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Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease

marked by dysregulated immune responses, resulting in sustained inflammation

and ulceration of the colonic and rectal mucosa. To elucidate the cellular

subtypes and gene expression profiles implicated in the pathogenesis of UC,

we utilized single-cell and spatial transcriptomic analyses.

Methods: We conducted an analysis of single-cell data to identify cell types

involved in the pathogenesis of UC. Employing machine learning methodologies,

we screened for key genes implicated in UC and validated these findings through

spatial transcriptomics. Additionally, immunohistochemistry was performed on

UC lesion samples to investigate the expression patterns of the identified

key genes. In an animal model, we utilized immunofluorescence and

western blotting to validate the expression of these genes in the affected

intestinal segments.

Results: Our investigation identified specific monocyte subtypes associated with

UC through a comprehensive analysis involving cell communication, Least

Absolute Shrinkage and Selection Operator (LASSO), and Support Vector

Machine (SVM) methodologies. Notably, two genes, G protein subunit gamma

5 (GNG5) and tissue inhibitor of metalloproteinase 1 (TIMP1), were identified as

key regulators of UC development. Spatial transcriptomic indicated a

downregulation of GNG5 expression in UC, whereas TIMP1 expression

was upregulated. Furthermore, a significant correlation was detected between

TIMP1 and T cell exhaustion-related genes such as genes related to T cell

exhaustion, including T cell immunoreceptor with Ig and ITIM domains

(TIGIT) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) .

Immunohistochemical analysis of UC lesion samples revealed diminished

expression levels of GNG5 and elevated expression levels of TIMP1. A dextran
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sulfate sodium (DSS)-induced colitis mouse model was developed,

demonstrating that the protein expression levels of GNG5 in the colonic tissue

of model mice were significantly decreased compared to controls w)ile the

expression levels of TIMP1 were increased (p < 0.01). Furthermore,

immunofluorescence staining indicated co-localization of TIMP1 with the

macrophage marker F4/80 in monocytes.

Conclusion: Our research delineated distinct monocyte subtypes correlated

with UC and identified two pivotal genes, GNG5 and TIMP1, that contribute to

the disease’s pathogenesis. These insights offer a significant theoretical basis for

enhancing the clinical diagnosis and therapeutic strategies for patients with UC.
KEYWORDS

immune infiltration, single-cell transcriptome sequencing, spatial transcriptome
sequencing, ulcerative colitis, T cell exhaustion
1 Background

Ulcerative colitis (UC) is a chronic, idiopathic form of

inflammatory bowel disease (IBD) that predominantly affects the

mucosal and submucosal layers of the colorectal region. The

pathogenesis of UC is characterized by dysregulated immune

responses, resulting in persistent inflammation and ulceration of

the colonic and rectal mucosa. Contributing factors include genetic

predisposition, environmental influences—including infections and

dietary components—and an exaggerated immune response to gut

microbiota. These factors collectively undermine the integrity of the

mucosal barrier, facilitate the infiltration of inflammatory cells, and

promote the re lease of pro-inflammatory mediators .

Epidemiological evidence suggests that UC is relatively prevalent

in developed countries, with high incidence rates in North America

and Europe (1). In recent years, however, there has been an

observable increase in the incidence of UC in many newly

industrialized countries, including China, coinciding with global

economic development and dietary changes (2). This trend is

particularly concerning given the generally reduced life

expectancy of UC patients, alongside their heightened risk of

requiring colectomy and progression to colorectal cancer.

Therefore, the active investigation of UC pathogenesis and the

formulation of precise therapeutic strategies have become urgent

research imperatives.

Currently, the management of UC primarily involves the

administration of 5-aminosalicylic acid (5-ASA) preparations and

glucocorticoids. While these pharmacological agents frequently

offer prompt alleviation of symptoms, they are also linked to

considerable toxic side effects and low patient adherence.

Immunosuppressants are primarily employed for maintenance

therapy following the remission of symptoms induced by

glucocorticoids, with the objective of minimizing glucocorticoid

dosage. Additionally, biological agents, specifically monoclonal
02
antibodies that target distinct inflammatory mediators such as

tumor necrosis factor or integrins, are incorporated into the

therapeutic regimen. The American Gastroenterological

Association (AGA) guidelines (3) advocate for the initiation of

biologic therapy as a first-line treatment and suggest early step-

down strategies, thereby surpassing traditional treatment

approaches (4). In the context of selecting biologics for UC,

current clinical guidelines endorse the use of vedolizumab (VDZ)

or anti-tumor necrosis factor alpha (TNF-a) agents (5). It is

important to highlight that over 30% of patients demonstrate

resistance to TNF-a therapies, with a subset eventually

necessitating intestinal or colon resection surgery (6). In China,

over 50% of patients with IBD show suboptimal responses to

treatment after approximately one year of first-line anti-TNF-a
therapy (7). This secondary dysregulation may be attributed to the

immunogenicity of TNF-a antibodies, leading to the development

of drug-resistant antibodies (8). Therefore, a deeper investigation

into the intricate biological mechanisms underlying UC is essential

for advancing the development of effective therapeutic strategies.

