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Development of a tertiary
lymphoid structure-based
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cancer: integrating single-cell
sequencing and machine
learning to enhance
patient outcomes
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Zhaogen Cai2, Ni Ni3, Di Yang3, Zixin Meng3, Xu Gao4,
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1Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China, 2Department of
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Background: Breast cancer, a highly prevalent global cancer, poses significant

challenges, especially in advanced stages. Prognostic models are crucial to

enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor

microenvironment have been associated with better prognostic outcomes.

Methods:We analyzed data from 13 independent breast cancer cohorts, totaling

over 9,551 patients. Using single-cell RNA sequencing and machine learning

algorithms, we identified critical TLS-associated genes and developed a TLS-

based predictive model. This model stratified patients into high and low-risk

groups. Genomic alterations, immune infiltration, and cellular interactions within

the tumor microenvironment were assessed.

Results: The TLS-based model demonstrated superior accuracy compared to

traditional models, predicting overall survival. High TLS patients had higher tumor

mutation burden and more chromosomal alterations, correlating with poorer

prognosis. High-risk patients exhibited a significant depletion of CD4+ T cells,

CD8+ T cells, and B cells, as evidenced by single-cell and bulk transcriptomic

analyses. In contrast, immune checkpoint inhibitors demonstrated greater

efficacy in low-risk patients, whereas chemotherapy proved more effective for

high-risk individuals.
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Conclusions: The TLS-based prognostic model is a robust tool for predicting

breast cancer outcomes, highlighting the tumor microenvironment’s role in

cancer progression. It enhances our understanding of breast cancer biology and

supports personalized therapeutic strategies.
KEYWORDS
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Introduction

Breast cancer (BC) is a leading global cancer (1). Despite

improvements in early diagnosis and treatment, managing

advanced BC remains challenging (2). Current treatment options

have achieved limited success, particularly in advanced stages (3).

Thus, effective and accurate prognostic models are urgently needed

to improve prognosis and treatment strategies for BC patients.

The pathogenesis of BC is complex, involving not only cancer

cells but also the surrounding stromal cells (4). Recent research has

shifted focus from solely targeting cancer cells to also considering

the tumor microenvironment (5, 6). One area of interest is the study

of tertiary lymphoid structures (TLS), which are ectopic lymphoid

tissues found in the stroma of BC tissues (7). TLS can stimulate and

promote immune responses against tumors by breaking immune

tolerance or neglect (8). Understanding the role of TLS in BC could

lead to novel therapeutic approaches.

Recent studies have shown that the presence of TLS in various

cancers, including BC, is associated with better prognostic

outcomes (4). TLSs are known to enhance anti-tumor immune

responses by facilitating the activation and proliferation of T and B

lymphocytes within the tumor microenvironment (9). In BC, higher

densities of TLS have been correlated with improved survival rates

and a better response to therapies, including immunotherapy (10).

This suggests that TLS can serve as a prognostic marker and a

potential therapeutic target.

This study seeks to thoroughly explore the role of TLS in BC

progression. Employing advanced machine learning techniques, we

pinpointed four key genes linked to TLS in BC lesions, forming the

foundation for a predictive model. The model effectively categorized

BC patients into high- and low-risk groups, using TLS-based

nomograms to estimate overall survival (OS) across various time

points. Our findings highlight the exceptional performance of the

TLS-based predictive model in evaluating prognosis, immune

profiles, and responses to immune checkpoint inhibitors (ICIs)

and chemotherapy. Furthermore, the model successfully pinpointed

novel therapeutic targets and drugs for BC patients. These results

emphasize the crit ical role of TLS within the tumor

microenvironment and its potential to enhance BC management
02
and treatment outcomes. By tailoring therapeutic strategies to

individual immune landscapes, this model marks a notable

progression in personalized medicine.
Materials and methods

Data collection

Data were gathered from 15 separate breast cancer cohorts

obtained from The Cancer Genome Atlas (TCGA), the Gene

Expression Omnibus (GEO), and MetaGxData. Only those

samples with complete survival data were chosen for analysis. A

total of 9,551 patients were analyzed, representing cohorts including

TCGA-BRCA (n = 1,076), GSE202203 (n = 3,206), GSE96058 (n =

3,409), GSE20685 (n = 327), GSE58812 (n = 107), GSE21653 (n =

244), GSE7390 (n = 198), GSE11121 (n = 200), GSE86166 (n = 330),

GSE48391 (n = 81), GSE20711 (n = 88), PNC (n = 87), and

TRANSBIG (n = 198).
Machine learning derived signature

A total of ten computational tools, including RSF, LASSO, GBM,

Survival-SVM, SuperPC, Ridge Regression, plsRcox, CoxBoost,

Stepwise Cox, and Elastic Net (Enet), were employed in this study.

Specifically, we have detailed the ten machine learning algorithms

used to develop the TLS-based predictive model, including:

Random Survival Forest (RSF): A robust ensemble method that

improves predictive performance by aggregating multiple decision

trees trained on survival data. RSF is particularly effective in handling

high-dimensional data and identifying complex interactions.

Least Absolute Shrinkage and Selection Operator (LASSO): A

regression method that applies L1 regularization to select the most

relevant features by shrinking the coefficients of less important

variables to zero, thereby reducing overfitting.

Gradient Boosting Machine (GBM): An iterative learning

technique that builds predictive models sequentially by

minimizing residual errors, making it highly effective for

structured data and survival analysis.
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Survival Support Vector Machine (Survival-SVM): A technique

that finds an optimal hyperplane for classification while considering

censored survival data, ensuring robust patient stratification.

Supervised Principal Component (SuperPC): A method that

identifies significant principal components associated with

survival outcomes, improving interpretability and feature

dimensionality reduction.

Ridge Regression: An L2 regularization technique that

minimizes the impact of multicollinearity among features while

ensuring model stability.

Partial Least Squares Cox Regression (plsRcox): A statistical

method that models survival data by reducing dimensionality while

capturing latent structures within the dataset.

CoxBoost: A boosting algorithm tailored for Cox proportional

hazards models, allowing efficient handling of high-dimensional

datasets with minimal overfitting.

Stepwise Cox Regression: A systematic method for feature

selection in Cox regression that iteratively adds or removes

variables based on statistical significance.

