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Exploring the role of
ubiquitination modifications
in migraine headaches
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Migraine is a complex neurovascular disorder whose pathogenesis involves

activation of the trigeminal vascular system, central and peripheral

sensitization, and neuroinflammation. Calcitonin gene-related peptide (CGRP)

plays a dominant role and activation of MAPK and NF-kB signaling pathways

regulates neuropeptide release, glial cell activation, and amplification of

nociceptive signals. Aberrant activation of these pathways drives migraine

onset and chronicity. The ubiquitin-proteasome system (UPS) is involved in

neurological and inflammatory disorders. ubiquitination in the UPS is achieved

through a cascade of enzymes, including Ub-activating enzyme (E1), Ub-

coupling enzyme (E2), and Ub-ligase (E3). The aim of this review is to

systematically explore the role of ubiquitination in the regulation of MAPK and

NF-kB signaling pathways, with a focus on the mechanisms of ubiquitinating

enzymes in neuroinflammation and pain signal amplification, and to explore their

potential as diagnostics, biomarkers, predictors of response to therapy, and

monitoring of chronicity in migraine disease.
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1 Introduction

Migraine is now the sixth most prevalent disease worldwide and a leading cause of

disability (1). According to the Global Burden of Disease Study (GBD) 2019, approximately

8-15% of migraine sufferers have at least one attack per year. The pathophysiology of

migraine is thought to involve abnormal activation of the trigeminal vascular system,

peripheral and central sensitization, and neuroinflammation (2). Among them, calcitonin

gene-related peptide (CGRP) plays a dominant role. Related regulatory pathways, such as

the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-kB)
pathways, regulate neuropeptide release, glial cell activation, and pain signaling,
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mediating inflammatory and sensitizing responses. These may drive

is the development of migraine pathogenesis and chronicity.

As a type of protein post-translational modification (PTM), the

ubiquitin-proteasome system (UPS) is a pathway for protein

ubiquitination and degradation. Ubiquitination involves a cascade

reaction of three enzymes: Ub-activating enzymes (E1s), Ub-coupling

enzymes (E2s) and Ub-ligases (E3s); deubiquitination is mediated by

deubiquitinating enzymes (DUBs) (3, 4). Disturbances in the UPS

have been shown to be associated with the induction and severity of a

variety of neurologic and inflammatory disorders, suggesting its

possible involvement in the pathogenesis of migraine headaches.

This paper systematically explores the role of ubiquitination in

the regulation of MAPK and NF-kB signaling pathways, focusing

on the regulatory mechanisms of ubiquitinating enzymes in

neuroinflammation and nociceptive signal amplification, as well

as exploring its feasibility as a biomarker for disease diagnosis,

prediction of therapeutic response, and chronicity monitoring.
2 Pathogenesis of migraine and
association of MAPK and NF-kB
signaling pathways

Migraine is a complex neurovascular disorder whose

pathogenesis involves multilevel interactions between the nervous
Frontiers in Immunology 02
and vascular systems. Recent studies have shown that the core

mechanisms of migraine include activation of the trigeminal

vascular system, central sensitization, peripheral sensitization and

neuroinflammation. Together, these mechanisms form the

pathophysiologic basis of migraine (Figure 1A).
2.1 Trigeminal vascular system activation

The trigeminal vascular system is the anatomical and physiological

basis of migraine attacks, and a key mechanism of migraine nociceptive

perception (5–7) (Figure 1B). Stimulation of the trigeminal ganglion

(TG) leads to vascular release of neurotransmitters and inflammatory

mediators, such as CGRP, PACAP, and substance P upon activation

(8). These molecules bind to receptors and induce intracranial

vasodilation, neuroinflammatory activation and enhanced pain

signaling. Then, it leads to sensitization of secondary neurons in the

trigeminal cervical complex (TCC) of the brainstem, and ultimately

activate tertiary neurons in the thalamus (9).