Single-cell transcriptome sequencing (scRNA-seq) is a

sophisticated technique employed to examine RNA expression at

the individual cell level, revealing cellular heterogeneity and the

transcriptional profiles of specific cell types. Our preliminary single-

cell analysis revealed significant increases in the populations of

Plasma cells, activated memory CD4+ T cells, resting Natural Killer

(NK) cells, M0 Macrophages, M1 Macrophages, activated Dendritic

cells, activated Mast cells, and Neutrophils in patients with UC

compared to healthy controls. Subsequently, we conducted an in-

depth investigation into the expression of target genes within

immune cells, taking into account the complex interactions

between bile acid metabolism and immune cell dynamics (9).

Spatial transcriptome sequencing, which retains the spatial

context of tissues, quantifies gene expression through methods

such as microarrays applied to tissue sections or spatial
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1534768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2025.1534768
fluorescence in situ hybridization. This methodology facilitates the

examination of gene expression within specific tissue regions. The

integration of single-cell and spatial transcriptome sequencing

techniques permits the concurrent exploration of mechanisms at

both the cellular and tissue levels, providing novel insights into the

complex mechanisms underlying diseases (10). In this study, we

integrated single-cell and spatial transcriptome sequencing to

identify target genes associated with UC and conducted a

preliminary investigation into the interrelationships among these

target genes, immune cells, and the microenvironment. This

approach was designed to advance our understanding of UC

therapeutic targets and the underlying mechanisms.
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2 Materials and methods

2.1 Study design

The study design is presented in Figure 1.
2.2 Data acquisition

The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/info/datasets.html), curated by the

National Center for Biotechnology Information (NCBI), functions
FIGURE 1

Research flowchart.
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as a comprehensive repository for gene expression data. From this

resource, we acquired the single-cell transcriptome data

corresponding to GSE189754, concentrating on 11 samples that

provided complete single-cell expression profiles for single-cell

analysis. Additionally, we downloaded the spatial transcriptome

data for GSE189184, selecting two control groups (B10, C5) and two

disease groups (B8, B4) for analysis. Furthermore, we procured the

transcriptome data for GSE48958, encompassing data from 8

controls and 13 disease samples.
2.3 Quality control and data
standardization

In this study, the processes of quality control and data

standardization are essential to ensure the accuracy of subsequent

analyses. We employed the Seurat package (11) for initial data

processing. For cell quality control, we conducted screening based

on the total number of unique molecular identifiers (UMIs) per cell,

the number of expressed genes, and the proportion of

mitochondrial gene expression. Typically, a high proportion of

mitochondrial gene expression in a cell indicates low RNA

expression levels and potential progression towards cell death,

warranting the exclusion of such cells. Additionally, we utilized

the median absolute deviation (MAD) for quality control, removing

outliers that deviate from the median by more than three times the

MAD to maintain data reliability. Subsequently, we applied

DoubletFinder (version 2.0.4) (12) to individually filter doublet

cells in each sample, thereby completing the comprehensive cell

quality control process.

In the data standardization process, the LogNormalize method

of global normalization is employed. This technique mitigates the

impact of variations in total RNA content between cells on gene

expression analysis by scaling the total expression level of each cell

with a coefficient \(s_0\), adjusting it to 10,000, and subsequently

normalizing it through logarithmic transformation. Cell cycle

scores are computed using the CellCycleScoring function, and

highly variable genes are identified via the FindVariableFeatures

function. The ScaleData function is utilized to eliminate gene

expression fluctuations attributable to mitochondrial gene

expression, ribosomal gene expression ratios, and cell cycle

differences. Linear dimensionality reduction is conducted on the

expression matrix using the RunPCA function, with 20 principal

components selected for further analysis. The Harmony algorithm

is applied with default parameters to correct for batch effects, and

finally, the RunUMAP function is employed with default

parameters for nonlinear dimensionality reduction.
2.4 Identification of cell clusters

Cell types and corresponding marker genes were identified

using CellMarker (13), PanglaoDB (14), and literature,

supplemented by automated annotation with SingleR (15)

software. The FindAllMarkers function was employed to filter
Frontiers in Immunology 04
marker genes within each category, with only positive markers

expressed in at least 25% of the cells retained (only.pos = TRUE,

min.pct = 0.25).
2.5 Ligand receptor interaction analysis
(Cellchat)

CellChat (16) is a sophisticated tool designed for the

quantitative inference and analysis of intercellular communication

networks derived from single-cell data. Employing network analysis

and pattern recognition methodologies, CellChat facilitates the

prediction of principal signaling inputs and outputs of cells,

elucidating the mechanisms by which these cells and signals

orchestrate their functions. In this study, we employed

standardized single-cell expression profiles as input data,

alongside cell subtype classifications obtained through single-cell

analysis, to serve as cell-specific information. We conducted an in-

depth examination of cell-related interactions, quantifying the

strength and frequency of cell-to-cell interactions to observe the

activity and impact of each cell type in the disease.
2.6 Feature selection process of LASSO
regression and SVM algorithm

We utilized the Least Absolute Shrinkage and Selection

Operator (LASSO) logistic regression and Support Vector

Machine (SVM) algorithms to select features for diagnostic

markers of diseases. The LASSO algorithm utilizes the “glmnet”

package, while SVM-Recursive Feature Elimination (SVM-RFE) is a

machine learning method based on support vector machines (17).