Elastic Net (Enet): A hybrid approach combining LASSO and

Ridge regression to achieve both variable selection and model

stability, offering improved generalization.

Among these tools, RSF, LASSO, CoxBoost, and Stepwise Cox

were chosen due to their effectiveness in dimensionality reduction

and variable selection. These techniques were combined into 108

different configurations to create a predictive signature, with

performance assessed across all cohorts, which included both

TCGA training and validation datasets. The most dependable

prognostic model was determined by evaluating the average

concordance index (C-index).

To further refine our model and ensure it included only the

most predictive genes, we employed exhaustive search. This method

evaluated all possible combinations of the selected genes to identify

the subset that provided the best model performance based on

predefined criteria. This step reduced the number of genes, focusing

on those with the highest prognostic value.

Finally, a risk score for each patient was calculated using the

expression levels of selected genes weighted by regression

coefficients. This signature was validated across multiple

independent cohorts to predict BC outcomes reliably.
Genomic alteration analysis

Genetic differences between AITS groups were examined by

evaluating mutation levels and Copy Number Alterations (CNA)

using TCGA-BRCA data, providing crucial insights into cancer

progression, tumor behavior, and therapeutic targets. Tumor

Mutation Burden (TMB) was calculated for high and low AITS

BC patients based on raw mutation files. TMB, reflecting the total

mutations within a tumor genome, is linked to immunotherapy

response, as higher TMB levels can generate neoantigens that

stimulate immune reactions.

The maftools package was employed to visualize the most

frequently mutated genes (mutation rate > 5%), offering a
Frontiers in Immunology 03
comprehensive view of common genetic alterations. Patient-

specific mutational signatures were further analyzed using the

deconstructSigs package, which interprets DNA damage and

repair processes in cancer cells, shedding light on mutagenesis

mechanisms (11). Four dominant mutational signatures—SBS2,

SBS13, SBS7B, and SBS7D—were identified within the TCGA-

BRCA dataset, highlighting distinct patterns of genomic

instability associated with breast cancer.

Five common regions of amplification and deletion, crucial for

understanding BC’s genomic landscape, were identified.

Amplifications and deletions activate oncogenes or lead to the

loss of tumor suppressor genes. Focus was given to four key genes

in chromosomal regions 8q24.21 and 12p13.1, known for harboring

vital oncogenes and tumor suppressor genes contributing to

BC pathogenesis.
Single-cell data processing

To prepare the dataset for analysis using single-cell RNA

sequencing (scRNA-seq), we employed Seurat (v4.0) to process

data sourced from GSE161529 (12). This method allows for a

detailed investigation of cellular variations within tumors, which

is crucial for comprehending the complex biology of cancer. We

excluded genes that exhibited no expression, concentrating instead

on those with detectable expression levels. The ‘SCTransform’

function in Seurat normalized the expression matrix to account

for technical biases. Data dimensionality reduction was achieved

through Principal Component Analysis (PCA) and Uniform

Manifold Approximation and Projection (UMAP). PCA

effectively maintains the majority of variability while simplifying

the dataset, whereas UMAP offers a two-dimensional

representation that captures the local structure of the

data.Cellular populations were discerned using Seurat ’s

“FindNeighbors” and “FindClusters” functionalities. These

methods construct a shared nearest neighbor graph to identify

clusters of comparable cells. To enhance the dataset’s accuracy, the

DoubletFinder package was utilized to remove potential doublets—

artificial multiplets that may arise during sequencing (13). Rigorous

quality control protocols were implemented; cells with

mitochondrial gene composition exceeding 15% or those with

fewer than 500 expressed genes were excluded. High

mitochondrial levels may imply cellular stress or death, while low

gene counts could indicate subpar cell quality. Consequently, these

measures led to the generation of a dataset comprising 37,265 cells

for subsequent analysis.Cell types were classified through manual

annotation based on the identification of known marker genes,

facilitating accurate categorization of the diverse cell populations

present in the breast cancer samples.
Inference of regulons and their activity

Single-Cell Regulatory Network Inference (SCENIC) was

utilized to construct gene regulatory networks (GRNs) using
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single-cell RNA sequencing data (14). This framework involves a

three-phase process to deduce regulons and evaluate their activities:

First, co-expression modules were established through the

clustering of genes exhibiting similar expression profiles, thereby

highlighting possible regulatory interactions between transcription

factors (TFs) and their target genes. This initial phase establishes the

foundation for characterizing gene regulatory connections. Next,

the identification of direct target genes associated with each co-

expression module was conducted by examining the enrichment of

TF motifs in the promoters of the co-expressed genes. Only target

genes that demonstrated a significant enrichment of motifs

corresponding to the relevant TFs were chosen, thereby refining

the co-expression modules into regulons, each comprised of a TF

and its associated direct targets. Finally, the regulatory activity of

each regulon was quantified by computing the Regulatory Activity

Score (RAS) for individual cells. This score was derived from

assessing the area under the recovery curve, which indicates the

level of activity of the regulon across different cells (15). To address

the challenges related to the scalability of conventional SCENIC

methodologies in handling large datasets and their susceptibility to

variations in sequencing depth, the data were organized into

metacells—aggregates of similar cells—before conducting SCENIC

analysis. This adjustment greatly improved scalability, resilience,

and data integrity while minimizing computational demands,

rendering SCENIC more feasible for the examination of extensive

single-cell RNA-seq datasets.
Regulon clustering

A comprehensive computational system was developed to

delineate the regulatory interactions among transcription factors

(TFs) and their corresponding target genes, particularly

emphasizing the clustering of TFs. This procedure encompassed

several essential stages.

Filtering interaction pairs
TF-target interaction pairs were filtered to include only those

exceeding a predefined significance threshold (>1), ensuring that

the analysis concentrated on the most impactful regulatory

interactions and enhancing result reliability.

Identifying key regulatory TFs
Pivotal TFs were identified based on the extent of their

regulatory influence over target genes. These TFs, acting as hub

genes, were subjected to in-depth analysis to understand their

central roles within the regulatory network.

