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Background: Recent studies have suggested a potential association between

gastric cancer (GC) and myocardial infarction (MI), with shared pathogenic

factors. This study aimed to identify these common factors and potential

pharmacologic targets.

Methods: Data from the IEU Open GWAS project were used. Two-sample

Mendelian randomization (MR) analysis was used to explore the causal link

between MI and GC. Transcriptome analysis identified common differentially

expressed genes, followed by enrichment analysis. Drug target MR analysis and

eQTLs validated these associations with GC, and the Steiger direction test confirmed

their direction. The random forest and Lasso algorithms were used to identify genes

with diagnostic value, leading to nomogram construction. The performance of the

model was evaluated via ROC, calibration, and decision curves. Correlations

between diagnostic genes and immune cell infiltration were analyzed.

Results: MI was linked to increased GC risk (OR=1.112, P=0.04). Seventy-four

genes, which are related mainly to ubiquitin-dependent proteasome pathways,

were commonly differentially expressed between MI and GC. Nine genes were

consistently associated with GC, and eight had diagnostic value. The nomogram

built on these eight genes had strong predictive performance (AUC=0.950,

validation set AUC=0.957). Immune cell infiltration analysis revealed significant

correlations between several genes and immune cells, such as T cells,

macrophages, neutrophils, B cells, and dendritic cells.

Conclusion: MI is associated with an increased risk of developing GC, and both

share common pathogenic factors. The nomogram constructed based on 8

genes with diagnostic value had good predictive performance.
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1 Introduction

Gastric cancer (GC) remains one of the leading causes of

cancer-related deaths worldwide. Although the incidence of GC

has declined in some regions of the world, data from the past decade

show that the incidence of GC has remained high and has even

increased in specific regions and populations (1, 2). By 2040, the

global burden of this malignant tumor is projected to increase by

62% (3). The treatment of GC is mainly radical surgery

supplemented with radiotherapy, chemotherapy, and drug

therapy. However, research on the treatment of GC is still in

progress, to further clarify the pathogenesis of GC, identify the

risk factors for GC, and overcome the challenges in the treatment of

GC (1, 4–6).

Myocardial infarction (MI), or heart attack, is a leading cause of

morbidity and mortality worldwide. It typically results from

coronary artery disease, where thrombotic occlusion of an artery

or bypass graft leads to a sudden reduction or complete interruption

of myocardial blood supply, potentially causing heart failure or

death (7–9). Established risk factors such as diabetes, smoking,

obesity, hypertension, and hyperlipidemia significantly contribute

to MI occurrence, while sex, aging, genetic predisposition, family

history of cardiovascular disease, and racial differences also play a

role (10, 11). Moreover, emerging evidence suggests that systemic

diseases, particularly cancer, may worsen MI progression or elevate

its risk, highlighting the need for further investigation into the

potential link between cancer and MI (12).

Although they belong to different systems, GC and MI share

many similar pathogenic factors and may be potentially

interrelated. Examples include inflammation (7, 13), a high-salt

diet (14, 15), and smoking (16, 17). In addition, in some cases, GC

and MI may present similar clinical features. These include pain in

the upper abdomen or chest and dyspepsia, nausea, and vomiting

(4, 18, 19). However, little is known about the complex mechanisms

underlying the relationship between GC and MI, and the available

research evidence is limited. A long-term cohort study suggested

that MI may increase the risk of cancer (20), and a large meta-

analysis revealed that Helicobacter pylori infection, one of the main

causative factors of GC, was also associated with an increased risk of

MI (21). Given these findings, exploring the common pathogenic

mechanisms of GC and MI has become an important research

direction. However, traditional observational studies have

limitations in inferring causality (22), and although associations

between GC and MI can be observed, determining the causal

relationship between them is not yet possible. Therefore, this

study aims to further explore the common pathogenic

mechanisms of these two diseases through a more rigorous study

design and to promote the progress of related diagnostic and

treatment strategies.

In recent years, Mendelian randomization (MR) analysis has

gradually become a powerful tool in the fields of drug target discovery

and drug repurposing (23). In MR studies, researchers utilize genetic

variants associated with specific exposures as instrumental variables

(IVs) to assess the causal links between exposures and outcomes.
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Compared with traditional observational studies, MR analyses can

effectively avoid the interference of confounding factors such as

acquired environmental factors and behavioral habits and

significantly reduce the influence of reverse causality (24, 25). This

approach is similar to randomized controlled trials in nature, where

genetic variation plays a role similar to that of randomized grouping,

thus providing a reliable basis for drug target validation (23). With

the rapid development of genome-wide association studies (GWASs),

MR strategies have led to breakthroughs in therapeutic target

identification for a variety of diseases (26, 27). In addition, MR

analysis of drug targets can be used to predict the pharmacological

modulatory effects of drug targets, simulate drug responses in clinical

trials, and predict the potential benefits and risks of treatment

(28, 29).

