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An immune cell activation
signature reflected
hepatocellular carcinoma
heterogeneity and predicted
clinical outcomes
Xiaofeng Wang1*†, Dongli Liu2†, Shuai Wang3 and Rui He1

1Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China, 2Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 3Department of Radiation, Chushi Orthopedic
Hospital, Zhengzhou, Henan, China
Background: The prognosis of hepatocellular carcinoma (HCC) remains

challenging, and immune activation plays a critical role in cancer treatment.

Identifying reliable immune activation-related prognostic markers is critical for

predicting HCC patient outcomes.

Method: A six-gene signature was developed. The prognostic value was assessed

by correlating the signature and survival. The robustness of the signature was

validated in three independent Gene Expression Omnibus (GEO) datasets.

Associations with clinical, genomic, and transcriptomic features were also

evaluated. Additionally, single-cell sequencing data were analyzed to explore

cell–cell interaction heterogeneity reflected by the signature. The biological role

of candidate gene RORC was investigated, including chemotherapy resistance

and detailed regulatorymechanism in affecting progression. The clinical potential

role of RORC and its downstream gene was also evaluated by

immunohistochemical (IHC) microarray.

Results: The six-gene signature stratified patients into high-risk and low-risk

groups, with high-risk samples exhibiting significantly shorter overall survival

(median: 23.8 months, 95% CI: 20.6–41.8) than low-risk samples (median: 83.2

months, 95% CI: 69.6–NA, p < 0.001). Validation in independent GEO datasets

confirmed the robustness of the signature. The signature was significantly

associated with the pathological stage and negatively correlated with PD-L1

expression, outperforming clinical indicators in predicting 3-year survival. The

signature was significantly associated with TP53 mutations, genomic stability,

and canonical cancer-related pathways. Single-cell sequencing data indicated

that the signature revealed cell–cell interaction heterogeneity in HCC. Candidate

gene RORC promotes proliferation and migration by regulating CDC6 gene

expression as a transcription factor. Furthermore, RORC is also associated with

multiple drug resistance, especially docetaxel and paclitaxel. IHC revealed that
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RORC and candidate gene CDC6 were valuable predictive biomarkers

for prognosis.

Conclusion: The six-gene signature provides valuable insights into the biological

status of HCC patients and is a robust tool for clinical application.
KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) is among the most common

cancers and is the third leading cause of cancer-related deaths

worldwide. The incidence of HCC is expected to exceed 1,000,000

cases by 2025 (1, 2). However, early diagnosis occurs in fewer than

20% of HCC patients, with over 50% diagnosed at advanced stages

and more than 70% facing recurrence within 5 years after first-line

treatment (3, 4). HCC is among the most heterogeneous cancers

and is characterized by multiple factors, including biological

(genetic mutation, transcriptome, etc.), clinical (staging, exposure,

etc.), and microenvironmental (immune cell infiltration, activation,

etc.) status (5, 6), which makes it difficult to predict the clinical

outcome of HCC patients.

Despite the efforts devoted to screening effective biomarkers for

HCC in recent decades, the reproducibility of these methods is still

unsatisfactory. For example, Qi et al. reported that aberrant PTTG1

gene expression increases asparagine production and thus regulates

mTOR activity to promote the progression of HCC (7). Similarly,

LYZ was shown to stimulate the STAT3 signaling pathway and is a

biomarker for the progression phenotype of HCC (8). Using paired

normal and tumor tissue and immunohistochemical staining, Yi-

Chieh reported that TMED9 may be used as a predictive biomarker

and potential treatment target (9), which was similar to the other

cancer-related genes in other cancer types (10, 11). However, HCC

heterogeneity limits the clinical utilization of these biomarkers, and

the performance of these markers has not been validated across

centers. To address this issue, multiple genes/omic signatures were

recently developed and emphasized. Early in 2002, Laura et al.

developed a 70-gene signature to predict the clinical outcome of

patients with breast cancer (12). After retrospective randomized

validation in 6,693 women across centers, the “mammaprint”

signature was shown to be a powerful biomarker for assessing ER

+/HER2− early-stage breast cancer (13) radiotherapy necessity.

Similarly, Oncotype DX and other signatures have also been

reported (14). In HCC, Hao et al. constructed a signature using

T-cell exhaustion genes and bulk gene expression data from The

Cancer Genome Atals (TCGA) and single-cell sequencing (15).

Similarly, using pyroptosis-related genes, a signature for predicting

the outcome of HCC patients was also developed (16). The

signatures were effective in predicting the survival of patients with
02
HCC in TCGA dataset, but their robustness and reproducibility are

still unknown. Furthermore, the functions of the specified genes

used for the models mentioned above are unclear.