CGRP plays a key role in neural sensitization and amplification of

pain signals in migraine by binding to its receptor, which consists of

CLR and RAMP1. After binding, CGRP activates Gs proteins, initiating

the production of cAMP by adenylyl cyclase (AC). It further activates

protein kinase A (PKA), which regulates sodium and potassium ion

channel (10–12). Currently, CGRP receptor antagonists (gepants) have

become effective acute treatments (13, 14).
FIGURE 1

(A) Pathogenesis of Migraine. (B) CGRP and PACAP signaling pathways. (C) Exploring the link between ubiquitination and migraine. (D) Integration of
markers for migraine.
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PACAP acts mainly by binding to PAC1, VPAC1 and VPAC2

receptors (15–18). Similar to CGRP, PACAP also activates the

cAMP-PKA pathway leading to migraine headaches (19). In

addition, PACAP appears to have unique downstream effects, such

as acting through direct activation of the EPAC pathway (20, 21).

Furthermore, through the Ras-Raf-MEK-ERK signaling pathway,

PKA contributes to extracellular signal-regulated kinase (ERK)

phosphorylation and activation, which in turn combine peripheral

sensitization and central sensitization mechanisms (15, 22).
2.2 Peripheral sensitization

Peripheral sensitization refers to a decreased threshold of

damage receptors and an increased sensitivity of injury receptors.

In response to repetitive stimuli or inflammatory states, excitability

of sensory neurons in the periphery increases, which enhances the

transmission of pain signals (23–25).

Transient receptor potential (TRP) channels, such as TRPV1,

TRPA1 and TRPM8, have been shown to be closely associated with

neuropathic pain. Studies have shown that blockingTRPV1andTRPA1

significantly attenuates neurogenic hypersensitivity reaction (26–31).

In the inflammatory state, TRPV1 receptors are activated,

triggering a massive inward flow of sodium and calcium ions, which

triggers depolarization of injury receptors, thereby amplifying pain

signals (32). Activation of TRPV1 also stimulates the release of CGRP

and substance P from the nerve endings, leading to vasodilation

(33).Vasodilation leads to an increase in the mechanical pressure on

the local tissues, thereby further stimulating the sensory neurons of the

trigeminal nerve fiber system, causing a decrease in the nociceptive

threshold of injury receptors.

Notably, TRPV1 not only causes acute pain, but also persistent

pain, especially pain associated with inflammation (34–36). It was

found that hormone level changes may indirectly regulate the release

and physiological roles of CGRP by affecting the expression and

activity of TRPV1 (37). In particular, TRPV1 activation not only

promotes CGRP release, but also enhances synaptic transmission

efficiency and exacerbates central sensitization of neurons by

promoting the release of glutamatergic vesicles (38).

Through the cAMP-PKA pathway, CGRP modulates ion channels

on neuronal cell membranes, enhancing peripheral nerve sensitivity.

Upon tissue injury, CGRP acts synergistically with substance P, leading

to an increase in vascular permeability of local tissues and the release of

inflammatory factors (39–42). Inflammatory response further activates

primary afferent neurons, forming a positive feedback loop that

amplifies pain signals through inflammation.
2.3 Central sensitization

Central sensitization is an important mechanism of chronic pain

and is characterized by CNS hyperresponsiveness to injurious stimuli

(43–45). It involves increased presynaptic neurotransmitter release

and persistent neuroinflammation (45–47). Enhanced synaptic
Frontiers in Immunology 03
transmission in the caudate of the TNC is the neural basis for

central sensitization in a CM rat model (45, 48, 49). The release of

glutamate (Glu) is a key step in central sensitization, the regulation of

which is dependent on the activation of ERK and p38 signaling

pathways (50, 51). At presynaptic sites, the central terminals of

injurious primary afferent nerves, activation of cytokine receptors

and chemokine receptors leads to phosphorylation of ERK and p38

(P-ERK, P-p38) and glutamate (Glu) release. This synaptic vesicle

release is associated with activation of the ion channels TRPV1, Na

channel (52, 53).

At postsynaptic sites, phosphorylation of AMPA and NMDA

glutamate receptors significantly enhances neuronal responsiveness

to excitatory signals. Phosphorylation of AMPA receptors by PKA)

and Ca2+/calmodulin-dependent kinase II (CaMKII) results in

increased insertion into synaptic membranes, a significant

elevation in open probability, and enhanced response to

glutamate response (54, 55). phosphorylation of NMDA receptors

in response to Src kinase enhances calcium ion permeability and

amplifies postsynaptic Ca2+ signaling (56, 57).