In this study, we innovatively combined MR analysis and

transcriptome analysis to investigate the association between GC

and MI and explored the potential MI-related therapeutic targets of

GC through drug target MR and machine learning. These findings

provide insights for understanding the common pathogenesis of GC

and MI.
2 Method

2.1 Study design

In this study, we first explored the causal relationship between

MI and GC via the MR method (see Figure 1). Differentially

expressed genes associated with MI and GC were subsequently

screened, and these genes were enriched and analyzed. Next, the

expression quantitative trait loci (eQTLs) of the common

differential genes of MI and GC were utilized to explore the

causal associations between these genes and GC and to verify

whether the direction of causality was as expected. Finally, to

identify candidate biomarkers and construct a prediction model

for GC, this study used machine learning algorithms, such as

random forest and least absolute shrinkage and selection operator

(LASSO) regression, to screen key genes for the construction of a

column-line graph (nomogram) and verified its performance in the

diagnosis and prediction of GC. In addition, we explored the

correlations between genes with diagnostic value and immune

cell infiltration.

The MR analysis method used in this study is consistent with

the three main hypotheses of MR research: (1) IVs are associated

with risk factors. (2) IVs are not associated with confounding

factors. (3) IVs affect the outcome only through risk factors

(30, 31) with the STRIOBE-MR guidelines (32) (Figure 1).
2.2 Data sources

GWAS data for MI (finn-b-I9_MI_STRICT_EXNONE), GC

(ebi-a-GCST90018849), and differential gene expression

quantitative trait loci (eQTLs) were obtained from the IEU Open
frontiersin.org
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GWAS project (https://gwas.mrcieu.ac.uk/). The data obtained were

derived from European populations, for which summary

information is given in Table 1. The relevant data were obtained

from publicly available GWAS databases; therefore, this part of the

study did not address the need for ethics committee approval.
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2.2.1 Instrumental variable screening conditions
for MI and GC

Significant SNPs were screened from pooled GWAS data for

MI. The linkage disequilibrium coefficient (r2) was set to 0.001, and

the width of the linkage disequilibrium region was set to 10,000 kb
FIGURE 1

Overview of study design. MR, Mendelian Randomization; GC, Gastric Cancer; MI, Myocardial Infarction; IVW, Inverse-Variance Weighted; WME,
Weighted Median Estimator; eQTLs, Expression Quantitative Trait Loci; ROC, Receiver Operating Characteristic; AUC, Area Under the Curve.
TABLE 1 Brief information on the GWAS database in the MR study.

Data source Phenotype Sample size Cases Population Adjustment

IEU Open GWAS project(finn-b-I9_MI_STRICT_EXNONE) MI 218792 11622 European Males and Females

IEU Open GWAS project(ebi-a-GCST90018849) GC 476116 1029 European –
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to ensure that the individual SNPs were independent of each other

and to exclude the influence of genetic pleiotropy on the results.

LDtrait (https://ldlink.nih.gov/?tab=ldtrait) was used to exclude

SNPs associated with confounders and outcomes. The relevant

SNPs screened above were extracted from the GWAS pooled data

of GC; the minimum r2 was set to > 0.8 (33, 34). The instrumental

variable screening condition was P < 1 × 10-5, F > 10 was set to

reduce weak instrumental variable bias, and a nonzero intercept

term in the MR−Egger regression model (P > 0.05) indicated that

there was no genetic pleiotropy in the SNPs.

2.2.2 Differential gene expression quantitative
trait loci and GC instrumental variable
screening conditions

The chain disequilibrium coefficient (r2) was set to 0.3, the width

of the chain disequilibrium region was 300 kb, and the minor allele

frequency (MAF) was >0.01 to ensure that the individual SNPs were

independent of each other and to eliminate the influence of chain

disequilibrium on the results, including the SNPs associated with

confounders and the SNPs associated with endings. Instrumental

variables located within ±300 kb from the cis-acting region of the

drug target gene were extracted from the eQTL data of the drug target

genes screened above for relevant instrumental variables (35, 36). In

addition, the above screened relevant SNPs were extracted from the

GWAS summary data of the outcome variable GC, excluding SNPs

with palindromic structure and an MAF>0.42, excluding SNPs

directly associated with the outcome variable (P<1×10-5), and

excluding abnormal SNPs via MR-PRESSO.
2.3 MR analysis methods

Two-sample MR and drug-target MR analyses were performed

via five regression models, namely, MR−Egger regression, random-

effects inverse-variance weighted (IVW), weighted median

estimator (WME), weighted model, and simple model, and two-

sample MR analyses were applied to assess the potential causal

relationship between MI and GC risk. Inverse variance weighting

(IVW) was used as the main method for causal estimation. When

SNPs ≤ 3, the effect of a single SNP on the outcome was applied to

the Wald coefficient ratio method (Wald ratio), and the rest were

applied to the fixed-effects IVW method; when more than 3 SNPs

were included, the random-effects IVW method was applied (37–

39). MR−Egger essentially uses a weaker hypothetical premise

(InSIDE) based on IVW to accomplish causal effect estimation

and detects and corrects for bias due to instrumental variable

multivariate polytomies by introducing a regression intercept to

estimate the causal relationship between the exposure and the

outcome in the presence of horizontal polytomies. The results of

MR−Egger are referred to when there are horizontal polytomies.