As a hallmark of cancers, immune escape is a necessary step,

including HCC genesis (17). Immune suppression is critical for

HCC genesis, and immune cell activation is critical for treatment,

especially immunotherapy targeting PD-1/PD-L1/CTLA4 (1). For

example, Marina et al. reported that the activation of beta-catenin,

the core gene in the WNT signaling pathway, facilitated immune

escape and resistance to immunotherapy in HCC (18). To this end,

by analyzing and optimizing immune cell activation-related genes, a

signature based on six genes was constructed and validated. The

heterogeneity reflected by the signature was analyzed, including

mutation, transcription, immune infiltration, drug response, and

clinical indicators. Single-cell sequencing revealed that the signature

was significantly associated with cell infiltration and the cell–cell

interaction profile. The function and mechanism of candidate gene

RORC were also investigated. These results indicate that the

signature is a robust and reproducible marker for predicting the

clinical outcome of HCC patients.
Materials and methods

Raw data retrieval and data processing

The gene expression, mutation, copy number variation, and

clinical information of TCGA dataset were retrieved from UCSC

Xena (19) and cBioPortal (20). The expression matrices of

GSE14520, GSE36376, and GSE77314 were downloaded from the

Gene Expression Omnibus (GEO) database, along with their

corresponding survival information. The gene expression data of

TCGA and GSE77314 were in the form of log2-transformed RSEM

counts for further analyses. Background correction and

normalization: For the data from GSE14520 and GSE36376,

background correction was carried out using the robust multi-

array average (RMA) for arrays from both Affymetrix and Illumina.

Subsequently, normalization was performed using quantile

normalization. Probe annotation: After microarray data

normalization, probes were annotated using a manufacturer-

provided reference file for GPL571 (Affymetrix Human Genome
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U133A 2.0 Array) and GPL10558 (Illumina HumanHT-12 V4.0

expression beadchip). For probes matching more than one gene, the

probes were omitted. If several probes matched one gene, only the

probe with the highest mean signaling intensity across samples in

the dataset was retained. This process was implemented using an in-

house R script for data manipulation and comparison of

probe intensities.
Candidate gene selection and signature
construction

The Gene Ontology gene list “CELL ACTIVATION

INVOLVED IN IMMUNE RESPONSE” term was downloaded

from the MSIGDB database (21). Cox univariate regression: In

TCGA dataset, Cox univariate regression analysis was performed

using the coxph function from the R package “survival”. The

formula for the univariate regression was Surv(time, event) ~

gene_expression, where time represents the survival time, event

indicates the event status (e.g., death), and gene_expression is the

expression level of each gene in the gene list. The significance level

for this analysis was set at a = 0.05. Grouped survival difference

analyses: Survival data in TCGA dataset were grouped based on the

median expression level of each gene. The high/low-expression

group was defined as the expression level higher/lower than the

median of the samples. The Kaplan–Meier survival curves were

plotted for the high- and low-expression groups, and the log-rank

test was used to assess the significance of survival differences

between the two groups. In this step, the R package “survival”

was used. Genes that were significantly associated with overall

survival according to both Cox univariate regression (p < 0.05)

and grouped survival difference analyses (p < 0.05) were retained as

candidate genes. Panel optimization: Panel optimization was

carried out by enumerating all combinations of candidate genes

(gene number <7) using the combn function in R. In this step, all

possible combinations of the candidate genes selected were listed

and used for further analysis. For each combination, a Cox

multivariate regression model was constructed in TCGA dataset

using the coxph function with the formula Surv(time, event) ~

combination_of_genes. The sample datasets were equally divided

into high- and low-risk groups based on the risk scores calculated

from the Cox multivariate regression model. Survival differences

between the high- and low-risk groups were evaluated using the log-

rank test as described above, and p-values for all combinations were

recorded. The combination with the smallest p-value from the log-

rank test was retained as the optimized panel. Survival analysis was

performed using the R package “survival”, and gene expression was

visualized using “pheatmap”.
Signature validation and clinical
associations

The signature scores of the GSE14520, GSE36376, and

GSE77314 datasets were calculated using the same formula used
Frontiers in Immunology 03
for the training dataset. The samples were also equally separated

into low- and high-risk samples according to the corresponding

median values. For clinical information, risk score differences were

calculated using Student’s t-test and visualized using the R package

“vioplot”. The results of Cox multivariate regression were visualized

using “survminer”. Based on the relevant data in TCGA and the

model, the nomogram and calibration curve were generated and

visualized using “rms”.
Genomic and transcriptome associations

Non-synonymous mutations in TCGA dataset were used to

construct a mutation matrix. The differences in mutations between

the high- and low-risk samples were evaluated using Fisher’s exact

test, and the mutational landscape was visualized using the R

package “GenVisR” (22). Copy number differences were evaluated

using the Wilcoxon rank sum test and visualized using “pheatmap”.