In addition, P-ERK reduces the repolarization capacity of

postsynaptic neurons by inhibiting their potassium channel activity,

leaving them in a state of hyperexcitability (58, 59). Notably, P-ERK

translocates to the nucleus and promotes the phosphorylation of the

cAMP response element-binding protein (CREB), which activates

proinflammatory factors, such as c-Fos and NK-1, as well as the

nociceptive regulation-related gene expression, further consolidating

the molecular basis of central sensitization (60, 61).
2.4 Neuroinflammation

By activating the NF-kB signaling pathway, microglia and

astrocytes are activated in response to injurious stimuli and release

a series of proinflammatory factors and chemokines, including tumor

necrosis factor (TNF-a), interleukin-1b (IL-1b), and chemokines

(62–64). Release of these factors enhances the inflammatory response

and further exacerbates neuronal excitability. It was shown that

upregulation of miR-155-5p activated the NF-kB signaling pathway

by inhibiting SIRT1, which in turn exacerbated the release of

microglial pro-inflammatory factors and neuroinflammation by

inhibiting miR-155-5p, it was able to activate SIRT1 in the TNC

region of CM mice, which effectively reduced neuroinflammation

(60). In addition, activation of NLRP3 inflammatory vesicles was also

involved in the release of pro-inflammatory factors, which further

contributed to the onset of central sensitization and the chronicity of

migraine (65, 66).

Further studies revealed that autophagy plays an important role

in the regulation of neuroinflammatory and oxidative stress

processes in astrocytes. By inhibiting autophagy, the binding of

TRAF6 to K63 ubiquitinated proteins could be promoted, which

increased the activities of p-MAPK8/JNK and NF-kB, thereby
exacerbating the release of pro-inflammatory factors (e.g., TNF-a,
IL-1b). Conversely, activation of autophagy can significantly reduce

neuroinflammatory levels (67).
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3 Ubiquitination and migraine

Multiple family and twin studies have shown that common

migraine is heritable, with heritability estimates ranging from 30%

to 60%, suggesting the presence of genetic factors that predispose

individuals to migraine (68, 69). Migraine has a heritability of 42%,

and relatives of people with migraine are 2- to 3-fold more likely to

have the disorder (70). Although the risk of migraine is predominantly

polygenic, pathogenic variants in a single gene can lead to monogenic

migraine disorders (e.g., familial hemiplegic migraine FHM) and the

gene is dominant, this suggests that the susceptibility and complexity

of migraines may be based on genetics and may be subject to different

gene-gene and gene-environment interactions (71).

The susceptibility and pathophysiological aspects of migraine

have been explained from a locus perspective, but recently there has

been a developing interest in investigating the role of gene

regulatory mechanisms in the predisposition and chronicity of

migraine, particularly epigenetic regulation. The number of

studies on the role of epigenetic mechanisms in migraine is now

found to be increasing yearly. Epigenetic mechanisms regulate cell

cycle development by controlling the expression of individual genes,

including acetylation, phosphorylation, etc (72, 73). TRP channels

can convert injurious stimuli into pain signals, and the expression of

TRPA1, TRPA1 encoding gene, has been demonstrated to be

affected by pain-related syndromes. Acetylation modifications,

this process may enhance neural excitability and facilitate pain

transmission by altering electrical activity or localization (74, 75).

Similar to acetylation, ubiquitination also acts at the protein level.

Ubiquitination occurs by adding single or multiple ubiquitin molecules

to a target protein, modulating its stability, activity, or degradation.

Studies demonstrating the relevance of the ubiquitination system to

migraine are extremely limited. Ubiquitin C terminal hydrolase 1

(UCHL1), an enzyme with both ligase and hydrolase activities, is

present in almost all neurons (76, 77). Serum levels of UCHL1 were

significantly elevated during acute attacks in migraine patients; also,

before treatment, UCHL1 levels were significantly and positively

correlated with visual analog scores (VAS) (78). This suggests that

UCHL1 can be used to assess seizure severity and response to

treatment. Although there is conclusive evidence providing the

relevance of ubiquitination system-associated proteins in acute

attacks of migraine, there is little direct evidence that the meso-

ubiquitination system plays a role in migraine.