Creating an undirected graph model
An undirected graph was constructed to illustrate the intricate

network of TF-target interactions. To enhance the spatial

arrangement of the graph, a force-directed algorithm was utilized,

effectively visualizing the structure of the network and the dynamic

relationships between TFs and targets.
Frontiers in Immunology 04
Community detection using the Leiden algorithm
Communities within the network were identified through the

application of the Leiden algorithm, revealing the modular structure

of TFs according to their regulatory connections. Each TF was

allocated to a distinct cluster, allowing for a detailed examination of

the regulatory landscape. By synthesizing these methods, the

procedure offered a thorough perspective on regulatory networks,

revealing complex interactions between TFs and their targets while

identifying essential regulatory clusters for further investigation.
Cell-cell communication analysis

The R package CellChat was employed to investigate cell-cell

communication through the use of UMI count matrices for each

experimental group (16). For the analysis of ligand-receptor

interactions, the CellChatDB. human database was used as a

reference, with the default settings of the package being applied

consistently. In order to assess interaction counts and their

respective intensities, CellChat objects from various groups were

combined using the mergeCellChat function. The differences in

both the number and strength of interactions between cell types

were illustrated using netVisual_diffInteraction, while alterations in

signaling pathways were identified with the rankNet function.

Furthermore, the expression patterns of signaling genes were

visualized through netVisual_bubble and netVisual_aggregate.

Additionally, the NicheNet package was utilized to investigate

intercellular communication by analyzing ligand activity and the

expression patterns of downstream targets (17). This approach

provided an extensive perspective on the signaling mechanisms

that govern interactions among cell types, using ligand-target

relationship data to deduce communication pathways within the

cellular microenvironment.
Evaluation of the tumor microenvironment
and immunotherapy response

To comprehensively evaluate immune cell infiltration, multiple

algorithms were employed to analyze the abundance and

composition of infiltrating immune cells in AITS-classified

patients (18). These included MCPcounter, EPIC, xCell,

CIBERSORT, quanTIseq, and TIMER, each offering distinct

insights into the tumor microenvironment (TME).

The TIDE index was calculated to provide a detailed

representation of the immune landscape within the TME,

predicting patient responses to immune checkpoint inhibitors

(ICIs) and shedding light on the prognostic relevance for BC

patients (19).

Immune checkpoints were assessed as key indicators of the

immune state, facilitating preliminary predictions of patient

responsiveness to ICI therapies. These analyses offered critical

insights into the tumor’s immune environment, aiding in the

evaluation of immunotherapy efficacy.
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This integrative approach to profiling the immune landscape

within the TME is pivotal for advancing personalized medicine,

enabling the development of tailored treatment strategies that align

with the unique immune characteristics of each patient.
Determination of therapeutic targets and
drugs for high AITS patients

To determine potential therapeutic targets and medications for

patients with high AITS, compounds that were duplicates were

excluded from the Drug Repurposing Hub, leading to a total of

6,125 unique compounds. Therapeutic targets relevant to breast

cancer outcomes were determined using Spearman correlation

analysis, which focused on the association between AITS and

gene expression levels. Genes exhibiting a correlation coefficient

greater than 0.15 along with a P-value of less than 0.05 were

included, while those with a correlation coefficient lower than

-0.30 and a P-value of less than 0.05 were associated with

unfavorable prognosis. The relevance of these genes was further

evaluated by investigating the correlation between CERES scores

from the Cancer Cell Line Encyclopedia (CCLE) and risk scores

specific to breast cells, thereby identifying genes crucial for the

survival of cancer cells as potential therapeutic targets (20).

To enhance predictions regarding drug responsiveness,

information from the Cancer Therapeutics Response Portal

(CTRP) and the PRISM project was utilized. These platforms

offer comprehensive drug screening and molecular data across a

range of cancer cell lines. A differential expression analysis was

performed between bulk samples and cell line data, and the

pRRophetic package was utilized to apply a ridge regression

model for predicting drug response. This model, which was

developed using expression data and drug response information

from solid Cancer Cell Lines (CCLs), demonstrated exceptional

predictive accuracy, validated through a 10-fold cross-validation

process (21).

Furthermore, to pinpoint promising therapeutic agents for

breast cancer, an analysis using the Connectivity Map (CMap)

was conducted. This process involved comparing gene expression

profiles across various risk subgroups and submitting the top 300

genes (150 that were up-regulated and 150 that were down-

regulated) to the CMap database. A negative CMap score

suggested an increased therapeutic potential against breast cancer,

indicating an inverse correlation between the CMap score and the

efficacy of a compound.
Patient stratification

In our study, patient stratification was performed based on the

expression levels of key genes identified by our TLS-based

prognostic model. First, RNA was isolated from BC specimens by

employing TRIzol reagent (Invitrogen). The synthesis of

complementary DNA (cDNA) was carried out using GoScript

reverse transcriptase, followed by qRT-PCR using Master Mix

(Promega) according to the manufacturer’s instructions. Data
Frontiers in Immunology 05
acquisition was performed with the CFX96 Touch Real-Time

PCR Detection System (BioRad). Quantification of gene

expression was executed through the 2-DDCq method, utilizing

GAPDH for normalization. A patient-specific risk score was then

computed based on the expression levels of the selected TLS-related

genes, weighted by their regression coefficients derived from the

machine learning model (AITS). This categorization allowed for the

identification of patients exhibiting diverse risk profiles, thereby

aiding in the formulation of customized therapeutic strategies.
Immunohistochemistry experiment

Tissue specimens were obtained from 30 patients with breast

cancer who were undergoing surgical procedures at the Guizhou

Provincial People’s Hospital. Following established protocols, these

specimens underwent Hematoxylin and Eosin (H&E) staining, with

diagnoses independently verified by two pathologists. In the

analysis of immunohistochemistry (IHC), the procedures for

samples embedded in paraffin were adhered to as described in

earlier studies (22, 23). To evaluate protein expression levels,

standardized protocols and scoring systems were utilized. The

IHC outcomes were assessed independently by two pathologists

to ensure alignment with methodologies from previous studies (23).
Results

Integrative construction of an artificial
intelligence signature

To comprehensively investigate the clinical relevance of TLS in

BC, we developed an artificial intelligence-assisted TLS signature

(AITS) by utilizing 10 machine learning algorithms across 108

combinations. In the TCGA-BRCA training cohort, along with 8

validation cohorts, we calculated the average C-index for each

algorithm combination to determine their predictive performance

(Figure 1A). Among these, the Enet algorithm (a = 0.1)

demonstrated the highest average C-index, establishing it as the

optimal model (Figure 1A).