The differentially expressed genes between groups were identified

using the R package “limma” with an adjusted p-value <0.01 and a |

log2-fold change| > 2. The significantly enriched Gene Ontology

(molecular function, cellular component, and biological process)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

terms were evaluated and visualized using the R package

“clusterProfiler” (23). For gene set enrichment analyses, the genes

were ranked by fold change and visualized using default parameters.
Cell infiltration and drug response

Infiltration was estimated using different algorithms based on

the transcriptome of TCGA dataset, including XCELL (24),

CIBERSORT (25), TIMER (26), QUANTISEQ (27), EPIC (28),

and TIMER2.0. Differences in infiltration between groups were

quantified using Student’s t-test and visualized using the R packages

“vioplot” and “pheatmap”. Similarly, the IC50 values of each TCGA

sample were quantified using gene expression values and a default

training dataset with the R package “OncoPredict” (29). The

differences in the IC50 values were also determined and visualized.
Single-cell sequencing data processing and
cell–cell interactions

The single-cell sequencing R data for 14 processed HCC

patients were retrieved from the GEO database (accession

number GSE156625). The data were processed according to a

previously reported method (30), with the annotation results. The

data were processed using the R package “Seurat” (31). Pseudo

RNA-seq data were generated using Seurat::AggregateExpression,

the expression data were log2 transformed to calculate the risk score

values of these 14 samples, and the cell proportions were

subsequently visualized. The R packages “CellChat” (32) and

“Patchwork” were used for intercellular communication analysis

with default parameters.
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CCK-8 and migration assay

The cells were treated with trypsin, resuspended in a complete

medium, and counted. For each group, 2,000 cells per well in 100 µL

of medium were seeded in triplicate. The cells were allowed to fully

settle, the cell density was observed, and the cells were cultured.

Starting from the second day after plating, 10 µL of CCK-8 solution

was added to each well. After 1–3 hours, the plate was gently shaken

for 2–5 minutes, and a spectrophotometer was used to measure the

optical density (OD) at 450 nm.

Chambers were placed into an empty 24-well plate, 100 µL of

serum-free medium was added to the chambers, and the chambers

were hydrated for 1–2 hours. The cells were digested with trypsin,

suspended, and counted. The medium was removed, and 600 µL of

medium containing 30% fetal bovine serum (FBS) was added to the

lower chamber. The cell suspension was diluted with serum-free

medium, and 100 µL of the suspension was added to each chamber.

The chambers were transferred into a medium containing 30% FBS

and incubated for 4–24 hours. The medium was removed; the cells

were fixed and incubated at room temperature for 10–30 minutes.

The upper chamber was washed with 1× Phosphate Buffered Saline

(PBS), the cells were stained by immersing them in a staining solution

for 5–10 minutes, the excess stain was absorbed, and non-migratory

cells were removed, washed again, air-dried, and photographed.
ChIP-PCR and luciferase assay

Chromatin immunoprecipitation (ChIP) was conducted utilizing a

ChIP assay kit (Millipore Sigma, Burlington, MA, USA) following the

manufac tu r e r ’ s in s t ruc t i ons . The e lu t ed DNA was

immunoprecipitated with either an IgG or an anti-RORC antibody

(14-6988-82, eBioscience, San Diego, CA, USA). Quantification of each

immunoprecipitated DNA sample was performed via quantitative

PCR (qPCR) using primers specifically designed to amplify the

proximal promoter region of the CDC6 gene, encompassing

predicted RORC binding sites. All assays were conducted in

triplicate, and the results were normalized to the input DNA.

The CDC6 3′UTR was cloned into the psi-CHECK2 vector and

transfected into the cells using Lipofectamine 3000 under standard

conditions at 37°C for 4 hours. Luciferase activity was assessed after

48 hours of incubation using the dual-luciferase reporter assay system

(Promega, Madison, WI, USA) with measurements taken at 490 nm.