The Cochran's Q test and the I² (I-squared) statistic were used to

determine the heterogeneity of the SNPs, which were heterogeneous

if the Cochran's Q test had a P < 0.05 (40). The values of I² ranged

from 0% to 100%, with an I² greater than 50%, indicating that the

SNPs had some heterogeneity (41). The intercept term of the MR
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−Egger method was used for polytropy analysis, and leave-one-out

was used for sensitivity analysis. A nonzero intercept term (P >

0.05) in the MR−Egger regression model indicated that the SNPs

were not polytropic (42). Leave-one-out analyses were performed

on the SNPs by progressively removing each SNP and reanalyzing

the remaining SNPs to observe the magnitude of the effect of each

SNP on the analysis results (43, 44). All of the above methods were

implemented via the two-sample MR package in R 4.1.0 software

with a test level of a = 0.05.
2.4 MI and GC differential gene screening

Gene expression data were obtained from the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) and

The Cancer Genome Atlas (TCGA). Differential expression analysis

was performed on GC tissues (375 cases) and normal gastric tissues

(32 cases) via limma analysis, and differential expression analysis

was performed on MI patient samples (17 cases) and control

samples (20 cases) from the GEO dataset (GSE83500), and

intersections were taken for the differential genes obtained (45).
2.5 MI and GC differential gene acquisition
and gene set enrichment analysis

To further confirm the functions of potential targets, the data

were explored via functional enrichment analysis. Gene Ontology

(GO) analysis was used to examine and clarify coordinated changes

at the pathway level and gene function between phenotypes. The

focus of GO analysis is to identify differences in biological processes,

cellular components, and molecular functions to help reveal

potential biological functions.
2.6 Steiger direction test

To verify the consistency of genotypes in the direction of causality

between intermediate variables (gene expression) and the outcome (GC

and MI), the Steiger direction test was used in this study. The causal

direction was determined by calculating the explained variance of the

instrumental variables (eQTLs) on the intermediate and outcome

variables, and the direction was considered to be correct if the

explained variance of the instrumental variables on the intermediate

variables was greater than the explained variance on the outcome.

Analyses were performed via the TwoSampleMR package in R. The

significance level was set at a = 0.05, and directional consistency was

judged by “TRUE” or “FALSE” in the test results.
2.7 Screening of genes with diagnostic
value and GC prognostic modeling

To identify candidate biomarkers and build a prediction model

for GC, a variety of random forest and LASSO regression algorithms
frontiersin.org
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were used to screen key genes. The random forest algorithm is an

integrated learning algorithm that improves prediction accuracy by

constructing multiple decision trees and combining their results and

is particularly suitable for handling high-dimensional data, assessing

the importance of features, and reducing overfitting. LASSO

regression performs L1 regularization for variable selection and

model simplification, which is based on the principle of applying

penalties to the regression coefficients and reducing unimportant

feature coefficients to zero, thus improving the generalization ability

and interpretability of the model. Based on the screened genes with

diagnostic value, a nomogram was constructed via the R package

“rms”, and the area under the ROC curve was plotted to evaluate the

diagnostic effect of the genes with diagnostic value in GC diagnosis.

Finally, calibration curve and decision curve analysis (DCA) were

performed to evaluate the efficiency of the predictive model of GC

predicted by the nomogram.
2.8 Correlation analysis between genes
with diagnostic value and immune
cell infiltration

The gene expression matrix of GC was uploaded to the

CIBERSORTx database (https://cibersortx.stanford.edu/), and

immune cell infiltration was calculated for each sample. Correlation

analysis between key genes and immune cell infiltration was

performed via Spearman rank correlation coefficients.
3 Result

3.1 MI as a risk factor for GC incidence

After screening and the strict quality control described above, 21

SNPs were ultimately included for MR analysis, and the basic

information of the SNPs is shown in Table 2. After MR, the IVW

results revealed that MI was associated with an increased risk of
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developing GC (OR=1.112, 95% CI: 1.002–1.233, P=0.045)

(Figure 2A). MI heterogeneity was not detected among eQTLs

associated with GC (I²= 0%, Cochran's Q=11.199, P=0.941). The

MR−Egger results revealed no statistically significant difference

between the intercept term and 0 (P=0. 724), and MR−PRESSO

did not detect significant horizontal pleiotropy (P=0.929). Therefore,

no horizontal pleiotropy occurred in the SNPs (Table 3). Scatter and

funnel plots for GC revealed that the distributions of all the included

SNPs were largely symmetrical, indicating that causal associations

were less likely to be affected by potential bias (Figures 2B, C). After

each SNP of GC was excluded sequentially via the leave-one-out test,

the analysis results of the remaining SNPs were similar to those with

the inclusion of all the SNPs (Figure 2D), and no SNPs were found to

have a large impact on the estimation value of the causal associations,

indicating that the MR results of the present study were robust.
3.2 Analysis of DEGs and their enrichment
in MI and GC

Differential expression analysis was performed on the

transcriptome expression data of the TCGA-STAD dataset via the

limma package, and 10,233 DEGs were identified by setting

thresholds of |log 2 FC| >0.5 and P < 0.05 (Figure 3A). Similarly,

differential expression analysis was performed on the GSE83500

dataset via the limma package, and 253 DEGs were screened with

the same threshold (Figure 3B). We took the intersection of genes

that were simultaneously present in both datasets and expressed in

the same direction and obtained a total of 74 intersecting

genes (Figure 3C).