The Enet algorithm combines the properties of both Lasso and

Ridge regressions to improve model accuracy and interpretability.

Using Enet regression with 10-fold cross-validation, we identified

27 TLS genes that significantly contributed to the model

(Figure 1B). These genes were further evaluated for their

prognostic significance across multiple datasets using univariate

Cox regression (Figure 1C). Univariate Cox regression helps in

understanding the relationship between each gene’s expression level

and pa t i en t s u r v i v a l , t hu s h i gh l i g h t i n g th e mos t

significant predictors.

An exhaustive search was then conducted to identify the most

predictive subset of these genes. Exhaustive search involves

evaluating all possible combinations of features to find the subset

that offers the best predictive performance, ultimately selecting 4

TLS genes. Each patient’s risk score was subsequently calculated

based on the expression levels of these 4 genes, weighted by their
frontiersin.org
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regression coefficients (Figure 1D). This approach ensures that the

most relevant and impactful genes are included in the final model,

enhancing its predictive power and clinical utility.
Independent prognostic value of AITS

Patients were categorized into high-risk and low-risk groups by

utilizing the survminer package, which facilitated the identification

of optimal cutoff values. The implementation of the Kaplan-Meier

survival analysis revealed a strikingly higher mortality rate among

individuals classified in the high-risk group within the training

cohort. Moreover, these trends were consistent in the validation

cohorts, as illustrated in Supplementary Figure S1A. The
Frontiers in Immunology 06
performance of the AITS model in the training cohort (TCGA-

BRCA) was notably robust, exhibiting time-dependent area under

the curves (AUCs) of 0.659, 0.726, and 0.668 at the 1, 3, and 5-year

marks, respectively. This strong performance was further

corroborated by analogous outcomes in the validation cohorts, as

depicted in Supplementary Figure S1B.

Univariate and multivariate Cox regression analyses were

conducted on variables including age, menopause status, TNM

stage, pathological stage, ER, PR, HER2 expression, and the AITS

model to determine if the prognostic significance of AITS was

independent of clinical traits and molecular features. The AITS

model remained statistically significant for overall survival (OS)

after adjusting for these variables, suggesting it as an independent

risk factor in BC (Supplementary Figure S2A).
FIGURE 1

Development and validation of the artificial intelligence-assisted TLS signature. (A) Average C-index for each machine learning algorithm
combination in the TCGA-BRCA training cohort and 8 validation cohorts. (B) Identification of 27 TLS genes contributing significantly to the model
using Enet regression with 10-fold cross-validation. (C) Prognostic significance of the 27 TLS genes evaluated across multiple datasets using
univariate Cox regression. (D) Final selection of 4 TLS genes based on an exhaustive search, with patient risk scores calculated according to the
expression levels of these genes and their regression coefficients.
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A nomogram that includes AITS, age, and pathological stage

was created to forecast the survival probabilities for BC patients at

one, three, and five years (Supplementary Figure S2B). The accuracy

of the model was validated by the calibration curve, which indicated

a strong alignment with actual survival rates (Supplementary Figure

S2C). There were no significant differences (p > 0.05) between the

values predicted by the AITS chart and the observed outcomes,

reinforcing its predictive strength (Supplementary Figure S2D). The

AITS chart demonstrated superior predictive performance

compared to the extreme curves (Treat All and Treat None)

(Supplementary Figure S2E). In contrast to other clinical

pathological factors, the AITS model showed a greater reflection

of prognostic correlation in BC (Supplementary Figure S2F).
Comparative performance analysis of AITS
and published gene signatures

Recent advancements in high-throughput sequencing and

computational biology have led to the development of numerous

predictive gene expression signatures through a variety of machine
Frontiers in Immunology 07
learning methodologies. In order to evaluate AITS performance

against other signatures, we examined 100 published signatures

generated using different algorithms.

Univariate Cox regression analysis was used for each signature.

The AITS model uniquely maintained complete significance across

all datasets, highlighting its stability in predicting BC recurrence

risk (Figure 2A). C-indices were calculated for each signature across

all cohorts. Our findings revealed that the AITS model consistently

achieved the highest predictive power in several cohorts, including

GSE20685, GSE202203, GSE96058, GSE21653, and GSE86166, and

also ranked first in the TCGA, GSE48391, PNC, GSE20711, and

GSE58812 cohorts (Figure 2B). This highlights the superior

predictive performance of the AITS model compared to nearly all

other models in each cohort.
Genome alterations and landscape of AITS

Genomic alterations were identified through multi-omics

analysis, including assessments of tumor mutation burden (TMB),

mutational signatures, gene mutations, and copy number variations
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FIGURE 2

Comparison of AITS with 100 published signatures. (A) Univariate Cox regression analysis showing that the AITS model maintains complete
significance across all datasets. (B) C-indices of all cohorts for each signature.
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(Figure 3A). An examination of ten oncogenic signaling pathways

within the TCGA dataset demonstrated that tumor suppressor

genes such as TP53, CREBBP, and RASA1 exhibited elevated

mutation frequencies in the high AITS category. In contrast,

mutations in CDH1, TTN, and KRAS were more prevalent in the

low AITS category (Figures 3A, B). Additionally, the tumor

mutation burden (TMB) was significantly greater in the high TLS

category (Figure 3C).

Further analysis of the copy number alteration (CNA)

landscape between the high and low AITS groups showed

significantly more amplifications and deletions in the high AITS

group. Key amplification regions included 3q26.32, 4q13.3, 5p15.33,

8q24.21, and 17q12, while significant deletions were noted at

5q21.3, 11p15.5, 12p13.1, 15q13.1, and 18q23 (Figures 3A, D). At

the gene level, oncogenes such as PVT1, MYC, CCDC26, and

GSDMC were notably amplified within 8q24.21, whereas

VANGL, TRIM45, TTF2, and VTCN1 were significantly deleted

within 12p13.1 (Figure 3A).
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Single-cell analysis of biological
mechanisms underlying AITS

An analysis of the single-cell transcriptome was conducted to

evaluate the AITS in eight patients with breast cancer, encompassing

both tumor and adjacent normal tissues (Supplementary Figures

S3A, B). A total of seventeen unique clusters and nine distinct cell

types were recognized (Figures 4A, B). The quantities and

proportions of each cell type were compiled across the patient

cohort (Supplementary Figures S3C, D), along with representative

markers illustrated for each cell type (Figure 4C, Supplementary

Figure S3E).