Firefly luciferase activity was normalized by calculating the ratio of

firefly to Renilla luciferase activity. The primer sequences were listed

as follows: RORC-F: GTAACGCGGCCTACTCCTG, RORC-R:

GTCTTGACCACTGGTTCCTGT; GAPDH-F: ACAAC

TTTGGTATCGTGGAAGG, GAPDH-R: GCCATCACGCCACAG

TTTC; CDC6-F: AAGCCCTG, CDC6-R: TCAAATACCAATCT

TCGTCCC. Sequences of siCDC6 were 5′-AGACUAUAACUCUA
CAGAUUGUGdAdA-3′. The siRORC sequences were siRORC-1

( UUAAAGUGCACAUAAGAGGUUCCUCUUAUG
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UGCACUUUAAAG), siRORC-2 (UUUAAAGUGCACAUAAGA

GGUCUCUUAUGUGCACUUUAAAGA) , s i RORC-3

(UCUUUAAAGUGCACAUAAGAGCUUAUGUGCA

CUUUAAAGAUA).
Immunohistochemistry

Primary anti-CDC6 antibody (1:500; 11640‐1‐AP; Proteintech,

Chicago, IL, USA) and anti-RORC antibody (1:500, 14-6988-82,

eBioscience) were utilized for immunohistochemical (IHC)

staining. At least three pathologists not informed of the clinical,

pathological, or clinical outcome of all patients participated in

quantifying the signal intensity of the samples. The samples were

deparaffinized, hydrated, blocked, and added into the primary anti-

CDC6 rabbit antibody (diluted 1:500) and cultured for 10 h at 4°C.
Results

Gene screening and signature construction

The correlation between the expression level of the immune cell

activation gene and overall survival in TCGA dataset was estimated

using Cox univariate regression, and survival differences between the

high-expression and low-expression groups were determined. In

total, 22 genes were identified. To facilitate clinical practice and

remove redundant information, combinations of genes with fewer

than six genes were enumerated. Signatures were constructed by

applying Cox multivariate regression on different gene combinations.

The combination with the smallest p-value was identified as the

optimized panel and signature. As a result, a signature based on six

genes (SLC11A1, RORC, NKG7, ITM2A, DNASE1L3, and CLCF1)

was constructed. The signature values were calculated as follows:

signature = (0.07577395 * SLC11A1) + (−0.15675603 * RORC) +

(−0.18440305 * NKG7) + (−0.01589646 * ITM2A) + (−0.08330426 *

DNASE1L3) + (0.07315706 * CLCF1). The samples were divided into

the high- and low-risk groups, and the median value across TCGA

samples was used as the cutoff. The high-risk samples were

characterized by significantly shorter survival (median survival: 23.8

months, 95% CI: 20.6–41.8) than the low-risk samples (median: 83.2,

95% CI: 69.6–NA, p < 0.001) (Figure 1A). SLC11A1 and CLCF1 were

overexpressed in the high-risk samples, while RORC, NKG7, ITM2A,

and DNASE1L3 were more highly expressed in the low-risk samples

(Figure 1B). Consistent with this finding, the high-risk samples also

had a significantly worse progression-free survival rate than the low-

risk samples (Figure 1C). The 3-year survival ROC curve was

visualized (Figure 1D), and the area under the curve (AUC) was

calculated. Compared to clinical indicators, including age, sex, and

stage, the signature performed better. Collectively, these results

suggest that the signature is a valuable biomarker for predicting the

prognosis of HCC patients.
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Signature validation using independent
datasets

To verify the robustness of the model, it was validated across

three entirely independent GEO datasets: GSE14520, GSE36376,

and GSE77314. The signature score was calculated according to the

expression values and the corresponding coefficients in the above

formula. The samples in each dataset were also divided into the

high- and low-risk groups based on the median value in each

dataset. The high-risk samples had a significantly shorter survival

period than the low-risk samples in the GSE14520 (Figure 2A),

GSE36376 (Figure 2B), and GSE77314 (Figure 2C) datasets.

Consistently, the gene expression patterns of the candidate genes

also resembled those in the training dataset, TCGA (Figures 2A–C,

bottom panel). In summary, the performance of the signature was
Frontiers in Immunology 05
robust and reproducible across datasets instead of being a result

of overfitting.
Signature and clinical indicators

The relationships between the signature and clinical indicators

were evaluated. The signature was significantly associated with

pathological stage but was independent of age and sex

(Figure 3A). Cox multivariate regression revealed that the

signature was significantly associated with survival (p < 0.001),

while age and sex were not (Figure 3B). The immune status and

immunotherapy biomarker PD-L1 were significantly negatively

associated with the signature (Figure 3C), while PD-1 was not. A

nomogram was constructed to predict the 3-year survival of
FIGURE 1

The model predicts HCC survival. (A) Overall survival in high-risk samples was significantly worse than that in low-risk samples. (B) Low-risk samples
show high expression of tumor suppressor genes and low expression of oncogenes. TCGA samples were sorted by scores from low to high, and
overall survival and candidate gene abundances were visualized using “pheatmap”. (C) Progression-free survival demonstrated a similar pattern. (D)
The Area Under the Receiver Operating Characteristic (AUROC) for overall survival was calculated for both clinical indicators and the model. HCC,
hepatocellular carcinoma.
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patients with HCC in TCGA dataset (Figure 3D). The risk score had