We subsequently performed gene enrichment analysis, which

revealed that the differentially expressed genes were significantly

enriched in the positive regulation of the establishment of protein

localization and other related pathways. Other biological processes

that were significantly enriched included positive regulation of

protein transport, positive regulation of protein ubiquitination,

and stellate microtubule organization. In terms of cellular
TABLE 2 Information on single nucleotide polymorphisms (SNPs) associated with MI and GC.

SNP Outcome CHR POS EA/OA EAF b* SE P F-statistic

MI

rs2016525 GC 1 174355957 G/A 0.031 0.109 0.130 0.402 20.536

rs62550966 GC 9 91397911 T/C 0.029 0.109 0.130 0.403 19.930

rs28451064 GC 21 35593827 A/G 0.103 0.098 0.062 0.113 42.903

rs148812457 GC 1 17890801 A/G 0.024 0.084 0.154 0.585 25.238

rs71632108 GC 1 181267101 C/T 0.086 0.042 0.080 0.596 20.952

rs55730499 GC 6 161005610 T/C 0.071 0.037 0.087 0.669 51.810

rs887389 GC 17 3793303 G/A 0.538 0.028 0.016 0.078 20.441

rs10776832 GC 9 138495074 T/C 0.746 0.015 0.020 0.447 20.861

(Continued)
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composition, the enriched terms were nuclear pores, the outer

nuclear membrane, and the apical junction complex. Among the

molecular functional categories, ubiquitin-protein ligase binding,

heat shock protein binding, and transcriptional coregulator binding

were notable (Figure 3D).
3.3 Expression of MI and GC common
differential genes for quantitative trait loci
validation of causal associations between
eQTLs and GCs

After screening, 74 DEGs were identified, with only 37 DEGs

from the blood eQTLs screened by available instrumental variables.

The eQTLs for 69 differential genes were extracted from the IEU

OpenGWAS program, and a total of 2101 cis eQTLs for differential

genes were identified (Supplementary Table 1). Drug target MR

analysis revealed that 9 genes were causally associated with GC in

the same direction as their expression in GC and MI. Among them, 8

genes, namely, LCOR, VPS26A, KRR1, ARHGAP21, ECHDC1,

UBE2D1, MTFR1, and ETV7, were positively associated with GC,

suggesting that they are associated with an increased risk of

developing GC. Another gene, PARD6G, was negatively associated

with GC, indicating an association with a decreased risk of GC

(Figure 4). In addition, the sensitivity test did not detect significant

horizontal pleiotropy or heterogeneity, indicating that the MR results

were robust. Finally, Steiger's direction test revealed that in the GC

ebi-a-GCST90018849 dataset, the directions of the DEGs were all

“TRUE”, indicating that the causal relationship between the DEGs

and the outcome was consistent with the expected direction

(Tables 4, 5).
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3.4 Establishment and validation of gastric
cancer-related prognostic models

Based on the results of differential analysis and MR analysis, we

screened a total of 9 genes with consistent direction and positive

analysis results and used LASSO and RF to construct a GC

prediction model to identify genes with diagnostic values for GC

(Figures 5A–C). The results revealed that the LASSO model

identified 8 genes with diagnostic value, and the RF model also

identified 8 genes with diagnostic value. The intersection of the two

methods revealed 8 common genes (Figure 5D).

To improve the diagnostic and predictive performance of GC

patients, we constructed a nomogram based on 8 genes with

diagnostic values (ARHGAP21, ETV7, KRR1, LCOR, MTFR1,

PARD6G, UBE2D1, and VPS26A) via logistic regression analysis

(Figure 6A). The AUC values of the model were all greater than

0.95, suggesting that the nomogram may have a strong diagnostic

value for predicting GC (Figures 6B, C). The calibration curve

revealed that the predicted probability of the nomogram model was

almost identical to that of the ideal model (Figures 6D, E).