SVM-RFE removes feature vectors generated by SVM to identify

optimal variables, and establishes a support vector machine model

through the “e1071” package to further assess the diagnostic value

of these biomarkers in disease contexts.
2.7 Immune infiltration analysis

The CIBERSORT method is a prevalent technique for assessing

immune cell types within microenvironments (18). In this study,

utilized the CIBERSORT algorithm was employed to analyze

patient data, allowing for the inference of the relative proportions

of 22 immune-infiltrating cell types. Furthermore, a correlation

analysis was conducted to examine the relationship between gene

expression and immune cell content.
2.8 GSEA analysis

Patients were categorized into high and low-expression groups

based on the expression of key genes. Subsequently, Gene Set

Enrichment Analysis (GSEA) was utilized to examine disparities
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in signaling pathways between these cohorts. The annotation gene

set employed for the subtype pathway analysis was derived from

version 7.0 of the Molecular Signatures Database (MsigDB).

Differential expression analysis of pathways between the groups

was conducted, and significantly enriched gene sets (adjusted p-

value < 0.05) were ranked by consistency score. GSEA is frequently

used to explore the correlation between disease classification and

biological significance.
2.9 GSVA analysis

Gene Set Variation Analysis (GSVA) is a nonparametric,

unsupervised method for assessing gene set enrichment in

transcriptome data. GSVA assigns a comprehensive score to each

gene set of interest, converting gene-level changes into pathway-

level changes. This allows for the identification of potential

biological function changes in different samples. In this study,

gene sets were downloaded from MsigDB, and the GSVA

algorithm was applied to comprehensively score each gene set,

enabling the evaluation of potential biological function differences

among the samples.
2.10 Non-coding RNA network associated
with key genes

MicroRNAs (miRNAs) are small non-coding RNAs known to

regulate gene expression by facilitating mRNA degradation or

inhibiting mRNA translation. Consequently, we conducted an in-

depth analysis to determine the presence of miRNAs associated

with key genes involved in the transcriptional regulation or

degradation of potentially deleterious genes. We identified

miRNAs related to these key genes using the miRcode database

and subsequently visualized the miRNA-gene interaction network

utilizing Cytoscape software (19).
2.11 Transcription factor regulatory
network

This study utilized the R package “RcisTarget” to predict

transcription factors, with all computations conducted by

RcisTarget being predicated on motif analysis. The normalized

enrichment score (NES) of a motif depended on the total number

of motifs in the database. In addition to the motifs annotated by the

source data, we inferred further annotation files based on motif

similarity and gene sequences. To estimate the overrepresentation

of each motif in the gene set, we initially calculated the area under

the curve (AUC) for each pair of motif-motif set. This was

performed based on the recovery curve calculation of the gene set

ranking of the motifs. The NES of each motif was calculated based

on the AUC distribution of all motifs in the gene set.
Frontiers in Immunology 05
2.12 Source of human sample

To verify the expression of target genes in the diseased colon

tissue of UC patients, tissue biopsy samples were collected from UC

patients within the research cohort at the Digestive Endoscopy

Center of Changshu Hospital Affiliated to Nanjing University of

Chinese Medicine (Ethical Number: CZYLS-2024120). Patients

with UC secondary to other diseases or with differing pathological

results were excluded. Normal tissue samples for the control group

were obtained from the periphery of pathological specimens

diagnosed with colon cancer and subjected to Miles surgery in the

General Surgery Department of Changshu Hospital Affiliated to

Nanjing University of Chinese Medicine. The collection of all

samples was approved by the hospital’s Ethics committee, and

written informed consent was obtained from the patients.
2.13 Immunohistochemistry

Colon tissue sections fixed with paraformaldehyde were

deparaffinized using xylene and incubated with primary

antibodies (tissue inhibitor of metalloproteinase 1 (TIMP1):1:200,

Absin, Shanghai, China; G protein subunit gamma 5 (GNG5):1:200,

Abcam, Shanghai, China) at 37°C for 1.5 hours. After three washes

with PBS, immunocomplex detection was performed using

diaminobenzidine, and nuclei were counterstained with

hematoxylin. The sections were examined under a microscope

(Leica, Wetzlar, Germany) (20).
2.14 Animals and treatment

Male C57BL/6 mice (weighing 18–20 grams) were obtained

from Beijing Vital River Laboratory Animal Technology Co., Ltd.

(SCXK-2021-0011, Beijing, China). Before the experiments, the

mice were provided with standard laboratory chow and water ad

libitum under controlled conditions of 60 ± 5% humidity, 23 ± 1°C

temperature, and a 12-hour light/dark cycle. The experimental

protocol was approved by the Ethics Committee of the

Experimental Animal Center at Nanjing University of Chinese

Medicine (Ethical Number: NJUCCSHAE-2021-1123). The mice

were randomly divided into two groups: a control group and a

dextran sulfate sodium (DSS) group, each with 6 mice. The control

group received drinking water, while the DSS group was given 3%

DSS in drinking water for 7 days (21). On the 8th day, all mice were

euthanized, and their colon samples were collected for

further analysis.
2.15 Hematoxylin and eosin staining

Colon tissue was fixed in 4% paraformaldehyde, subsequently

embedded in dehydrated paraffin, and sectioned at a thickness of
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4.5mm. The sections were then stained with H&E. Pathological

alterations in the tissue samples were examined using an optical

microscope (Leica, Wetzlar, Germany).
2.16 Enzyme-linked immunosorbent assay

Accurately weigh the colon tissue to achieve a weight (mg) to

volume (µL) ratio of 1:9. Add nine times the volume of

physiological saline and homogenize the mixture mechanically

under ice water bath conditions to prepare a 10% homogenate.