Ubiquitinating enzymes (e.g., MEKK1, Smurf1, ITCH, and

TRIM45) and deubiquitinating enzymes (e.g., USP15, A20, and

CYLD) may be involved in the occurrence and chronicity of

migraine by regulating the ubiquitination of MAPK, JNK, and

NF-kB signaling pathways.

Migraine mechanisms involve dynamic processes of central

sensitization and peripheral sensitization, abnormal activation of the

trigeminal-vascular system, and neurogenic inflammation. Each of the

four mechanisms is associated with various enzymes of the

ubiquitination system, given the important role of ubiquitination in

other neuroinflammatory disorders, it is reasonable to hypothesize that

ubiquitination is involved in migraine attacks and chronicity (79–81).

Various trigger molecules can induce migraine, including CGRP,

PACAP, adenosine triphosphate-sensitive potassium (KATP) channel
Frontiers in Immunology 04
opener, and large conductance calcium-activated potassium (BKCa)

channel opener. The epigenetic link of CGRP and its potential in

migraine has been discussed (82). In isolated trigeminal ganglion

neurons, CGRP stimulates pain-related intracellular signaling

molecules such as cAMP, CREB, MAPK, p38, and ERK (83). In the

following, we explore the ubiquitylation of these proteins to play a

function in migraine Possibilities (Figure 1C).
3.1 Regulation of ERK1/2 by ubiquitination

The ERK1/2 signaling cascade was first identified in four MAPK

signaling pathways (84, 85). ubiquitination of ERK1/2 is regulated

by MEKK1, which has a RING finger structure and exhibits an E3

ligase function, and USP15, a deubiquitinating enzyme. ERK2 is

deubiquitinated by USP15, but the stability of the protein is not

affected. Not only associated with ubiquitination, USP15 also

induces ERK1/2 phosphorylation (86). Interestingly, USP15 is

also known to regulate C-Raf DUB, binding to C-Raf and

protecting the protein from proteolytic degradation by the 26S

proteasome 34688658. overexpression of C-Raf and activation of

the ERK1/2 signaling pathway cause overexpression of USP15

expression, leading to cell proliferation and migration (87).
3.2 Regulation of p38, JNK
by ubiquitination

Although MEKK1 has ubiquitinating enzyme properties, it is

still a member of the MAP3K family. jNK1/2/3 and p38 signaling

cascades share upstream regulators such as MEKK1-4 and MKK4.

In the inflammatory response, the E3 ubiquitin ligase Smad

ubiquitination regulatory factor 1 (Smurf1) ubiquitinates the K48-

conjugated polyubiquitin chain of MEKK2, the same type of

ubiquitinating enzyme, ITCH, participates in a negative feedback

loop of JNK (88). ITCH regulates MKK4 (89). ITCH is a

downstream substrate of JNK, and activation of JNK promotes

ITCH phosphorylation, and phosphorylated ITCH induces

ubiquitination of K140 and K143 of MKK4 (90).
3.3 Regulation of NF-kB by ubiquitination

RIPK1 is the first kinase found in the RIPK family (91). RIPK2

does not have any death structural domains and does not trigger cell

death signaling, but has a cysteine asparaginase activating and

recruiting structural domain (CARD) that contributes to function

in the NOD-like receptor (NLR)-associated inflammatory signaling

pathway (92, 93). K63 ubiquitination of RIPK2 interacts with LUBAC

and the kinase complex TAK1 and promotes linear ubiquitination of

RIPK2, initiating theMAPK signaling pathway (94). Interestingly, the

kinase complex also triggers a separate pathway for activation of the

IKK complex, which consists of NEMO, IKKa, and IKKb, and
activation of the protein complex leads to the activation of NF-

kinase. The IKK complex consists of NEMO, IKKa, and IKKb, and
activation of this protein complex leads to NF-kB activation. In

addition, deubiquitinating enzymes A20 and CYLD have linear
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bonding specificity that can counteract RIPK2 ubiquitination (95,

96). Linear ubiquitination is much more attractive for NEMO

binding than normal polyubiquitination, so ubiquitinated RIP1 also

attracts NEMO/IKK and TAB/TAKI bindings, and thus activates

downstream NF-KB signaling pathways. NF-KB signaling pathway

and JNK, P38/MAPK signaling pathway (97).