A comparative analysis of cell type distribution between tumor

and normal tissues revealed significant differences in the abundance

of certain immune and epithelial cell types. Specifically, mast cells,

macrophages, B cells, T cells, and epithelial cells were observed to be

more prevalent in tumor tissues. Conversely, other cell types were

found to be predominantly located in normal tissues, highlighting a
FIGURE 3

Genome alteration landscape of AITS. (A) Multi-omics analysis showing TMB, mutational signatures, gene mutations, and copy number variations.
(B) Analysis of 10 oncogenic signaling pathways highlighting differential mutation frequencies between high and low AITS groups. (C) TMB analysis
indicating significantly higher TMB in the high AITS group. (D) CNA landscape showing significant amplifications and deletions in high AITS group
compared to low AITS group.
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notable variation in cellular composition between the two

environments. This distinction emphasizes the potential role of

specific immune cells in tumor progression and the unique

microenvironment of tumors, as illustrated in Figure 4D. Each

cell was then assigned an AITS score, revealing notable differences

in cell distribution (Figure 4E). Cells were grouped according to

their epithelial cell peaks (Figure 4F), and differential expression

analysis combined with GSEA identified potential functional

pathways linked to AITS (Supplementary Figure S3F, G). For

epithelial cells from tumor samples, the high AITS group was

associated with pathways involving ribosome and protein export,

whereas the low AITS group was linked to spliceosome, protein

processing in the endoplasmic reticulum, and proteasome pathways

(Supplementary Figure S3G). Using the copyKat algorithm to

further analyze tumor cells, it was shown that aneuploid epithelial

cells had higher AITS scores compared to diploid tumor cells

(Figures 4G, H).
Transcriptional regulation and cell type-
specific networks in AITS

To develop comprehensive gene regulatory networks for

significant cell types, we utilized the SCENIC pipeline, which

examines single-cell RNA sequencing data alongside cis-

regulatory sequence information. This framework converts gene
Frontiers in Immunology 09
expression information into regulator activity scores (RAS) for

transcription factors (TFs) (Figures 5A, B). Moreover, we

conducted principal component analysis (PCA) for variance

decomposition to distinguish unique regulons linked to AITS and

cellular structures. The first principal component (PC1)

predominantly highlighted TFs particular to distinct cell types,

while the second principal component (PC2) was related to TFs

unique to AITS (Figures 5C, D).

We identified crucial regulators that are vital for cell identity.

We assessed the activity of each regulon associated with various cell

types, deriving a regulon specificity score (RSS) through Jensen-

Shannon divergence (Figure 5E). Regulators exhibiting the highest

RSS scores were chosen for a deeper investigation into their

functional characteristics. For epithelial cells, the most specific

regulators identified were CREB3L4, SPDEF, and GATA3

(Figure 5E). This finding was also presented through UMAP plots

(Figure 5F). Additionally, correlations between other cell types and

their respective specific regulators were demonstrated

(Supplementary Figure S4A).

Gene expression coordination often requires interactions among

transcription factors. To systematically analyze the combination

pattern of AITS, we compared RAS scores of each transcription

factor using the Leiden algorithm. The results indicated that these

transcription factors were organized into 11 components based on

RAS similarity, with components B and D playing significant roles in

AITS (Figures 5G, H, Supplementary Figure S4B).
FIGURE 4

Potential biological mechanisms of AITS at the single-cell level. (A) Identification of seventeen clusters in single-cell transcriptome analysis.
(B) Classification of nine cell types. (C) Representative markers for each cell type. (D) Distribution of cell types between tumor and normal tissues.
(E) AITS scores across cells showing significant differences in distribution. (F) Grouping of cells based on epithelial cell peaks. (G) CopyKat algorithm
analyzed the distribution of diploid and aneuploid cells. (H) Comparison of AITS scores between aneuploid and diploid epithelial cells. ****P<0.0001.
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Further exploration into the transcription factors driving AITS-

related transcriptional changes in epithelial cells showed multiple

signaling pathway alterations through GSEA (Figure 5I). For

example, epithelial-mesenchymal transition (EMT) was activated
Frontiers in Immunology 10
in high AITS epithelial cells, while E2F targets were inhibited

(Figures 5I, J). The transcription factors contributing to EMT

were identified, and the regulatory relationships among these

factors were visualized using network diagrams (Figures 5K, L).
FIGURE 5

Transcriptional regulation of AITS and different cell types. (A) Clustering of cell types using UMAP. (B) SCENIC pipeline analysis translating gene
expression data into RAS for transcription factors. (C) Variance decomposition using PCA to identify PC1 representing cell type-specific TFs. (D) PC2
representing AITS-specific TFs. (E) Regulon specificity scores (RSS) highlighting key regulators for different cell types. (F) UMAP plots showing specific
regulators for epithelial cells. (G) Transcription factor interaction networks organized by RAS similarity using the Leiden algorithm. (H) Important
transcription factor components in AITS. (I) GSEA results showing signaling pathway changes in high AITS epithelial cells. (J) Specific pathways like
EMT activation and E2F target inhibition. (K) Identification of transcription factors contributing to EMT. (L) Network diagrams illustrating regulatory
relationships among transcription factors.
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Intercellular communication patterns
in AITS

To understand the role of intercellular interactions in BC

development, CellChat analysis was employed to evaluate

interactions among AITS across nine different cell types. The

analysis of cell interaction quantity and strength revealed reduced

communication in the high AITS group (Figure 6A). A network

visualization of these interactions indicated that in the high AITS

group, epithelial cells exhibited enhanced interactions with various

cell types such as T cells, B cells, mast cells, and plasma cells,
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whereas the interactions between T cells and B cells were notably

weak (Figure 6B).