Centrifuge the homogenate at 2500–3000 rpm for 10 minutes and

collect the supernatant for subsequent ELISA analysis. Following

the manufacturer’s protocol, the concentrations of TNF-a
(mIC50536-1, Mlbio, Shanghai, China) and interleukin-6 (IL-6)

(ml098430, Mlbio, Shanghai, China), were quantified using a

commercially available ELISA kit.
2.17 Immunofluorescence staining for co-
localization validation

The sample slices were fixed in 10% formalin, embedded in

paraffin, dewaxed, and subjected to antigen retrieval. After a one-

hour blocking step at room temperature, the slices were incubated

overnight at 4°C with primary antibodies TIMP1 (1:200, Absin,

Shanghai, China) and F4/80 (1:50, Abcam, Shanghai, China).

Following three 10-minute washes with PBS, the slices were

incubated for one hour at room temperature with Alexa Fluor

488 and Alexa Fluor 594 secondary antibodies. After another three

PBS washes, an anti-quenching medium was used to mount the

cover glass onto the slide. The sections were then examined under a

fluorescence microscope (Leica, Wetzlar, Germany) at a

magnification of 80 for microscopic analysis and imaging (22).
2.18 Western blot for expression validation

Total protein was extracted from colon tissue samples of human

or mouse origin using RIPA lysis buffer (Beyotime, Nanjing, China)

and quantified using the Bicinchoninic Acid (BCA) protein assay

kit (Beyotime, Nanjing, China). Subsequently, 20 micrograms of

protein were separated on a 10% SDS-PAGE gel and transferred to a

polyvinylidene fluoride (PVDF) membrane. The membrane was

then blocked with 5% (w/v) bovine serum albumin (BSA) or skim

milk at room temperature for 1 hour. Following the blocking step,

the membrane was incubated overnight at 4°C with primary

antibodies targeting GNG5 (1:1000, Absin, Shanghai, China),

TIMP1 (1:1000, Absin, Shanghai, China), and GAPDH (1:5000,

Proteintech, Wuhan, China). On the next day, the membrane was

incubated with secondary antibodies (horseradish peroxidase-

conjugated goat anti-rabbit or anti-mouse IgG, 1:5000, Cell

Signaling Technology, Danvers, MA, USA) at room temperature
Frontiers in Immunology 06
for 1 hour. Visualization of the protein bands was performed using

an ECL detection kit and a gel imaging system (Tanon, Shanghai,

China). The intensity of the bands was then quantified using the

densitometric analysis feature of Gel Pro 4.0 software (Tanon,

Shanghai, China) (23).
2.19 Statistical analysis

All statistical analyses were performed using the R

programming language (version 4.3.0), with a significance

threshold set at p < 0.05.
3 Results

3.1 Preliminary processing of single-cell
expression profile data

During the initial processing of single-cell expression profile

data, rigorous adherence to established quality control and

standardized procedures was maintained. Following the screening

process, cells with fewer than 200 captured genes were excluded,

while those meeting the criteria were retained based on indicators

such as nFeature-RNA, nCount-RNA, and percent.mt, resulting in

a dataset of 22,345 high-quality cells. Concurrently, doublets were

removed, and the top 2,000 highly variable genes were selected for

subsequent analysis. The processed data demonstrated favorable

distribution characteristics, as evidenced by violin plots and scatter

plots, thereby establishing a robust foundation for precise cell

subpopulation annotation and gene expression analysis in future

studies (Supplementary Figure S1A, C). This approach effectively

mitigates analysis bias associated with data quality issues.
3.2 Single-cell data cell subpopulation
annotation and ligand-receptor interaction
analysis (Cellchat)

The data underwent standardization, homogenization, and

subsequent analysis using Principal Component Analysis (PCA),

Harmony, and Uniform Manifold Approximation and Projection

(UMAP) (Supplementary Figures S1D-F, Figure 2A). Each subtype

was annotated to one of seven cell categories: CD4+ T cells, B cells,

CD8+ T cells, Fibroblasts, Monocytes, Mast cells, and NK cells

(Figure 2A). A bubble plot and histogram were generated to

visualize the expression of classic markers and cell proportions

for these categories (Figures 2B, C). The software package Cellchat

was employed to examine ligand-receptor interactions within the

single-cell expression profile, revealing intricate relationships

between the cell subtypes (Figure 2D). Notably, Monocytes

demonstrated a closer potential interaction with other cell types

(Figures 2E, F).
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3.3 Feature selection process of LASSO
regression and SVM algorithm

To investigate the genetic underpinnings of UC, we retrieved

expression profile data from the GEO database (GSE48958). This

dataset comprised 21 patient samples. To identify key genes

associated with this condition, we employed a two-step approach.