a broader range of points (from 0 to 100), indicating a greater

impact on the total score compared to age, sex, and stage, which

have narrower ranges. The calibration curve was also visualized

(Figure 3E). These results indicate that the signature reflects some

clinical indicators but contains more information for predicting the

prognosis of HCC patients.
Genomic signature of the model

As mentioned, multiple genes/omic signatures may reflect

various biological statuses of cancer, and the relationships

between the signature and mutation, copy number variation

(CNV), and transcriptome were investigated next. The mutation

rate of TP53 was significantly different between the low- and high-

risk groups, and the mutation rate was significantly higher in the

high-risk group (Figure 4A, right panel). At the CNV level,

variations were more frequent (Figure 4B) in the high-risk

samples. Differentially expressed genes between the high- and

low-risk groups were identified, and the enriched Gene Ontology

(including molecular function, cellular component, and biological

processes) was also identified (Figures 4C–E). Cancer progression-

related processes and pathways were also identified. Gene Set

Enrichment Analysis (GSEA) revealed that canonical cancer

pathways were enriched in the high-risk group (Figure 4F). In
Frontiers in Immunology 06
addition to the cell cycle, cell adhesion, and drug metabolism

pathways (Figure 4G), immune response-related pathways,

including cytokine–cytokine interaction, chemokine signaling, and

NK cell-mediated cytotoxicity, were also significantly enriched

(Figure 4H). Overall, the signature reflected the biological status of

HCC at both the genome and transcriptome levels.
Immune infiltration and the signature

The signature was significantly associated with various immune

pathways and PD-L1 expression, and the signature was constructed

with immune cell activation-related genes, which prompted us to

analyze immune cell infiltration and the signature. Immune cell

infiltration was estimated with multiple algorithms (including

CIBERSORT, TIMER, XCELL, and EPIC) us ing the

transcriptome of TCGA dataset. A high proportion of immune

cells was differentially infiltrated according to these algorithms

(Figure 5A). CD8+ T cells, M0 macrophages, and NK cells were

differentially infiltrated between the low- and high-risk groups

(Figure 5B). Compared to the candidate genes, the signature more

significantly and comprehensively reflected immune infiltration

(Figure 5C). Compared to the candidate genes, the signature was

significantly correlated with all immune cell types listed, while the

candidate genes were not. Collectively, the results above indicate

that the signature represents the immune infiltration of HCC.
FIGURE 2

Model validation. Scores were evaluated, and datasets were classified into high- and low-risk groups based on the median score. Overall survival
patterns between these groups were evaluated in the GSE14520 (A), GSE36376 (B), and GSE77314 (C) datasets.
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Single-cell landscape and signature

The immune infiltration algorithms were based on the

expression of cell lineage-specific genes, but the single-cell

landscape is still vague. Single-cell sequencing data from 14 HCC

samples (GSE156625) were used for analyses. After preprocessing

and annotation (Figure 6A), the samples’ signature values were

calculated using aggregated expression to generate pseudo bulk

RNA-seq data. The signature values were calculated for 14 samples
Frontiers in Immunology 07
(Figure 6B), and these samples were divided into the high- and low-

risk groups. Almost all cell types were distributed in the high- and

low-risk groups (Figure 6C), but the cell proportions were different

(Figures 6D, E). Importantly, immune activation cells, including

Tregs and CD4+ and CD8+ T cells, were highly enriched in the low-

risk group, while basal cells (Epithelial cells (ECs), fibroblasts, and

hepatocytes) were more abundant in the high-risk group. The

candidate genes used for signature construction were expressed in

different cell types (Figure 6F). NKG7 was expressed in NK/NKT
FIGURE 3

Clinical correlations. (A) Correlations between the score and pathological indicators were analyzed. (B) Cox multivariate regression was performed
using the score and pathological indicators. (C) The model showed a significant association with PD-L1 gene expression. (D) A 3-year overall survival
nomogram was created using clinical indicators and the model, with a calibration curve (E). *, p<0.05, **, p<0.01, ***, p<0.001. NS, Not Significant.
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cells, ITM2A had the highest expression in CD8+ T cells, and