Additionally, we performed DCA of the nomogram, which

indicated that decisions based on the nomogram model may be

beneficial for diagnosing GC (Figures 6F, G).
3.5 Correlation analysis of genes with
diagnostic value and immune
cell infiltration

In this study, we analyzed immune cell infiltration in GC, and

the expression of the key gene ETV7 was significantly and positively
TABLE 2 Continued

SNP Outcome CHR POS EA/OA EAF b* SE P F-statistic

MI

rs13374948 GC 1 228235008 G/A 0.147 -0.003 0.019 0.882 25.174

rs1032996 GC 1 48043687 A/C 0.928 -0.003 0.021 0.879 20.193

rs7489197 GC 12 38750065 T/C 0.286 -0.005 0.021 0.819 20.594

rs61842119 GC 10 17420907 C/T 0.186 -0.005 0.021 0.798 21.944

rs1229454 GC 7 81535972 A/G 0.470 -0.011 0.016 0.473 20.734

rs17161463 GC 5 108054728 T/C 0.220 -0.013 0.030 0.659 20.472

rs2157024 GC 16 13583664 G/A 0.320 -0.014 0.016 0.381 21.950

rs4927191 GC 1 55491702 C/T 0.246 -0.014 0.022 0.511 31.641

rs1587493 GC 2 234689751 A/G 0.859 -0.023 0.025 0.362 19.707

rs12594129 GC 15 89509679 C/A 0.029 -0.026 0.241 0.915 35.900

rs6835978 GC 4 47500814 G/A 0.200 -0.035 0.045 0.439 20.695

rs170704 GC 6 134253421 A/C 0.032 -0.167 0.132 0.207 20.887

rs142384226 GC 1 236784037 T/C 0.025 -0.341 0.257 0.184 20.337
SNP, Single Nucleotide SNP, Polymorphism; CHR, Chromosome; POS, Position; EA, Effect Allele; OA, Other Allele; EAF, Effect Allele Frequency; b, beta value; SE, Standard Error of beta;
P, P-value*. SNPs were sorted in descending order by beta value (Allele Effect Value), all with P < 5×10-8.
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FIGURE 2

Causal relationship analysis of myocardial infarction on gastric cancer risk. (A) Scatter Plot: The slope of each line represents the effect estimated
through different Mendelian randomization methods. (B) Forest Plot: Red dots indicate the combined estimate after integrating all SNPs using the
Inverse Variance Weighted (IVW) method, with horizontal lines representing the 95% confidence intervals. (C) Leave-One-Out Analysis: Black dots
represent the causal effect estimated by the IVW method while excluding a specific variant, and red dots indicate the IVW estimate using all SNPs.
TABLE 3 Results of MR analysis of the causal effect of MI on GC.

Outcome Nsnp MR Heterogeneity Horizontal pleiotropy MR-PRESSO

OR(95%CI) P
I2

(%)
Cochran's

Q
P

Egger
intercept

SE P P

GC 21
Inverse
variance
weighted

1.112 (1.002-1.233) 0.045 0 11.199 0.941 0.929

GC 21 MR Egger 1.062 (0.806-1.399) 0.675 0 11.073 0.921 0.005 0.015 0.727

GC 21 Weighted median 1.049 (0.904-1.217) 0.528

(Continued)
F
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TABLE 3 Continued

Outcome Nsnp MR Heterogeneity Horizontal pleiotropy MR-PRESSO

OR(95%CI) P
I2

(%)
Cochran's

Q
P

Egger
intercept

SE P P

GC 21 Simple mode 1.144 (0.914-1.432) 0.253

GC 21 Weighted mode 1.059 (0.925-1.212) 0.415
F
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FIGURE 3

Differentially expressed gene analysis and enrichment analysis results: (A) Volcano plot of differentially expressed genes in the TCGA-STAD dataset,
identifying 10,233 differentially expressed genes (|log2(FC)| > 0.5, P-value < 0.05). (B) Volcano plot of differentially expressed genes in the GSE83500
dataset, identifying 253 differentially expressed genes. (C) Venn diagram of the two datasets, showing 74 genes that are consistently differentially
expressed in both datasets. (D) GO enrichment analysis of the intersecting genes, significantly enriched in pathways such as positive regulation of
establishment of protein localization.
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correlated with the degree of infiltration of T.cells.follicular.helper

(p<0.001). The key gene UBE2D1 was significantly positively

correlated (p<0.001) with the degree of infiltration of

Macrophage.M0, whereas ETV7 was significantly negatively

correlated (p<0.001) with Macrophage.M0. The expression of the

key gene ARHGAP21 was significantly positively correlated

(p<0.001) with the degree of infiltration of NK.cells.resting,

whereas VPS26A was significantly negatively correlated (p<0.01)

with NK.cells.resting. The key gene ARHGAP21 was significantly

negatively correlated with the degree of infiltration of neutrophils

(p<0.05), whereas ETV7 was significantly positively correlated with

the number of neutrophils (p<0.001). The expression of the key

gene PARD6G was significantly negatively correlated (p<0.05) with

the degree of infiltration of Dendritic.cells.resting (Figure 7).
Frontiers in Immunology 09
4 Discussion