First, we utilized a combination of LASSO regression and SVM

algorithms to screen the 386 monocyte marker genes (p_adj < 0.05

& LogFC > 0.585) previously identified. LASSO regression yielded

18 characteristic genes (Figures 3A, B), while SVM identified 4

(Figure 3C). By intersecting these gene sets, we identified 2 genes,

GNG5 and TIMP1, as the most promising candidates for further

exploration in our research on UC (Figure 3D).
3.4 Immune infiltration analysis

The microenvironment, a pivotal factor in disease progression,

consists of a complex interplay between cellular and extracellular

components. This intricate ecosystem includes fibroblasts, immune

cells, extracellular matrix, growth factors, inflammatory factors, and
Frontiers in Immunology 07
unique physical and chemical properties. The microenvironment

exerts a substantial influence on disease diagnosis, prognosis, and

therapeutic response. Our investigation revealed distinct patterns of

immune cell infiltration and correlation in various disease states

(Figures 4A, B). Compared to the control group, the disease group

exhibited significantly elevated levels of M1Macrophages, resting NK

cells, CD4+ memory activated T cells, and CD4+ memory resting T

cells. Conversely, resting Mast cells and NK cells activated were

significantly reduced in the disease group (Figure 4C). Further

analysis of the relationship between key genes and immune cells

demonstrated a strong positive correlation between TIMP1 and

several immune cell types, including CD4+ memory resting T cells,

CD4+ memory activated T cells, follicular helper T cells, resting NK

cells, M0 Macrophages, M1 Macrophages, activated Dendritic cells,

and Neutrophils. Conversely, TIMP1 was negatively correlated with

Plasma cells, CD8+,T cells regulatory T cells (Tregs), activated NK

cells, and restingMast cells (Figure 4D). Moreover, our analysis of the

correlation between key genes and different immune factors,

including immunosuppressive factors, immunostimulatory factors,

chemokines, and receptors, suggests that these genes are intimately

involved in shaping the immune microenvironment (Supplementary

Figures S2A-E).
FIGURE 2

Cell annotation and communication. (A) UMAP-based clustering of cells into 12 groups. Classification of clusters into 7 cell types: CD4+ T cells, B
cells, CD8+ T cells, Fibroblasts, Monocytes, Mast cells, and NK cells. (B) A Dotplot visualization of cell type markers and their expression levels. (C)
Bar charts displaying the proportions and content of 7 cell types in the sample. (D) Cell interaction network among 7 cell types based on
communication probability and strength. (E) Bubble plot of receptor-ligand interactions between cells, with colors showing communication
probabilities. (F) Comparison of total interactions among 7 cell types, showing a decreasing trend from left to right, with Monocytes having the
strongest interactions.
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3.5 Signaling pathways involved in key
genes

To elucidate the specific signaling pathways involved in the key

genes and explore their potential molecular mechanisms in disease

progression, we conducted a comprehensive analysis. GSEA

revealed that GNG5 was significantly enriched in signaling

pathways such as propanoate metabolism, butanoate metabolism,

and peroxisome proliferator-activated receptor (PPAR) signaling

(Figures 5A, B). TIMP1, on the other hand, was enriched in

pathways including B cell receptor signaling, interleukin-17 (IL-

17) signaling, and NF-kB signaling (Figures 5D, E). Additionally,

GSVA identified GNG5 as being enriched in pathways associated

with protein secretion and adipogenesis (Figure 5C). TIMP1 was

found to be enriched in pathways related to hedgehog signaling and

epithelial-mesenchymal transition (Figure 5F). These findings

collectively suggest that the key genes may influence disease

progression through these identified signaling pathways.
Frontiers in Immunology 08
3.6 Non-coding RNA network and
transcriptional regulatory network related
to key genes

Subsequently, we employed the miRcode database to conduct a

reverse prediction of the key genes, resulting in the identification of 20

miRNAs and a total of 23 mRNA-miRNA regulatory relationships.

These interactions were visualized using Cytoscape (Supplementary

Figure S3A). By utilizing the key genes as a gene set for this analysis, we

discovered that these genes were subject to regulation by common

mechanisms, such as multiple transcription factors. To identify these

transcription factors, we employed cumulative recovery curves and

conducted motif-transcription factor annotation and selection analysis

on the key genes. The motif with the highest standardized enrichment

score (NES: 14) was determined to be cisbp:M6056. We have provided

a comprehensive visualization of all the enriched motifs and their

corresponding transcription factors associated with the key genes

(Supplementary Figure S3B, C).
FIGURE 3

LASSO Model Construction. (A) LASSO coefficient distribution and gene combination at the minimum lambda value. (B) Ten-fold cross-validation for
tuning parameter selection to find the minimum lambda. (C) Top four feature genes with the lowest error rate in the SVM algorithm. (D) Venn plot
showing two overlapping genes selected by both LASSO regression and SVM algorithms.
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FIGURE 4

Immune Infiltration Analysis. (A) Comparison of immune cell subset percentages between control and disease groups, with immune cells on the x-
axis and relative percentages on the y-axis. (B) Correlation of immune cell infiltration, showing cell types on both axes; red indicates positive
correlation, blue indicates negative, and darker colors signify stronger associations. (C) Blue and pink bars show the immune cell content differences
between control and disease groups, respectively, with cell types on the x-axis, scores on the y-axis, and * indicating statistical significance. (D) The
x-axis shows immune cell types, the y-axis shows two key genes, and an asterisk marks statistical significance in their correlation. **: p < 0.01.
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3.7 Relationship between key genes and
disease-related genes

In the current study, the GeneCards database (https://

www.genecards.org/) was utilized to identify genes potentially
Frontiers in Immunology 10
implicated in disease regulation. To assess inter-group expression

differences amongst these genes, we analyzed the expression levels of

20 highly ranked genes (based on the Relevance*score) with confirmed

expression within the transcriptome data. This analysis revealed

significant expression differences between the two patient groups for
FIGURE 5

Signal pathways of key genes. (A, B) GNG5 in the KEGG signaling pathway and their regulatory roles. (C) GSVA analysis showing signaling pathways
for high expression GNG5 (blue) and low expression GNG5 (green), using the Hallmark gene set as a reference. (D, E) TIMP1 in the KEGG signaling
pathway and their regulatory roles. (F) GSVA analysis showing signaling pathways for high expression TIMP1 (blue) and low expression TIMP1 (green),
using the Hallmark gene set as a reference.
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genes including interleukin 23 receptor (IL23R), interferon gamma