We compared 48 signaling pathways between the high and low

AITS groups. Pathways such as PTN, PARs, MK, MHC-II, and MIF

were predominantly active in high-AITS cells, whereas LAMININ,

SPP1, CLEC, ADGRE5, and ICAM were more active in low-AITS

cells (Figure 6C). The intensity of both outgoing and incoming

interactions was also examined to observe cell dynamics. Epithelial

cells in the high AITS group had weaker incoming interactions

(Figure 6D). Several pathways in epithelial cells were specific to

AITS, including PTN and THBS (Figure 6E).
FIGURE 6

Intercellular communication in AITS. (A) Analysis of the quantity and strength of cell interactions showing reduced communication in the high AITS
group. (B) Interaction network visualization of cell communication. (C) Comparison of 48 signaling pathways between the two groups. (D) Analysis
of outgoing and incoming interaction intensity. (E) Specific pathways in epithelial cells related to AITS, such as PTN and THBS. (F) Circos diagram
depicting significant ligand-receptor interactions. (G) Detailed interaction between ligand and receptor. (H) Ligand action network showing direct
and indirect regulatory effects on target activity.
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FIGURE 7

Differential expression and immunohistochemical analysis of immune markers in tumor microenvironments between AITS subgroups. (A) Heatmap
providing a comparative view of immune cell infiltration in tumor samples with low and high AITS, utilizing various computational algorithms for
quantification. Each row represents a different type of immune cell, with the color intensity reflecting the level of infiltration. Red text indicates
increased infiltration in the high AITS group, while blue text indicates decreased infiltration. (B) Box plots illustrating the distribution of gene
expression levels for ICIs across low versus high AITS conditions, with statistical significance denoted by ns for not significant; *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001. (C) Representative immunohistochemistry images showcasing the staining intensity of various immune markers
between high and low expression conditions, visually depicting the differential expression of these markers in correlation with AITS levels. (D) Box
plots displaying the average optical density (AOD) of staining for immune markers, comparing high and low expression conditions, with statistical
significance indicated by stars (* for p < 0.05, ** for p < 0.01, and ns for not significant).
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Further analysis focused on the functions of various ligand-

receptor pairs, presenting the key interactions in a circos diagram

(Figure 6F). Notably, the COL6A1 ligand expressed on fibroblasts

and pericytes bound to the ITGA2 receptor (Figure 6G). The ligand

action network indicated that ligands could bind with other ligands

to regulate downstream transcription factors, exerting both direct

and indirect regulatory effects on targets (Figure 6H).
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Evaluating immunotherapy targets in the
context of AITS

Recognizing the crucial role of the immune microenvironment

in tumor progression, we analyzed immune infiltration in BC

patients using six different algorithms. The results showed

reduced infiltration of CD4+ T cells, CD8+ T cells, and B cells in
FIGURE 8

Analyzing potential immunotherapy targets for AITS. (A) Difference of TIDE, Dysfunction, Exclusion between the AITS groups. (B) The survival
probability curves of four combinations of AITS and TIDE. (C) The correlation of AITS with 7 steps of tumor immune cycle and 10 signaling pathways
related to tumor immunology. (D, H) Violin charts display the relationship between AITS levels and responses to anti-PDL1 (D) and anti-PD1 (H)
therapies. (E, I) Survival probabilities of low and high AITS patients in anti-PDL1 (E) and anti-PD1 (I) cohorts, respectively, illustrating the impact of
AITS on survival outcomes. (F, J) Analysis estimates the predictive ability of AITS via AUC values, considering TMB combinations, in anti-PDL1 (F) and
anti-PD1 (J) cohorts, evaluating the efficacy of AITS as a biomarker. (G, K) The percentages of complete response/partial response (CR/PR) and
stable disease/progressive disease (SD/PD) in anti-PDL1 (G) and anti-PD1 (K) cohorts are shown, based on AITS levels, to assess treatment
effectiveness. (L) Distribution of AITS score of different patients after anti-PD1 treatment. (M) Heatmap demonstrating the predictive power of AITS
for responsiveness to different ICIs treatment.
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the high AITS group (Figure 7A). Additionally, there was increased

expression of ICIs such as PD1, TIGIT, CTLA4, and members of the

HLA family in the low AITS group (Figure 7B). These results were

validated through immunohistochemistry (Figures 7C, D).

To examine differences in immunotherapy response between

the groups, we evaluated patients using TIDE, dysfunction, and

exclusion scores. Findings indicated that patients with higher AITS

had elevated TIDE and exclusion scores, while dysfunction scores

did not significantly differ within the TLS cohort (Figure 8A). Our

analysis also revealed that patients with low AITS and high TIDE
Frontiers in Immunology 14
had more favorable outcomes compared to other groups

(Figure 8B). Correlation analysis showed that anti-tumor immune

activity was higher in low AITS patients compared to those with

high AITS (Figure 8C).

Immune checkpoint inhibitors (ICIs) have revolutionized the field

of cancer immunotherapy; however, their effectiveness in solid tumors

such as breast cancer (BC) is still restricted. We evaluated the

predictive significance of AITS levels in relation to immune

checkpoint blockade therapies within the IMvigor210 (anti-PD-L1)

and GSE78220 (anti-PD-1) groups. Patients with low AITS levels
FIGURE 9

Identification of therapeutic agents for high AITS patients. (A) Spearman correlation analysis showing positive correlation of AITS with six targets
(GABRB2, PSMD2, CCL8, BMP1, SQLE, MMP14) and significant negative correlation with CERES score. (B) Drug pathway analysis linking five targets
(excluding GABRB2) to multiple drug pathways, highlighting their importance as therapeutic targets. (C) AUC values of identified compounds from
CTRP database. (D) AUC values of identified compounds from PRISM database. (E) Analysis of clinical status, experimental evidence, mRNA
expression levels, and CMap scores for selected compounds, with quizartinib identified as a potential therapeutic agent for high AITS patients.
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exhibited notable clinical advantages and improved survival rates when

treated with anti-PD-L1 therapy (Figures 8D–G). Comparable

advantages were noted for low AITS patients undergoing anti-PD-1

treatment (Figures 8H–L). By employing SubMap algorithms, we

verified that patients with low AITS levels were considerably more

inclined to experience benefits from both anti-PD-L1 and PD-1

therapies (Figure 8M). These results indicate that patients with low

AITS levels may attain enhanced outcomes with ICI treatments.
Identification of therapeutic agents for
high AITS patients

Chemotherapy continues to be a key strategy for treating

cancer, with information gathered from various datasets utilized

to pinpoint possible medications for breast cancer patients

exhibiting elevated AITS. Using Spearman correlation analysis, we

found that AITS positively correlated with six targets (GABRB2,

PSMD2, CCL8, BMP1, SQLE, MMP14) and had a significant

negative correlation with CERES score, suggesting these targets as

potential therapies for high AITS patients (Figure 9A). Five of these

targets, excluding GABRB2, are linked to various drug pathways,

making them key therapeutic targets for high AITS BC

patients (Figure 9B).