In this study, we systematically explored the common

pathogenic factors of GC and MI and identified potential

common drug targets by combining GEO data and eQTL data

with MR analysis and transcriptomics analysis. First, through MR

analysis of GWAS data of GC and MI, eQTLs of MI were found to

be significantly associated with the risk of GC. In addition, 74 genes

that were differentially expressed in GC and MI were screened via

differential expression gene analysis. Nine genes were identified as

potential drug targets for GC treatment via drug-targeted MR, and

the directional consistency of the causal associations between the

DEGs and GC was verified. A nomogram for GC was subsequently

constructed based on 8 key genes, including LCOR, which were
FIGURE 4

Causal association analysis results between gene eQTLs and gastric cancer.
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screened via random forest and LASSO regression algorithms, and

it showed good predictive performance. In addition, the expression

of key genes was significantly correlated with the degree of T-cell

infiltration according to immune cell infiltration analysis, further

suggesting the potential role of these genes in the immune

microenvironment. In this study, by integrating multisource data

and applying multiple methods, we revealed the common

pathogenic mechanism of GC and MI, identified multiple

potential drug targets, and provided new ideas for future disease

prevention and drug intervention. By combining the advantages of

MR analysis, transcriptomics, and machine learning modeling, this

paper provides more comprehensive insights into the comorbidities

of GC and MI, with important clinical applications.

Existing studies have found that patients with myocardial

infarction (MI) have a significantly higher risk of developing

cancer both in the short and long term, especially within the first

6 months after MI (20). A study by Maarten J G Leening and

colleagues showed that, although the overall cancer incidence

among STEMI patients over 5 years was similar to that of the

general population, the cancer risk was significantly higher in the

first 3 months after STEMI (12). Although gastric cancer (GC) and
Frontiers in Immunology 10
MI affect different systems, there may be a potential link between

the two. Logan Vincent and colleagues reported that GC and MI

share several pathogenic factors, such as inflammation, smoking,

and high-salt diets, which may contribute to the development and

progression of both diseases (46). Ryan J Koene's article emphasized

that inflammation is a key mechanism in both cardiovascular

disease (CVD) and cancer. Common risk factors like obesity,

hyperglycemia, hypertension, and hypertriglyceridemia can trigger

inflammation, leading to shared risk for both diseases. Additionally,

hormones, cytokines, and growth factors might also play a role in

the biological connection between these diseases (47). Therefore,

exploring the causal relationship between GC and MI is important

for understanding this association. However, most of the previous

studies used observational study designs, which revealed the overlap

between the two in terms of causative factors but were limited by

confounding factors and reverse causality, making it difficult to

draw clear causal inferences. To address this problem, MR, as an

emerging analytical tool, provides a more reliable basis for causal

inference by using genetic variation as an instrumental variable to

simulate a randomized controlled trial, which reduces the

interference of environmental and behavioral differences on the

results (48). In this study, for the first time, we not only verified the

potential causal association between GC and MI via MR analysis

but also revealed the common differential genes and potential drug

targets by combining it with transcriptomics analysis. Unlike

previous studies that explored only shared risk factors, the

present study explored the link between GC and MI at the

genetic level in detail, identifying multiple molecular mechanisms

that are jointly involved. In addition, while previous studies have

not systematically analyzed the common targets of GC and MI, this

study fills this gap by identifying multiple possible therapeutic

targets through drug target MR analysis. Moreover, this study

screened key genes with diagnostic value via machine learning

algorithms (e.g., random forest and LASSO regression) and

constructed a column-line graph model with high predictive

performance, which provides new ideas for the early diagnosis of

GC and MI in the future. Therefore, this study is not only a

revalidation of previous studies but also an innovation in the
TABLE 4 Results of MR analysis of the causal effect of eqtl on GC.

Exposure Outcome Nsnp MR Heterogeneity Horizontal pleiotropy MR-PRESSO

OR (95%CI) P FDR I2 (%) Cochran's Q P Egger intercept SE P P

LCOR GC 4 1.314 (1.077-1.604) 0.007 0.038 0 1.619 0.655 -0.035 0.051 0.558 0.767

PARD6G GC 22 0.820 (0.752-0.895) <0.001 <0.001 0 15.195 0.813 0.011 0.018 0.541 0.863

VPS26A GC 50 1.076 (1.018-1.137) 0.009 0.045 0 45.638 0.610 -0.004 0.008 0.628 0.623

KRR1 GC 15 1.285 (1.151-1.435) <0.001 <0.001 5 14.689 0.400 -0.012 0.024 0.620 0.398

ARHGAP21 GC 34 1.081 (1.013-1.154) 0.019 0.074 0 22.652 0.912 0.000 0.010 0.980 0.915

ECHDC1 GC 62 1.056 (1.007-1.107) 0.025 0.090 20 76.596 0.086 -0.040 0.012 0.002 0.07

UBE2D1 GC 106 1.028 (1.006-1.051) 0.014 0.058 0 78.337 0.976 0.005 0.006 0.469 0.982

MTFR1 GC 82 1.038 (1.012-1.065) 0.004 0.028 1 81.856 0.452 0.007 0.008 0.358 0.482

ETV7 GC 95 1.062 (1.040-1.084) <0.001 <0.001 0 83.235 0.779 -0.003 0.006 0.577 0.762
TABLE 5 Steiger directionality test.