(IFNG), nucleotide-binding oligomerization domain 2 (NOD2), tumor

protein 53 (TP53), transforming growth factor beta 1 (TGFB1),

interleukin 1 receptor antagonist (IL1RN), interleukin-1 beta (IL1B),

interleukin 8 (CXCL8), tumor necrosis factor (TNF) and ATP-binding

cassette subfamily B member 1 (ABCB1) (Figure 6A). Furthermore, a

correlation analysis was performed to investigate the relationship

between key genes and disease regulation genes. The expression

levels of these key genes demonstrated statistically significant

correlations with the expression levels of disease regulation genes.

Notably, TIMP1 exhibited a strong positive correlation (cor = 0.949)

with IL1RN while displaying a significant negative correlation (cor =

-0.807) with ABCB1 (Figure 6B).
3.8 Expression profile of key genes in
spatial transcriptome and validation of
pathological tissues derived from human
sources

We analyzed the spatial transcriptome data to assess the

expression levels of two key genes. Compared with the control
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group, GNG5 expression was inhibited in the disease group, while

TIMP1 expression was significantly upregulated in the disease

group (Figure 7A). We assessed the differential expression levels

of key genes across various groups utilizing bubble and violin plot

visualizations. Our analysis revealed a downregulation of GNG5 and

an upregulation of TIMP1 in UC (Figure 7B). IHC analysis was

conducted on colon lesions from patients with UC to assess the

expression levels of GNG5 and TIMP1. Results demonstrated a

significant upregulation of TIMP1, and a significant downregulation

of GNG5 in the disease group compared to the control group (p <

0.001), aligning with the previously presented spatial transcriptome

data (Figure 7C).
3.9 Validation of key genes in tissues from
a DSS-induced colitis mouse model

A DSS-induced colitis mice model was generated successfully

(Figure 8A). The distal colon tissue was collected and its length was

measured and then imaged. It was found that compared with the

control group, the colon of the DSS-induced colitis mice model was

significantly shortened under inflammatory stimulation (p < 0.001)
FIGURE 6

Correlation between key genes and disease genes. (A) The top figure illustrates the differential expression of disease regulatory genes, with blue for
control patients and yellow for disease patients. (B) The bottom figure presents correlation analysis, where blue denotes negative and red denotes
positive correlations. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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(Figure 8B). The colon tissue of mice was collected for H&E

staining. As illustrated in Figure 8C, DSS induction resulted in

the desquamation and necrosis of colonic epithelial cells, infiltration

of inflammatory cells within the mucosal layer, and loss of crypt

structures in DSS-induced colitis model mice. The levels of IL-6 and
Frontiers in Immunology 12
TNF-a in colon tissue were measured utilizing ELISA. The results

revealed a significant increase in the levels of inflammatory

cytokines IL-6 and TNF-a in the colon tissue of DSS-induced

colitis model mice (p < 0.001) compared with the control group

(Figures 8D, E). To further elucidate the expression of key genes in
FIGURE 7

Key gene expression in spatial transcriptome and lesion tissues of UC patients. (A) Scatter plot showing key gene expression levels in single-cell
idling. (B) Up: Bubble plot depicting key gene expression levels (blue = low, red = high). Down: Violin plot illustrating key gene expression
distribution in single-cell idling. (C) Differential expression of GNG5 and TIMP1 between control and UC groups. *** P < 0.001.
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UC, we conducted Western blot to evaluate corresponding protein

expression levels in colon samples obtained from a DSS-induced

colitis mouse model. Results indicated that, compared to the control

group, GNG5 protein levels were significantly downregulated and

TIMP1 levels were significantly upregulated in the DSS group (p <

0.001, p < 0.01), which confirmed our spatial transcriptome

predictions (Figure 8G).
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Our single-cell sequencing data showed high monocyte

expression in UC samples, with macrophages being crucial

monocyte components. Lots of references indicates that

macrophages are vital in UC inflammation and tissue repair (24).

Immune infiltration analysis revealed a stronger correlation between

TIMP1 and UC-related immune cells compared to GNG5. Thus, we

used immunofluorescence co-localization to assess TIMP1 expression
FIGURE 8

Key gene expression in DSS-induced colonic lesions in mice model. (A) The animal experimental protocol. (B) H&E staining images of colon tissue
from the indicated groups. (C) Comparison of colon length in the indicated groups. (D, E) The levels of IL-6 and TNF-a in the colon homogenate of
each group. F Protein levels of GNG5 and TIMP1 in the colon. (G) Co-localization of TIMP1 with the macrophage marker F4/80 in the colon. *** P <
0.001; ** P < 0.01.
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in macrophages. The results indicated that TIMP1 co-localizes with

macrophage marker F4/80 in colon tissue, suggesting that TIMP1

may affect disease progression through functional expression in UC

colon macrophages (Figure 8G).
3.10 The link between key genes and
immune metabolic pathways along with T
cell exhaustion correlation analysis

To quantitatively assess the activity of immune metabolism

genes in individual cells, we utilized AUCell. Bubble plots were

employed to visualize the differential activity of key genes within

these pathways. Our findings revealed that GNG5 and TIMP1 were

significantly upregulated in oxidative phosphorylation, the

unfolded protein response, and related pathways (Figure 9A).

