleviated when

blocking the IL-17 signaling axis (33, 34). The level of IL-17 is

significantly elevated in the stricture areas of the intestine in

Crohn’s disease (35), and IL-17 in the intestinal mucosa promotes

fibrosis by facilitating epithelial-mesenchymal transition (36). The

convergence of evidence reinforces our identification of IL-17

signaling as a shared pathogenic pathway, indicating its

therapeutic potential in managing comorbid conditions.

Moreover, IL-22 derived from Th17 cells demonstrates significant
FIGURE 8

ROC curves evaluating the diagnostic efficacy of key genes and the model. (A–E) ROC curves of four genes and the model in different datasets:
GSE84044 (A), GSE49541 (B), GSE6764 (C), GSE126124 (D), and GSE47908 (E).
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upregulation in HF, where it potentiates TGF-b signaling in hepatic

stellate cells via the p38/MAPK pathway to accelerate fibrosis (29). In

summary, our findings highlight similar cytokine regulatory networks

underlying HF and IBD, providing critical insights for developing

immunotherapeutic strategies to concurrently ameliorate both conditions.
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To identify common biomarkers, we established a PPI network

utilizing the intersected DEGs, and further utilized the MCC

algorithm in Cytoscape software to select top 30 genes. Based on

these 30 genes, we deployed two machine learning algorithms to

determine feature genes of HF and IBD. The intersection yielded
FIGURE 9

Expression levels of key diagnostic genes in different datasets. (A–E) Box plots showing four gene expressions in different datasets: GSE84044 (A),
GSE49541 (B), GSE6764 (C), GSE126124 (D), and GSE47908 (E). **P < 0.01, ***P < 0.001.
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FIGURE 10

Immune infiltration analysis. (A, B) Violin plots of immune cell proportions in GSE84044 and GSE126124. (C, D) Heatmap of correlations between key
diagnostic genes and immune cells in GSE84044 and GSE126124. *P < 0.05, **P < 0.01, ***P < 0.001.
FIGURE 11

Construction of genes-miRNAs and genes-TFs regulatory networks. (A) genes-miRNAs regulatory network. (B) genes-TFs regulatory network. The
dark blue squares represent miRNAs, with the names of those that have regulatory relationships with all four key diagnostic genes labeled; the red
circles represent key genes; the light blue diamonds represent transcription factors.
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four genes MMP2, COL1A2, STAT1, and CXCL1, which are

validated to have diagnostic significance for both diseases.

MMP2 (Matrix Metallopeptidase 2) is a zinc-dependent enzyme

located on chromosome 16 and belongs to the Matrix

Metalloproteinase (MMP) family. MMP2 exhibits the ability to

degrade gelatin, as well as type IV collagen, which is an important

element of the basement membrane in the ECM. Furthermore,

MMP2 is critical for processes such as tissue repair and tumor

invasion (37, 38). COL1A2 encodes one of the chains of type I

collagen, along with two COL1A1 chains, forms the triple helix

structure of type I collagen to be a crucial component of the ECM

(39). Based on previous studies, both COL1A2 and MMP2 have

been examined as fibrosis-related genes to assess tissue fibrosis

status (40, 41). In single-cell sequencing data of HF and IBD, both

MMP2 and COL1A2 are highly expressed in myofibroblasts, further

underscoring the crucial role of myofibroblasts in promoting

fibrosis. STAT1 is a member of the STAT protein family. Upon

stimulation by cytokines or growth factors, STAT1 undergoes

phosphorylation by JAKs to form dimers, which then translocate

into the nucleus to modulate gene expression (42). Inhibition of

STAT1 has been shown to mitigate inflammatory diseases mediated

by Th1 and Th17 cells (43). In the context of colitis, STAT1 is

implicated in mediating the pro-inflammatory effects of GBP5 (44),

and the therapeutic efficacy of Tofacitinib in treating ulcerative

colitis is associated with the downregulation of STAT1 expression

(45). IFN-g induces endothelial-mesenchymal transition by

activating the JAK/STAT1 signaling pathway, thereby promoting

hepatic fibrosis (46). However, it has also been reported that STAT1

activation in hepatic stellate cells (HSCs) triggers apoptosis, which

exerts anti-fibrotic effects (47). These findings appear contradictory

and necessitate further investigation. CXCL1 belongs to the CXC

chemokine subfamily and has been shown to regulate cell

chemotaxis, particularly of neutrophils (28, 48). Studies have

shown that the administration of a high-fat diet alongside
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excessive alcohol consumption in mice results in the enhanced