DNASE1L3 was detected in ECs. These results indicate that the

candidate genes originated from different cell types and that the

signature reflected immune infiltration at the single-cell level.
Frontiers in Immunology 08
Cell–cell interaction and the signature

Since the candidate genes were immune cell activation-related

genes, the differences in cell–cell interactions reflected by the signature
FIGURE 4

Genomic and transcriptomic features. (A) Specific highly mutated genes were identified for both the high- and low-risk groups. (B) Copy number
variations were detected, with red and green bars indicating the high- and low-score groups, respectively. Differentially expressed genes (DEGs)
between groups were identified, followed by enrichment analysis of Gene Ontology terms, including cancer-related biological processes (C),
molecular functions (D), and cellular components (E). (F) Gene set enrichment analysis revealed significant enrichment in HCC-related pathways,
adhesion pathways (G), and immune-related pathways (H). HCC, hepatocellular carcinoma.
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were investigated next. Overall, the interaction number and strength

were similar between the high- and low-risk groups (Figure 7A), while

the interactions between cell types were different (Figure 7B). The

differential interactions among cell types were estimated and visualized
Frontiers in Immunology 09
in Figures 7C, D. The most altered interactions between groups were

those involving fibroblasts, NKT cells, and myeloid cells. The

differential pathways were also identified (Figure 7E). PECAM2,

GAP, BAFF, and CDH5 were detected only in the low-risk samples,
FIGURE 5

Immune infiltration. (A) The model is significantly associated with the infiltration of various immune cell types, as determined by algorithms such as
CIBERSORT, XCELL, TIMER, EPIC, and MCPCOUNTER (B). (C) Correlation analyses showed that candidate genes contributed to the signature
associations. *, p<0.05, **, p<0.01, ***, p<0.001. NS, Not Significant.
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while COLLAGEN, FN1, NOTCH, THBS, ADGRA, VEGF, APP, and

VTN signaling were detected specifically in the high-risk samples

(Figures 7F, G). The differences in fibroblast interactions were mostly

between mast cells and ECs, while the differences in NKT cell
Frontiers in Immunology 10
interactions were mostly between myeloid cells and mast cells

(Figure 7H). Taken together, these results suggest that the signature

reflects the status of immune cell–cell interactions, especially those

involving fibroblasts, myeloid cells, and NK cells.
FIGURE 6

Microenvironment status at the single-cell level. (A) Cell type distribution was analyzed. (B) The risk score for each sample was calculated using
pseudo bulk RNA-seq. (C) While the distribution of cell types was similar between low- and high-risk samples, the proportions differed, as visualized
by bar plots (D) and Sankey diagrams (E). (F) The expression of candidate genes across cell types was also examined.
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Drug resistance and the signature

Since the signature reflected various HCC statuses and these

statuses were significantly associated with drug response, the

IC50 value of each drug for each cancer sample was evaluated
Frontiers in Immunology 11
using the “oncopredict” algorithm. Differences in IC50 values

between the high-risk and low-risk groups for each drug were

estimated. The low-risk samples were sensitive to most

differential drugs (Figures 8A, B), while the high-risk samples

were sensitive to only a few drugs. Correlations between
FIGURE 7

Drug sensitivity of low-/high-risk samples. (A) The overall interaction number and strength between high- and low-risk samples. (B) However, the
detailed interactions of cell types differed. Differential interactions were visualized using circle plots (C) and heatmaps (D). (E) Information flow
analysis revealed differential pathways, primarily involving fibroblasts and NKT cells. Specific pathways in low- (F) and high-risk (G) samples were also
visualized. Fibroblast/NK/NKT-related signaling with other cell types is also shown (H).
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candidate genes/the signature and drug IC50 values were

evaluated, and NKG7 and ITM2A contributed the most to

drug sensitivity (Figure 8C). Since it is difficult to alter the

signature value, RORC was knocked down, and the drug
Frontiers in Immunology 12
sensitivity was quantified by estimating the IC50. As expected,

the siRORC group was significantly more resistant to both

paclitaxel and docetaxel in both the HepG2 and Huh7 cell

lines (Figures 8D, E). Collectively, these results indicate that
FIGURE 8

The signature and drug sensitivity. (A) Heatmap of differential drugs between low/high-risk samples. (B) Boxplots showing IC50 values for various
drugs in high-risk and low-risk HCC groups, calculated using the “OncoPredict” algorithm. (C) Correlation analysis between candidate genes/
signatures and drug IC50 values. Scatterplots reveal a significant positive correlation between RORC expression and the IC50 values of paclitaxel (D)
and docetaxel (E).
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candidate gene RORC and the signature predict chemotherapy

sensitivity, especially to paclitaxel and docetaxel.
RORC inhibits the proliferation and
migration of HCC cell lines