Furthermore, an analysis of classical exhaustion-related genes

(LAG3, PDCD1, TIGIT, HAVCR2, CTLA4) in single cells

indicated a pronounced T cell exhaustion phenotype (Figures 9B,

C). We also investigated the correlation between exhaustion-related

genes and immune infiltration as well as their differential expression
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in the transcriptome. CTLA4, LAG3 and TIGIT were found to be

significantly up-regulated in UC (Figure 9D).Our analysis identified

a significant positive correlation between five exhaustion-related

genes and activated memory CD4+ T cells, T follicular helper cells,

as well as other cell types. (Figure 9E). To delve deeper into the

relationship between GNG5, TIMP1, and cellular depletion, a

correlation analysis was conducted involving five depletion-

related genes. This analysis identified a significant positive

correlation between TIMP1 and TIGIT as well as CTLA4

(Figure 9F) (p = 3.5e-06, 1.1e-07).
4 Discussion

The integration of single-cell and spatial transcriptomic

analyses in this study has yielded novel insights into the cellular

heterogeneity and molecular dynamics underlying the pathogenesis

of UC. Our findings underscore the pivotal roles of specific

monocyte subtypes and two key genes, GNG5 and TIMP1, in

modulating the inflammatory microenvironment and driving

disease progression. These discoveries not only enhance our
FIGURE 9

Link between key genes and immune metabolic pathways, and T cell exhaustion analysis. (A) Correlation bubble plot: x-axis shows immune
metabolism pathways, y-axis shows two key genes, blue indicates low expression, red indicates high expression. (B) UMAP diagram: expression
profile of exhaustion-related genes in single cells. (C) Bubble plot showing single-cell expression of exhausted phase genes, with blue for low and
red for high expression. (D) Circle size and color represent the correlation coefficient and p-value between exhaustion-related genes and immune
cells. (E) Differential expression of exhausted genes in UC. (F) Blue and red circles indicate negative and positive correlations between key and
exhaustion-related genes, with circle size showing statistical significance.
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understanding of UC immunopathology but also suggest potential

therapeutic targets for precision medicine. Utilizing single-cell

transcriptomics, we identified distinct subpopulations of

monocytes characterized by altered communication networks in

UC, and monocytes demonstrated the most robust ligand-receptor

interactions. The application of machine learning techniques,

specifically LASSO and SVM algorithms, further identified GNG5

and TIMP1 as central regulatory elements in UC. GNG5, a G

protein subunit involved in signal transduction, was significantly

downregulated in UC lesions, whereas TIMP1, a metalloproteinase

inhibitor associated with extracellular matrix remodeling, was

markedly upregulated. These findings are corroborated by spatial

transcriptomic and immunohistochemical analyses in human UC

tissues, as well as in DSS-induced murine colitis models, thereby

confirming their consistent dysregulation across species.

In UC, the disproportionate distribution of monocyte subtypes

—characterized by a predominance of classical and intermediate

subtypes with pro-inflammatory tendencies, alongside functional

impairments in non-classical subtypes—contributes to the

pathogenesis of intestinal inflammation and fibrosis. Monocytes

are capable of further differentiation into macrophages within

specific tissues, including the intestinal and dermal regions (25).

Classical monocytes, identified by the CD14++/CD16 phenotype,

engage C-C motif chemokine receptor 2 (CCR2) signaling, which is

pivotal for their function, thereby activating downstream NF-kB
and MAPK pathways. This activation facilitates their differentiation

into pro-inflammatory M1 macrophages and augments the

secretion of inflammatory mediators, including interleukin-1b
(IL-1b) and reactive oxygen species (ROS) (26). CCR2 signaling

has the potential to enhance TIMP1 expression, potentially through

the activation of the PI3K/Akt pathway, inhibit MMP-9 activity,

and consequently exacerbate extracellular matrix (ECM) deposition

and fibrosis (27). Intermediate monocytes, identified by the CD14+/

CD16+, undergo differentiation into M2 macrophages in response

to the influence of TGF-b. The GNG5 protein is involved in G

protein-coupled receptor (GPCR) signaling pathways, including

those mediated by CCR2 and chemokine (C-X3-C motif) receptor

1 (CX3CR1). The absence of GNG5 may impede the migration of

monocytes to the intestinal environment and their subsequent

differentiation into anti-inflammatory phenotypes, such as M2

macrophages (28).

GNG5, a member of the G protein gamma subunit family, is a

component of the glutamate transporter family. G proteins are

essential signaling molecules involved in various physiological

processes. GNG5 plays a regulatory role in the body, influencing cell

proliferation, differentiation, and metabolism. Previous studies (29)

have implicated GNG5 in glioma cell proliferation, migration, and

macrophage infiltration. GNG5 is involved in cell cycle regulation and

promotes cell proliferation, potentially through the modulation of

growth factor receptor-associated signaling pathways (30).