Exposure Outcome
Correct_causal_

direction
Steiger_pval

ETV7 GC TRUE 0

MTFR1 GC TRUE 0

UBE2D1 GC TRUE –

ECHDC1 GC TRUE 0

ARHGAP21 GC TRUE 0

KRR1 GC TRUE 3.18E-259

VPS26A GC TRUE 0

PARD6G GC TRUE 5.07E-212

LCOR GC TRUE 2.22112E-18
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exploration of pathogenic mechanisms and clinical applications,

which fills the research gaps in related fields, promotes an in-depth

understanding of the common pathogenesis of GC and MI, and

provides potential drug targets and diagnostic tools for future

therapeutic strategies.

In this study, the 74 DEGs identified by GO enrichment analysis

were significantly enriched in several key biological processes,

cellular compositions and molecular functions. Specifically, at the

biological process (BP) level, these genes were significantly enriched

in the positive regulation of establishment of protein localization,

protein transport, and protein ubiquitination modification, and

ubiquitin-dependent protein catabolic process. These biological

processes are critical in cancer and cardiovascular diseases, and

the correct localization and modification of proteins play decisive

roles in the maintenance of normal cell function, signaling, and the

regulation of cell proliferation and metabolism. Abnormal

localization of proteins may lead to cellular dysfunction and thus

drive cancer progression (49), whereas in MI, abnormal protein
Frontiers in Immunology 11
transport affects cardiomyocyte function (50). At the cellular

component (CC) level, these genes were enriched predominantly

in the nuclear pore complex, endoplasmic reticulum membrane and

Golgi apparatus. The abnormal function of these cellular structures

is closely related to the development of GC and MI. Studies have

shown that altered Golgi function in GC affects protein transport,

leading to tumor cell proliferation and metastasis (51). In MI,

disruption of the nuclear pore complex may affect the exchange

of materials in the nucleus, thereby aggravating cellular damage. At

the molecular function (MF) level, these genes were enriched for

ubiquitin protein ligase binding and heat shock protein binding,

which play key roles in protein modification, protein folding and

the stress response. In particular, the ubiquitination pathway plays a

central role in cell cycle regulation, DNA repair, and signaling.

Abnormal ubiquitination is an important mechanism in the

development of GC (52) and MI (53).

By integrating differentially expressed genes with their

corresponding eQTL data, we further carried out MR analysis of
FIGURE 5

Gene selection results from LASSO and random forest model analyses. (A) Gene importance plot in the Random Forest (RF) model, showing genes
with a high increase in node purity (incNodePurity). (B) Cross-validation for parameter tuning in LASSO analysis. (C) Least Absolute Shrinkage and
Selection Operator (LASSO) regression model, which avoids overfitting by reducing redundant features and narrows down key differentially
expressed genes associated with myocardial infarction. (D) Venn diagram of genes selected by both LASSO and RF models, showing eight genes
identified by both methods, indicating their diagnostic value in predicting gastric cancer.
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FIGURE 6

Gastric cancer prediction model constructed based on random forest (RF) and LASSO regression models. (A) Nomogram displaying eight diagnostic
genes for gastric cancer and their scoring criteria to predict individual gastric cancer risk. (B, C) Receiver Operating Characteristic (ROC) curves
showing Area Under the Curve (AUC) values above 0.95 in both training and testing sets, indicating the high discriminative ability of the model in
gastric cancer diagnosis. (D, E) Calibration curves evaluate the consistency between model predictions and actual outcomes, demonstrating good
calibration performance of the predictive model. (F, G) ROC curves showing AUC values above 0.95 in both training and testing sets, further
indicating the model's strong diagnostic capability for gastric cancer. Decision Curve Analysis (DCA) shows that using the nomogram model provides
a higher net benefit for patients.
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drug targets to explore the causal associations between these genes

and the risk of GC. This analysis not only verified the potential

causal relationship between genes and diseases but also provided an

important theoretical basis for the development of future drug

targets. According to the results of MR analysis, the eQTLs of

nine genes showed significant causal associations with the risk of

GC development, suggesting that they may be common potential

therapeutic targets for both. Among these genes, those associated

with an increased risk of GC development included LCOR, VPS26A,

KRR1, ARHGAP21, ECHDC1, UBE2D1, MTFR1, and ETV7,

whereas the gene associated with a decreased risk of GC

development was PARD6G. Previous studies have shown that

high expression of LCOR in GC is independently associated with

poor prognosis, suggesting that it may be a common potential

therapeutic target. These findings suggest that LCORmay play a key

role in GC progression (54). VPS26A is a protein involved in

intracellular retrograde transport and is responsible for

transporting proteins from endosomes to the Golgi apparatus as

part of the reticulum complex. Although VPS26A has been shown

to regulate cell proliferation, migration, and invasive ability in a

variety of tumors, thereby promoting tumor progression, its specific

function in GC needs to be further investigated (55). KRR1 is

mainly responsible for the formation of the 40S ribosomal subunit

and is thought to correlate with drug response and tumor

progression, especially in the use of S-1, cisplatin, and docetaxel.