expression of CXCL1 in the liver and stimulates liver neutrophil

infiltration, ultimately inducing acute liver inflammation and

damage (49). CXCL1 can activate HSCs through autocrine

mechanisms, thereby contributing to the progression of hepatic

fibrosis (50). Other studies have identified a pivotal role for NOD2-

NFkB/AP1-CXCL1/CXCL2 signaling pathway in the pathogenesis

of IBD (51). Interestingly, The NOD-like receptor signaling

pathway is significantly enriched among the up-regulated genes in

our study. This report corroborates our findings and suggests that

targeting the NOD2/CXCL1 signaling axis is a viable strategy for

treating IBD. In summary, these four genes have distinct functional

implications and have been described in the context of HF and IBD,

but their specific mechanisms still require further investigation.

In this study, we have identified these four genes as shared

biomarkers for HF and IBD from a cross-disease perspective for the

first time. They exhibit consistently stable expression patterns

across both training and validation sets for two diseases. The

AUC values were all above 0.7 among ROC curves, with some

even exceeding 0.9, indicating the reliable diagnostic predictive

capability of these four genes. The successful construction of the

logistic regression model further attests to the comprehensive

diagnostic efficacy of four key genes. They also serve as potential

therapeutic targets. These findings offer perspectives for novel

diagnostic and therapeutic approaches for IBD and HF, especially

when these two diseases coexist.

Notably, in single-cell sequencing of IBD, all four key genes are

highly expressed in myofibroblasts, which further emphasizes the

significant role of myofibroblasts in promoting intestinal fibrosis.

Previous studies have reported that in IBD, activated mesenchymal

cells not only produce ECM but also generate chemokines and

cytokines, forming a positive feedback loop that promotes immune

responses and fibrosis (52). However, in single-cell sequencing data

of HF, the expression of CXCL1 and STAT1 is not prominent in
TABLE 1 Top 10 Drugs ranked by the p-values in the DSigDB database.

Term p-value Adjusted p-value Genes

N-Acetyl-L-cysteine CTD 00005305 6.04E-08 3.38E-05 COL1A2;STAT1;MMP2;CXCL1

Dinoprostone BOSS 3.68E-06 0.001028778 STAT1;MMP2;CXCL1

PD 98059 CTD 00003206 8.80E-06 0.001640489 COL1A2;STAT1;MMP2

Arsenenous acid CTD 00000922 1.69E-05 0.002108219 COL1A2;STAT1;MMP2;CXCL1

phenylarsine oxide CTD 00001378 1.89E-05 0.002108219 STAT1;MMP2

Acetovanillone CTD 00002374 2.83E-05 0.002259251 STAT1;CXCL1

22-Hydroxycholesterol CTD 00000121 2.96E-05 0.002259251 STAT1;CXCL1

alpha-Neu5Ac BOSS 3.23E-05 0.002259251 COL1A2;MMP2

Cyclohexanecarboxamide, 4-(1-aminoethyl)-N-4-pyridinyl-,trans- CTD 00003513 4.12E-05 0.002558954 COL1A2;MMP2

Electrocorundum CTD 00005364 5.47E-05 0.003056863 COL1A2;MMP2
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myofibroblasts, reflecting functional heterogeneity of these cells

across different tissues. In single-cell sequencing data of HF,

CXCL1 and STAT1 are significantly highly expressed in

cholangiocytes. A recent study reported that Osteopontin

promotes the secretion of CCL2, CCL5, and CXCL1 by

cholangiocytes, facilitating the aggregation of pro-inflammatory

monocytes (53). This finding supports our results and further

highlights the crucial role of cholangiocytes in secreting

chemokines to promote inflammatory responses.

It confirmed a significant upregulation of M1 macrophages in

both diseases via immune infiltration analysis, suggesting that

targeting M1 macrophages would be a promising strategy for

mitigating these conditions. M1 macrophages are known to
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produce high levels of pro-inflammatory cytokines, including IL-

6, IL-1b, and TNF-a, which exacerbate IBD and liver injury (54).

Studies have reported that decreasing M1 macrophage polarization

and enhancing M2 macrophage polarization can downregulate pro-

inflammatory cytokine levels and mitigate CCl4-induced hepatic

fibrosis in mice (55). Recently, it has been reported that Artesunate

alleviates ulcerative colitis in mice by enhancing M2/M1 ratio

through the inhibition of endoplasmic reticulum stress (56).