To validate the roles of the candidate genes, the growth of the

HCC cell lines HepG2 and Huh7 was assessed following the

knockdown of RORC (Figure 9A). The growth rate was measured

using the CCK-8 assay. Significant changes in the proliferation of

both cancer cell lines were observed (Figure 9B). Consistently, the

downregulation of RORC also enhanced the migration ability of

both cell lines (Figures 9C, D), indicating the role of RORC in

inhibiting the proliferation and migration phenotypes of HCC

cell lines.
RORC suppresses CDC6 transcription to
oppose proliferation of HCC cell lines

The RORC was reported as a transcription factor, while the

detailed downstream genes are still not clear. To investigate the role

of RORC in HCC, we analyzed several cell lines knocking down

and/or overexpressing RORC, and we identified the differentially

expressed genes in all these cell lines between control and
Frontiers in Immunology 13
overexpression groups (Figure 10A). Of these genes, CDC6 was

the frequently reported prognostic gene in HCC. The expression of

CDC6 was also significantly associated with survival in TCGA

dataset (Figures 10B, C). To validate this finding, we knocked

down RORC in the HepG2 and Huh7 cell lines and detected

significantly increased CDC6 expression (Figure 10D).

Additionally, ChIP-PCR revealed that RORC was enriched in the

promoter region of CDC6 (Figure 10E), and the luciferase report

indicated that the RORC promoter significantly decreased the

luciferase signal intensity (Figure 10F). Since the role of CDC6

has been widely reported, we next investigated whether RORC

inhibits proliferation via CDC6. After knocking down CDC6 in the

siRORC group, the proliferation rate of the HepG2 and Huh7 cell

lines was quantified using CCK-8 assay, as the previous result.

CDC6 knockdown significantly restored the proliferation increase

caused by RORC knockdown in both cell lines (Figure 10F). Taken

together, these results indicate that RORC suppresses proliferation

via CDC6 inhibition.
RORC serves as a prognostic marker

To further address the prognostic role of RORC and CDC6, we

collected 100 primary HCC samples from our affiliation and

quantified the expression value with immune histochemical

staining microarray. As a result, higher expression of RORC
FIGURE 9

RORC and DNASE1L3 knockdown promote proliferation and migration. (A) Knockdown efficiency of RORC. (B) Knocking down RORC significantly
enhanced the proliferation rate of the HCC cell lines HepG2 and Huh7. (C, D) Migration rate was also significantly upregulated after RORC was
knocked down. HCC, hepatocellular carcinoma. *, p<0.05, **, p<0.01, ***, p<0.001. NS, Not Significant.
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resulted in a prolonged survival period compared to the RORC-low

group (Figure 11A), while elevated CDC6 was correlated with a

worse survival rate (Figure 11B), which is consistent with TCGA

dataset (Figures 11C, 10B, C). It was noted the RORC was

significantly downregulated in tumor tissues compared to the

normal tissue (Figure 11D), while CDC6 was upregulated

(Figure 11E). In addition, CDC6 and RORC were significantly

associated with overall survival using Cox multivariate regression

(Figures 11F, G, p < 0.05). Collectively, these results indicate that

RORC and its downstream target CDC6 serve as prognostic

markers for HCC.
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Discussion

As a chronic disease, HCC is characterized by long-term

interactions between cancer cells and immune cells. During this

process, the dynamic status of multiple cell types, including

exhausted T cells (33), the complement system (34), and

polarized macrophages (35), has been reported. Immune cell

(especially T cell) activation is critical for cancer progression and

treatment, especially for immunotherapy (36). However, activating

the immune response in HCC involves multiple processes and

involves various cell types. However, the detailed underlying
FIGURE 10

RORC suppresses proliferation in HCC by inhibiting CDC6. (A) Differentially expressed genes (DEGs) identified from RORC knockdown and
overexpression analyses. Kaplan–Meier curves showing the association of CDC6 expression with overall survival in TCGA dataset using overall (B)
and progression-free survival (C) in TCGA datasets. (D) Relative expression of CDC6 detected via qPCR upon RORC knockdown in both cell lines (p
< 0.01). (E) ChIP-PCR showing RORC enrichment at the CDC6 promoter region. (F) Luciferase reporter assay using the CDC6 promoter. (G) CCK-8
proliferation assays in HepG2 and Huh7 cells after RORC and/or CDC6 knockdown (p < 0.001). HCC, hepatocellular carcinoma; ChIP, chromatin
immunoprecipitation. '***', means p<0.001.
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mechanisms are still vague. To this end, we constructed a signature