ARHGAP21 acts as a Rho GTPase-activating protein and converts

Rho family GTPases from active to inactive states, mainly by

regulating cytoskeletal activities (56). In prostate cancer,

ARHGAP21 affects tumor progression by regulating the

expression of the PCA3 gene, but its specific role in GC is still

unclear (57). ECHDC1, as a metabolism-correcting enzyme, is

involved in fatty acid synthesis, which is associated with drug

resistance in tumors such as bladder cancer, but the specific
Frontiers in Immunology 13
mechanism of ECHDC in GC still needs to be further studied

(58). UBE2D1 is a ubiquitin-binding enzyme, and its high

expression has been shown to promote epithelial−mesenchymal

transition (EMT) through the TGF-b/SMAD4 signaling pathway to

increase the migration and invasion of GC cells (59). MTFR1, a

protein that regulates mitochondrial fission, has been demonstrated

to be correlated with poor prognosis and drug resistance in NSCLC

(60) and drug resistance in non-small cell lung cancer, but studies in

GC have not yet reached a definitive conclusion (61). ETV7 is a

member of the Ets family of transcription factors and plays a

regulatory role in cell differentiation and proliferation. Studies

have shown that ETV7 expression is correlated with decreased

sensitivity of GC cells to chemotherapeutic agents such as 5-FU and

CDDP [PMID: 24504010]. PARD6G, a parapolar protein, is

involved in the regulation of cell polarity, and studies have

demonstrated that its differential expression among subtypes of

lung cancer has a role as a potential marker; however, its function in

GC has not yet been explored in depth [PMID: 32360590]. The

robust causal relationship between these genes and their consistent

expression in GC and MI suggests that they may play important

roles in the common pathological mechanisms of these two

diseases, providing strong support for drug target development

and clinical intervention strategies.

To verify the potential application value of differential genes in

the diagnosis of GC, this study used random forest and LASSO

regression algorithms to construct a prediction model for GC. The

results revealed that the LASSO model screened eight genes with

diagnostic value, and the random forest model also screened eight

genes with diagnostic value. The intersecting genes of the two were

ultimately used in the construction of the prediction model. The

nomogram model constructed on the basis of these genes had high

prediction performance, and its AUC values were all greater than

0.95, suggesting that the model has high accuracy in the diagnosis of
FIGURE 7

Heatmap of the correlation between key gene expression and infiltration of various immune cells in gastric cancer tissues (Color indicates the
strength and direction of correlation; statistical significance levels: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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GC. Moreover, calibration curve and decision curve analysis (DCA)

further indicated that the predictive model had good calibration and

decision value. These results suggest that the predictive model based

on differential genes not only has potential application in the

diagnosis of GC but also may provide a reference for the

diagnosis and prediction of MI.

We subsequently constructed a prediction model for GC via

LASSO regression and a random forest model and ultimately

identified 8 genes with diagnostic value. The column-line graph

model based on these eight genes demonstrated extremely high

diagnostic efficacy, with AUC values greater than 0.95, suggesting

that these genes have important potential for clinical application in

the diagnosis and prediction of GC. In addition, immune cell

infiltration analysis revealed that some of the key genes were

positively correlated with the infiltration of T cells (especially

CD8+ T cells), further supporting the important role of these

genes in the immune response.

This study, which explored the common pathogenic

mechanisms and potential drug targets of GC and MI, had

several limitations despite the application of techniques such as

MR, transcriptome analysis and machine learning. First, the data

sources are based mainly on European populations, and although

these data provide rich genotypic and phenotypic information, the

incidence and pathogenic mechanisms of GC and MI differ in

different populations. Therefore, the global applicability of the

findings, especially their validity in Asian populations, needs to be

verified. Second, although we identified 74 differential genes in the

transcriptome analysis, only 37 instrumental variables of blood

eQTLs were ultimately screened for use in MR analysis, which

limited the causal analysis of more potential key genes. In addition,

the cross-sectional data used in this study failed to reflect the

dynamics of the disease at different stages and could not reveal

changes in gene action over time. Future studies should incorporate

longitudinal data combined with time-dimensional analysis to

further elucidate the dynamic pathogenic mechanisms of GC and

MI. Finally, although we screened potential targets through our

analysis, the clinical feasibility of these targets still needs to be

verified through cellular experiments, animal models, and clinical

trials to determine their effectiveness and safety in therapy.

Therefore, future studies should further validate the biological

functions of these key genes by experimental means to ensure

their feasibility and effectiveness as clinical targets. Finally, although

we constructed predictive models for GC by machine learning and

the diagnostic performance of the models showed high AUC values,

these models still need to be validated by independent external

datasets to ensure their robustness and generalizability in different

populations and practical clinical applications.
5 Conclusion

The MR analysis in this study indicated that MI may increase

the risk of GC. Eight potential diagnostic genes associated with MI

and GC were identified through transcriptome analysis and drug
Frontiers in Immunology 14
target MR validation, and a nomogram model with good predictive

performance was successfully constructed. The results provide new

insights into the comorbid mechanisms of MI and GC and provide

a theoretical basis for the optimization of individualized diagnosis

and prognosis assessment strategies.
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