Another investigation revealed that the administration of bone

marrow-derived M1 macrophages via the tail vein can facilitate

the accumulation of Ly6Clo macrophages to the fibrotic liver, which

secret MMPs to promote collagen degradation, and also recruit NK

cells to promote HSCs apoptosis, thereby alleviating hepatic fibrosis
FIGURE 12

Single-cell sequencing analysis related to IBD (A) UMAP plot of cell clustering. (B) UMAP plot of different cell populations after cell annotation.
(C) Bubble plot showing expression levels and proportions of key diagnostic genes in different cell populations. (D–G) UMAP plot of expression and
distribution of key diagnostic genes across different cell populations: COL1A2 (D), CXCL1 (E), MMP2 (F), and STAT1 (G). MPs, mononuclear
phagocytes; CD, Crohn’s disease.
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in mice (57). This strategy may also hold potential for the treatment

of intestinal fibrosis in IBD, but further research is warranted. The

four key diagnostic genes exhibit significant correlations with

various immune cells, suggesting a close relationship between

these genes and immune responses.

To achieve a more profound comprehension of the mechanisms

governing these four key diagnostic genes in disease, we further

constructed genes-TFs and genes-miRNAs regulatory networks.

There are as many as 18 miRNAs that have common regulatory

effects on the four genes, meriting further investigation. We

observed that both GATA2 and FOXC1 are associated with three

target genes within the regulatory network, implying their
Frontiers in Immunology 17
significant roles. GATA2 is capable of binding to the DNA

sequence “GATA” through two zinc finger domains and

reorganize the chromatin near the binding site to activate or

repress gene expression. It can also interact with other

transcription factors (58). As a part of the FOX transcription

factor family, FOXC1 functions in embryonic development and

tumor progression (59). Additionally, STAT1, can modulate the

expression of COL1A2, and the mechanism underlying their

interaction in disease contexts require further investigation.

Studies on these transcription factors in both diseases remain

limited, and their regulatory interactions with target genes

necessitate additional experimental validation. Based on these
FIGURE 13

Single-cell sequencing analysis related to cirrhosis. (A) UMAP plot of cell clustering. (B) UMAP plot of different cell populations after cell annotation.
(C) Bubble plot showing expression levels and proportions of key diagnostic genes in different cell populations. (D–G) UMAP plot of expression and
distribution of key diagnostic genes across different cell populations: COL1A2 (D), CXCL1 (E), MMP2 (F), and STAT1 (G). MPs, mononuclear
phagocytes; DC cells, dendritic cells; MFBs, myofibroblasts; SMCs, smooth muscle cells.
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four key genes, we predicted potential therapeutic drugs that may

have therapeutic effects on both diseases through the DSigDB

database, but further experimental and clinical validation

is essential.

Our study is not devoid of limitations. First, the sample size

analyzed herein is confined, necessitating the incorporation of

additional samples in future endeavors to validate our results and

enhance the credibility of the research. Second, our research did not

involve the establishment of cell and animal models to investigate

the functions of key genes, thereby constraining our comprehension

of their profound underlying mechanisms of act ion.

Notwithstanding these constraints, our investigation offers fresh

insights into the shared mechanisms underlying these two diseases,

setting a foundational groundwork for subsequent scholarly

pursuits. The identification of four crucial diagnostic genes opens
Frontiers in Immunology 18
up new avenues for the diagnosis and therapeutic intervention of

both diseases, particularly when they co-occur.
5 Conclusion

In conclusion, we identified four key diagnostic genes: MMP2,

COL1A2, CXCL1, and STAT1, which can serve as shared biomarkers

for IBD and HF. We simultaneously constructed a logistic regression

model based on four key diagnostic genes with good diagnostic

performance. We further determined the correlations of key

diagnostic genes with immune cells, constructed regulatory

networks of genes-miRNAs and genes-TFs, predicted associated

drugs, and verified the expression and distribution of these four

genes in single-cell sequencing data. We have also indicated the
FIGURE 14

The immune-fibrosis regulatory network in IBD (A) and HF (B), and the role of biomarkers therein. This picture is drawn by Figdraw. SAMs, scar-
associated macrophages.
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similarities between HF and IBD in terms of immunity, metabolism,

and fibrosis, specifically including immune cell infiltration and

chemotaxis, intercellular adhesion, cytokine regulation, metabolic

processes, enzymatic activities, and extracellular matrix deposition.
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