Additionally, GNG5 has been linked to apoptosis in human

chondrocytes (31) and lung cancer cells (32). However, the

correlation between GNG5, UC, and immune cells remains

understudied. In this study, we present novel findings identifying
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GNG5 as a target gene associated with monocyte markers and

characteristics of UC. The observed downregulation of GNG5 in UC

tissues, as evidenced by spatial transcriptomic, immunohistochemical,

and murine model analyses, indicates its potential involvement in

maintaining mucosal homeostasis. GNG5 is implicated in modulating

intracellular signaling pathways, including those mediated by G

Protein-Coupled Receptors (GPCRs), which are essential for

immune cell activation and epithelial repair. Our analyses utilizing

GSEA and GSVA have linked GNG5 to propanoate metabolism and

the PPAR signaling pathways, both of which are known for their roles

in regulating anti-inflammatory responses and preserving epithelial

barrier integrity. The reduced expression of GNG5 may undermine

these protective mechanisms, potentially exacerbating inflammation

and tissue damage.

TIMP1 is a zinc and calcium-containing proteolytic enzyme

secreted by neutrophils and lymphocytes. Its primary function is to

inhibit matrix metalloproteinases (MMPs), which are crucial for

extracellular matrix (ECM) degradation. MMPs are upregulated

after tissue injury and are involved in cytokine activation, cell

migration, and ECM remodeling. TIMPs balance MMP activity,

promoting tissue wound healing (33). MMPs and TIMPs are key

regulators in IBD pathogenesis. Their imbalance is associated with

inflammation and intestinal fibrosis in IBD (34). MMPs also

modulate the inflammatory response by cleaving and activating

cytokines, intensifying inflammation (35). Despite TIMP1’s

inhibitory effect on MMPs, it does not exhibit the expected anti-

inflammatory properties in inflammatory diseases. Elevated TIMP1

levels have been associated with poor prognosis in various

inflammatory conditions (36). Schoeps et al. (37) found that high

TIMP1 expression can activate neutrophils to release neutrophil

extracellular traps (NETs). In patients with IBD, TIMP1 expression

is significantly elevated in colon tissue and serum, correlating with

disease severity (38). These findings suggest that TIMP1’s pro-

inflammatory properties outweigh its MMP inhibitory effects in

inflammatory diseases. In this study, we hypothesized that TIMP1 is

a target gene associated with monocyte markers and UC

characteristics, with more significant interaction with immune

cells than GNG5. TIMP1 expression is markedly upregulated in

UC samples and positively correlates with various immune cell

populations, including M0 and M1 macrophages, activated

dendritic cells, and neutrophils. Human sample analysis

corroborated these findings. A DSS-induced acute colitis model in

mice revealed a significant increase in TIMP1 protein levels in

colonic tissue compared to controls. Immunofluorescence

demonstrated TIMP1 co-localization with the macrophage marker

F4/80, suggesting that TIMP1’s pro-inflammatory effects in mice

may be mediated through its influence on macrophage function in

the colon.

UC is often associated with dysregulated intestinal immune cells,

particularly T cell activation and functional alterations. T cell

exhaustion, a progressive decline in T cell function under prolonged

immune stimulation, is common in chronic infections and tumor

microenvironments. This phenomenon limits T cell antigen response

capacity and effector functions, reducing overall immune response
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efficacy (39). Exhausted T cells exhibit decreased proliferative capacity,

upregulated inhibitory receptors(programmed cell death protein 1

(PD-1), CTLA4, and LAG3), and loss of effector function (40). LAG3

and PD-1 co-expression drives T cell exhaustion and regulates the

expression of thymus high mobility group box protein (TOX). Ectopic

TOX expression in effector T cells induces T cell exhaustion

transcriptional programs (41). Slevin et al. (42) reported LAG3

upregulation in mucositis, primarily on effector memory T cells,

correlating with disease activity, suggesting LAG3 as a potential

therapeutic target for UC. However, a clinical trial by D’Haens et al.

(43) showed that LAG3-depleting monoclonal antibody GSK2831781

did not reduce colonic mucosal inflammation despite successful LAG3

depletion. Therefore, the mechanisms linking T cell exhaustion to UC

prognosis require further exploration. Our analysis of immune

infiltration has identified a skewed microenvironment in UC,

characterized by a predominance of M1 Macrophages, activated

CD4+ T cells, and Neutrophils, alongside a reduction in regulatory

T cells and resting Mast cells. This imbalance reflects the pro-

inflammatory environment observed in advanced stages of UC,

where persistent inflammation contributes to tissue damage.

Importantly, TIMP1 was identified as a central gene positively

associated with markers of T cell exhaustion, such as TIGIT and

CTLA4. T cell exhaustion, indicative of chronic antigen exposure, is

increasingly recognized in UC and may account for the limited

effectiveness of current immunotherapies. The co-enrichment of

TIMP1 with the IL-17 and NF-kB pathways further implicates it in

sustaining Th17-driven inflammation, a critical pathway in UC

pathogenesis. These findings suggest that targeting TIMP1 or its

downstream effectors could alleviate both inflammation and

immune exhaustion, providing a dual therapeutic approach.
5 Conclusion

This study represents the inaugural integration of single-cell

and spatial transcriptomics methodologies to examine the spatial

distribution characteristics of cellular heterogeneity and gene

expression in UC. The investigation elucidates the metabolic

regulatory role of GNG5 and the pro-inflammatory and

depletion-promoting effects of TIMP1, identifying them as

potential novel biomarkers or targets for therapeutic intervention.

The study further identified that TIMP1 facilitates the progression

of ulcerative colitis via a dual mechanism involving T cell depletion

and macrophage activation. This finding offers a theoretical

foundation for developing therapeutic strategies aimed at

targeting TIMP1 or other associated immune checkpoints.
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