The E3 ligase tripartite motif-containing 45 (TRIM45)

constitutively interacts with TAB2 and promotes polyubiquitination

of the TAB2-Lys-63 linkage, leading to the formation of the TAB1-

TAK1-TAB2 complex and activation of TAK1, and ultimately the

activation of the nuclear factor-carbamyl B (NF-kB) signaling

pathway (98).
4 The potential of ubiquitination in
migraine treatment

In recent years, the development of drugs targeting

ubiquitinating and deubiquitinating enzymes has emerged as a

research hotspot in the field of precision therapeutics (99).

Although most studies have focused on cancer, the role of these

drugs in ubiquitination regulation provides a potential reference for

migraine treatment.

Inhibitors of ubiquitinating enzymes (TAK-243, an E1 ligase

inhibitor, and MLN4924, an E3 ligase inhibitor) as potential drugs

for precise regulation of inflammatory responses and cell signaling

pathways (100–102).

The development of activators of USP family deubiquitinating

enzymes could be a potential strategy in the treatment of migraine.

USP25 inhibits the overactivation of the NF-kB and MAPK

pathways by removing the K63 polyubiquitin chain on TAB2,

thereby attenuating microglia-mediated neuroinflammation (103).

Notably, it has been found that USP5 inhibits the expression of

proinflammatory factors by maintaining NF-kB signaling pathway

activation to promote the expression of pro-inflammatory factors,

whereas its inhibitor Vialinin A was able to significantly reduce

TNF-a and IL-1b-induced pro-inflammatory gene expression,

suggesting that USP5 inhibitors may serve as drug candidates for

the treatment of inflammatory diseases, such as Kawasaki disease

(104). In addition, the metalloproteinase inhibitor THL significantly

inhibited NLRP3 activation by blocking BRCC3 complex-mediated

deubiquitination, alleviating inflammation and tissue damage in a

variety of inflammatory disease models such as sepsis, autoimmune

encephalomyelitis, and nonalcoholic fatty liver disease (105).

5 Conclusion

In recent years, studies on migraine mechanisms have revealed

the important roles of inflammatory factors, neurogenic

inflammation, and CGRP signaling pathways in the disease. As

one of the important mechanisms of epigenetic regulation,

ubiquitination plays a key role in the pathogenesis and chronicity

of migraine by regulating protein degradation, cell signaling, and

inflammatory responses. In terms of genetic markers, mutations in

CACNA1A, ATP1A2, and SCN1A are closely associated with FHM,
Frontiers in Immunology 05
while variants in NOTCH3 and TREX1 genes have been linked to

migraine and its associated cerebrovascular diseases (e.g., cerebral

arteriolar dominant disorders) (106–109). In addition, DNA

methylation analysis identified methylated regions specific to

migraine patients, suggesting a role for epigenetic modifications

in migraine susceptibility (110). In the blood, plasma CGRP levels

were significantly elevated in patients during migraine attacks (111).

On the imaging side, functional magnetic resonance imaging

(fMRI) and diffusion tensor imaging (DTI) studies have shown

that migraine patients have increased visual Increased thickness of

the visual cortex, significantly altered functional connectivity in

nociceptive pathways, and white matter hyperintensity are

characteristic imaging hallmarks of migraine with aura (112, 113).

These studies suggest the importance of plastic changes in neural

structure and function in migraine.

Future studies need to further elucidate the specific link between

ubiquitination and the above markers. For example, do

ubiquitination modifications affect the degradation of key

molecules in the CGRP signaling pathway? Does it mediate the

chronicity of migraine by modulating inflammatory factors such as

TNF and IL-6? By integrating multi-modal data from epigenetics,

genetic markers, blood biomarkers, and neuroimaging, we aim to

enhance the understanding of the molecular mechanisms

underlying migraine, thus advancing marker-based precision

medicine. This integrated approach may pave the way for more

effective, individualized treatments for migraine patients

(114) (Figure 1D).
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