From the CTPR and PRISM datasets, we identified five

compounds: canertinib, deforolimus, romidepsin, quizartinib, and

D-64131. A comparison of the AUC values of these compounds

between patients with high and low AITS revealed that those with

high AITS exhibited lower AUC values (Figures 9C, D). In our

search for the most suitable therapeutic agent, we evaluated the

clinical conditions, experimental data, mRNA expression levels, and

CMap scores for each compound. According to the CMap score

analysis, quizartinib emerged as a promising therapeutic candidate

for patients with elevated AITS (Figure 9E).
Discussion

In 2020, BC has become the most common cancer worldwide,

particularly affecting women. It ranks first in cancer-related deaths,

posing a serious threat to women’s health (24). Although significant

progress has been made in diagnosis, surgery, and drug development,

BC treatment still faces severe challenges due to inadequate treatment

responses, recurrence, and metastasis (25, 26). Therefore, improving

the therapeutic effectiveness of BC is crucial. Recent advancements in

machine learning algorithms have enabled the construction of

predictive models that enhance the accuracy of BC treatment selection.

TLS are ectopic lymphoid tissues found in non-lymphoid tissues.

TLS are present in various inflamed tissues, driving immune cell

activation and are associated with chronic inflammatory diseases,

autoimmune diseases, and cancer. In the tumor environment, TLS

promote immune cell infiltration into solid tumors, significantly

correlating with survival in untreated patients (27–29).
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In many cancers, a high density of TLS has been linked to

prolonged patient survival (30–32). However, their clinical value

remains limited. This study aimed to establish a more clinically

valuable BC prognostic model based on TLS to provide more

prognostic information for BC patients and guide treatment. We

constructed and validated TLS in nine independent multicenter

cohorts based on TLS genes associated with BC, combined with 108

machine learning algorithms. To determine the stability and

predictive ability of AITS, we compared AITS with classical

models and published models. The results of the nomogram

confirmed that AITS, together with staging and age, accurately

predicted overall survival (OS) in patients with different stages of

BC. Additionally, patients with high AITS had a poorer prognosis

and a higher frequency of recurrence compared with patients with

low AITS.

Cancer is a group of diseases characterized by abnormal and

uncontrolled cell growth caused by genetic mutations. These

‘drivers’ confer advantages to mutated cells over neighboring

cells, affecting critical cellular functions. One major goal of cancer

research is to discover these cancer-driver genes, identify targeted

anticancer therapies, and find genomic biomarkers for prognosis

and treatment (33). We examined the genomic alterations in AITS

and found that patients with high AITS had higher TMB, diverse

mutation characteristics, higher frequency of gene mutations, and

more amplification and deletion of chromosome regions, suggesting

a poor prognosis for this group. Notably, PVT1, MYC, CCD26, and

GSDMC were more amplified at 8q24.21, while VANGL, TRIM45,

TTF2, and VTCN1 were more deleted at 12P13.1 in high AITS BC

patients. PVT1 is known to be abnormally expressed in several

malignant tumors, including nasopharyngeal carcinoma,

esophageal cancer, and colorectal cancer (34–36). PVT1 plays a

critical role in BC proliferation, invasion, metastasis, and drug

resistance in triple-negative BC (37–39). The MYC proto-

oncogene produces transcription factors frequently activated in

human tumors (40), and high GSDMC expression is associated

with poor survival (41). Overexpression of TRIM45 can inhibit

glioblastoma cell proliferation (42). These findings indirectly

confirm that BC patients with high TLS have a poorer prognosis

and reveal the underlying mechanisms.

Single-cell sequencing revealed that epithelial cells, T cells, B

cells, macrophages, and mast cells predominated in BC tumor

tissues. AITS mainly comprised T cells and B cells. Epithelial-

mesenchymal transition (EMT) is crucial for embryonic

development, tissue repair, and is present in many malignant

tumors, including BC. Abnormal EMT marker expression is

closely related to tumor invasion and metastasis (43, 44). We

found that transcription factors involved in EMT play a role in

TLS formation, with higher AITS activity in tumor aneuploid

epithelial cells compared to tumor diploid and normal samples.

This suggests that EMT may be a potential mechanism for AITS to

predict BC. CellChat analysis revealed stronger cell-cell interactions

and unique ligand-to-ligand communications in the low

AITS group.
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TME includes tumor cells, immune cells, extracellular matrix,

fibroblasts, inflammatory cells, microvasculature, and signaling

molecules (45). Remodeling the TME is crucial for improving

clinical efficacy, making it a new target for modern tumor therapy

(46). We assessed immune cell infiltration and immune checkpoint

inhibitor (ICI) levels between different AITS subgroups. Less

immune cell infiltration and fewer ICIs were activated in the

TME of high AITS patients, suggesting that high AITS patients

are more likely to be immunosuppressed and less responsive to ICI

therapy, while low AITS patients are more likely to benefit from

ICIs. Finally, we screened therapeutic targets and drugs to reveal

chemotherapy effects among different patients. Our analyses

identified five targets and several therapeutic agents, such as

quizartinib, showing that high AITS patients were more

susceptible to chemotherapy.

To address the ethical and legal concerns associated with AI-

driven tools, particularly the reliance on automated CPT coding and

the potential for misclassification, we have implemented several

safeguards to ensure data accuracy and regulatory compliance.