using immune response activation-related genes validated across

datasets and investigated the heterogeneity reflected at multiple

levels, including clinical, omics, drug response, and immune

infiltration data. It is suspected that the heterogeneity of the

model is a result of multiple gene-based signatures. For example,

the candidate gene RORC was reported to regulate glycolysis and

drug resistance in bladder cancer (37). A retrospective study

revealed that SLC11A1 expression predicted the clinical outcome

of glioma patients after immunotherapy (38). Another candidate

gene, natural killer cell granule protein-7 (NKG7), is a well-known

gene for activating the antitumor response of natural killer cells

(39). NKG7 is also a therapeutic target for enhancing the efficacy of

immunotherapy (40). Other candidate genes were also reported to

be associated with drug response and immune infiltration (41, 42).
Frontiers in Immunology 15
As biomarkers, these single genes were not emphasized due to a lack

of validation datasets, but their combination, the signature, was

reproducible across cohorts. This indicates that the signature

related to immune response activation-related genes is a valuable

marker for HCC.

Among the immune cell types associated with the signature, we

noticed that M0 macrophage was significantly enriched in the high-

risk samples according to CIBERSORT. In consistent with

estimated depleted CD8+ T cells in the high-risk samples, M0

macrophage enriched usually indicates an immune suppressive

microenvironment, accompanied by worse survival (43, 44).

Previous studies also developed HCC signatures using M0

macrophage-related genes and achieved good performance (45,

46). In addition, a higher macrophage-to-lymphocyte ratio also

may influence the immunotherapy of melanoma (47). However, it is
FIGURE 11

Prognostic value of RORC and CDC6 in HCC using IHC. Kaplan–Meier survival analyses of 100 primary HCC samples showing prolonged survival in
patients with high RORC expression (A, p < 0.0001) and worse survival in patients with high CDC6 expression (B, p < 0.001). (C) TCGA dataset
confirms that high RORC expression correlates with better overall survival. (D, E) Immunohistochemical staining microarray of 100 primary HCC
samples reveals significantly lower RORC expression in tumor tissues compared to normal tissues (D, p < 0.001) and significantly higher CDC6
expression in tumor tissues (E, p < 7.8e−13). (F, G) Cox multivariate regression analysis identifies RORC (G) and CDC6 (H) as significant independent
predictors of overall survival (p < 0.05) in IHC dataset. HCC, hepatocellular carcinoma; IHC, immunohistochemical.
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still not clear how the accumulation of M0 in tumor tissue affects

the prognosis and treatment outcome.

In addition, during the cell–cell interaction analyses, we revealed

that both high and low risk possess their specific signaling pathways.

COLLAGEN, FN1, NOTCH, THBS, ADGRA, VEGF, APP, and VTN

pathways were specific in the high-risk samples, while PECAM2,

GAP, BAFF, and CDH5were detected in only the low-risk samples. It

is suspected that drugs targeting different pathways may benefit

different patients. For example, drugs targeting VEGF including

bevacizumab and regorafenib may benefit the high-risk samples, as

well as NOTCH inhibitors. Drugs or monoclonal antibodies targeting

PECAM2 GAP, BAFF, or CDH5 may benefit low-risk patients.

Although the impact of some drugs in treating HCC is still not

clear, the study may provide insight into personalized medicine in

future drug development and HCC population segregation.

In this work, our results indicated that the candidate gene

RORC in the signature regulates CDC6 by binding to the promoter

region of CDC6 using ChIP-seq, siRNA, and luciferase assay.

Instead of functioning as a transcription factor, it suppresses the

expression of CDC6. Although studies regarding this gene have

been reported, including cancer therapy (48), the detailed

mechanism is still not clear. We revealed that it functions as a

transcription factor to repress the expression of CDC6, which may

provide new insight into investigating the role of RORC.

The preliminary limitation of this study is that it is a

retrospective study, and the detailed sample information and

treatment regimen are unknown, which makes it difficult to

evaluate the bias of the signature among subgroups and the

clinical treatment response. Although the IC50 was estimated

using a prediction algorithm, the results are still less convincing

and lack real-world results. Another limitation is that the validation

dataset was generated from different platforms. Although the

robustness of these methods has been verified, it is difficult to

optimize the cutoff values for clinical use. Finally, the detailed

functions of candidate genes and their role in immune cell

activation are not clear, which makes it difficult to use candidate

genes as potential therapeutic targets.
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