First, AI-generated CPT codes are subject to thorough human

oversight and verification by experienced medical coders to

minimize errors and enhance reliability. Additionally, a continuous

model auditing and monitoring framework has been established to

evaluate performance over time, detect biases, and recalibrate the

model as needed. Our system strictly adheres to regulatory

requirements, including HIPAA and GDPR, ensuring robust data

privacy and security through encryption and secure data handling

practices. To further enhance transparency and clinician trust,

explainable AI (XAI) techniques have been integrated, providing

interpretability of the model’s decision-making process. Furthermore,

structured error handling protocols are in place to promptly address

discrepancies, with escalation pathways for resolving conflicts

between AI-generated and human-reviewed codes. Finally,

comprehensive training programs are provided to healthcare

professionals, equipping them with the necessary knowledge to

effectively utilize AI-assisted coding tools while remaining aware of

their limitations. These safeguards collectively contribute to

maintaining the balance between automation efficiency and the

critical need for human oversight and compliance with ethical and

legal healthcare standards.
Conclusion

Our TLS-based model outperforms traditional models,

providing valuable insights into the tumor microenvironment and

its role in cancer progression. This model enhances our

understanding of BC biology and supports personalized

therapeutic strategies, representing a significant advancement in

personalized medicine. In conclusion, the TLS-based prognostic

model is a powerful tool for predicting BC outcomes and tailoring

treatment strategies, ultimately improving patient care and

survival rates.
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10. Vanhersecke L, Brunet M, Guégan JP, Rey C, Bougouin A, Cousin S, et al.
Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in
solid tumors independently of PD-L1 expression. Nat Cancer. (2021) 2:794–802.
doi: 10.1038/s43018-021-00232-6

11. Wang L, Liu Z, Liang R, Wang W, Zhu R, Li J, et al. Comprehensive machine-
learning survival framework develops a consensus model in large-scale multicenter
cohorts for pancreatic cancer. Elife. (2022) 11:e80150. doi: 10.7554/eLife.80150

12. Pal B, Chen Y, Vaillant F, Capaldo BD, Joyce R, Song X, et al. A single-cell RNA
expression atlas of normal, preneoplastic and tumorigenic states in the human breast.
EMBO J. (2021) 40:e107333. doi: 10.15252/embj.2020107333

13. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in
single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. (2019)
8:329–337.e4. doi: 10.1016/j.cels.2019.03.003

14. Suo S, Zhu Q, Saadatpour A, Fei L, Guo G, Yuan GC. Revealing the critical
regulators of cell identity in the mouse cell atlas. Cell Rep. (2018) 25:1436–1445.e3.
doi: 10.1016/j.celrep.2018.10.045

15. Baran Y, Bercovich A, Sebe-Pedros A, Lubling Y, Giladi A, Chomsky E, et al.
MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome
Biol. (2019) 20:206. doi: 10.1186/s13059-019-1812-2

16. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

17. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular
communication by linking ligands to target genes. Nat Methods. (2020) 17:159–62.
doi: 10.1038/s41592-019-0667-5
18. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-
oncology biological research to decode tumor microenvironment and signatures. Front
Immunol. (2021) 12:687975. doi: 10.3389/fimmu.2021.687975

19. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8.
doi: 10.1038/s41591-018-0136-1

20. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al.
Computational correction of copy number effect improves specificity of CRISPR-Cas9
essentiality screens in cancer cells. Nat Genet. (2017) 49:1779–84. doi: 10.1038/ng.3984

21. Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and personalized
treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy
towards precision oncology. Brief Bioinform. (2021) 22:bbaa164. doi: 10.1093/bib/
bbaa164

22. Wang T, Li T, Li B, Zhao J, Li Z, Sun M, et al. Immunogenomic landscape in
breast cancer reveals immunotherapeutically relevant gene signatures. Front Immunol.
(2022) 13:805184. doi: 10.3389/fimmu.2022.805184

23. Wang T, Ba X, Zhang X, Zhang N, Wang G, Bai B, et al. Nuclear import of
PTPN18 inhibits breast cancer metastasis mediated by MVP and importin b2. Cell
Death Dis. (2022) 13:720. doi: 10.1038/s41419-022-05167-z

24. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49.
doi: 10.3322/caac.21660

25. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin.
(2024) 74:12–49. doi: 10.3322/caac.21820

26. Chen W, Kang Y, Sheng W, Huang Q, Cheng J, Pei S, et al. A new 4-gene-based
prognostic model accurately predicts breast cancer prognosis and immunotherapy
response by integrating WGCNA and bioinformatics analysis. Front Immunol. (2024)
15:1331841. doi: 10.3389/fimmu.2024.1331841

27. Dieu-Nosjean M-C, Goc J, Giraldo NA, Sautès-Fridman C, Fridman WH.
Tertiary lymphoid structures in cancer and beyond. Trends Immunol. (2014) 35:571–
80. doi: 10.1016/j.it.2014.09.006

28. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, et al.
12-Chemokine gene signature identifies lymph node-like structures in melanoma:
potential for patient selection for immunotherapy? Sci Rep. (2012) 2:765. doi: 10.1038/
srep00765

29. Pimenta EM, Barnes BJ. Role of tertiary lymphoid structures (TLS) in anti-tumor
immunity: potential tumor-induced cytokines/chemokines that regulate TLS formation
in epithelial-derived cancers. Cancers (Basel). (2014) 6:969–97. doi: 10.3390/
cancers6020969

30. Bergomas F, Grizzi F, Doni A, Pesce S, Laghi L, Allavena P, et al. Tertiary
intratumor lymphoid tissue in colo-rectal cancer. Cancers (Basel). (2011) 4:1–10.
doi: 10.3390/cancers4010001

31. Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary lymphoid structures in
cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in
disease? Front Immunol. (2017) 8:1830. doi: 10.3389/fimmu.2017.01830

32. Trajkovski G, Ognjenovic L, Karadzov Z, Jota G, Hadzi-Manchev D, Kostovski
O, et al. Tertiary lymphoid structures in colorectal cancers and their prognostic value.
Open Access Maced J Med Sci. (2018) 6:1824–8. doi: 10.3889/oamjms.2018.341
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