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Background: Semaphorins (SEMAs), originally identified as axon guidance factors,

have been found to play crucial roles in tumor growth, invasiveness,

neoangiogenesis, and the modulation of immune responses. However, the

prognostic value of SEMA-related genes in colorectal cancer (CRC) remains unclear.

Methods: We applied a novel machine learning framework that incorporated 10

machine learning algorithms and their 101 combinations to construct a SEMAs-

related score (SRS). Multi-omics analysis was performed, including single-cell

RNA sequencing (scRNA-seq), and spatial transcriptome (ST) to gain a more

comprehensive understanding of the SRS. A series of cell experiments were

conducted to prove the impact of key genes on CRC biological behavior.

Result: A consensus SRS was finally constructed based on a 101-combination

machine learning computational framework, demonstrating outstanding

performance in predicting overall survival. Moreover, distinct biological

functions, mutation burden, immune cell infiltration, and immunotherapy

response were observed between the high- and low-SRS groups. scRNA-seq

and ST demonstrated unique cellular heterogeneity in CRC. We observed that

SRS-high and SRS-low malignant epithelial cells exhibit different biological

characteristics. High SRS malignant epithelial cells interact with myeloid and

endothelial cells via SPP1 and COL4A2-ITGAV-ITGB8 pathways, respectively.

Low SRS cells engage with myeloid and endothelial cells through MIF and JAG1-

NOTCH4 pathways. Additionally, knocking down SEMA4C significantly inhibits

the proliferation and invasion of CRC cells, while promoting apoptosis in vitro.

Conclusion: SRS could serve as an effective tool to predict survival and identify

potential patients benefiting from immunotherapy in CRC. It also reveals tumor

heterogeneity and provides valuable biological insights in CRC.
KEYWORDS

semaphorins, colorectal cancer, immunotherapy, single-cell sequencing, spatial
transcriptome sequencing
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Introduction

Colorectal cancer (CRC) is the third most common cancer

globally, with 1.93 million cases reported in 2020. Additionally, it

ranks as the second leading cause of global cancer-related deaths,

accounting for around 916,000 fatalities that year (1). Despite

reduced mortality rates due to screening, about 25% of patients

are diagnosed with metastatic disease at initial diagnosis (2).

Despite advancements in CRC patient survival through combined

surgery, radiotherapy, and chemotherapy, challenges persist with

disease recurrence and low survival rates. Recent advancements in

immunotherapy, particularly with immune checkpoint inhibitors

(ICIs), have demonstrated promising outcomes in the treatment of

various cancers (3, 4). ICIs have been integrated into the standard

treatment regimen for CRC, but only a limited subset of patients

have experienced substantial and lasting benefits. Hence, it is crucial

to discover biomarkers or signatures that could reliably predict

treatment efficacy in CRC patients.

Semaphorins (SEMAs), initially identified as axon guidance

factors, are membrane-bound or secreted proteins involved in cell

communication (5). Growing evidence indicates that SEMAs

expression is dysregulated in various cancers, contributing to

angiogenesis (6), metastasis (7), and immune escape (8). They

affect tumor progression by altering immune interactions between

tumor cells and infiltrating immune cells within the tumor

microenvironment (TME). This study focuses on SEMA3 to

SEMA7, the semaphorins expressed in humans. Recent studies

indicate that SEMAs may function as attractants, influencing the

recruitment of immune cells such as macrophages, natural killer

cells, dendritic cells, and cytotoxic T lymphocytes to the TME (9).

For instance, Sema3A, Sema4C, and Sema4D promote tumor

progression by attracting tumor-associated macrophages (10).

Sema4A, found on dendritic and B cells, facilitates T cell priming

and differentiation of T helper cells in CD4+ T cells (11). It is

associated with increased CD8+ T cell activation, playing a key role

in IL-33-mediated anti-tumor immune responses (12).

This study utilized 10 machine learning algorithms to develop

a consensus SEMAs-related score (SRS) for the 20-member

SEMAs family in CRC. We also analyzed the differences in

biological functions, mutation burden, immune cell infiltration,

and immunotherapy response between the SRS-high and SRS-low

groups. Single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics (ST) analyses were performed to examine

cellular heterogeneity in CRC tissue and to investigate the

unique biological characteristics of SRS-high and SRS-low

malignant epithelial cells. This study highlights the regulatory

potential of SEMAs, providing a theoretical basis for future

targeted and immunotherapeutic approaches.
Materials and methods

Overview design of the study

Figure 1 shows the workflow of this study.
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Landscape of SEMA family expression and
mutagenesis in pan-cancer

Transcriptome data for 27 solid tumors were sourced from The

Cancer Genome Atlas (TCGA) using the R package “TCGAbiolinks”

(13). Supplementary Table S1 listed the 27 solid tumors used in this

study. Transcriptome data from normal tissues were obtained from

the Genotype-Tissue Expression (GTEx) project. The somatic

mutation profiles from Genomic Data Commons (GDC) were

compiled into a mutation annotation format (MAF) file. The

trinucleotide W (TCW, W = A or T) mutation and tumor

mutation burden (TMB) analysis were used the R package

“maftools” (14).
Prognostic signature construction based
on integrative machine learning in CRC

Twenty SEMA genes were selected to develop the prognostic

signature. To ensure high accuracy and generalizability of the SRS,

we employed an integration of 10 machine learning algorithms

(Supplementary Table S2). The TCGA-CRC cohort, integrating

TCGA-COAD and TCGA-READ datasets, was utilized for initial

model training, with GSE17537 (15) and GSE39582 (16) cohorts

employed for validation. To improve comparability across different

cohorts, we applied Z-score normalization to all data in advance.

The development pipeline for the SRS involved constructing

models using 101 combinations of these 10 machine learning

algorithms to identify the optimal predictive SRS with the best

concordance index (C-index) (17). The TCGA-CRC cohort served

as the training set for model development. After establishing the

models on the training set, they were tested on the validation

cohorts (GSE17537 and GSE39582). The model with the highest

average C-index, calculated across the validation datasets, was

deemed optimal.
Comprehensive analysis of immune-omics
molecular characterization and
immunotherapy response based on SRS

The Immuno-Oncology Biological Research (IOBR) R package

was utilized to gather diverse signatures associated with TME cell

types, immunotherapy responses, immune suppression, and

immune exclusion (18). We computed the enrichment score for

each sample to thoroughly examine the immunological differences

between patients with high and low SRS. We compared the

distribution of tumor mutational burden (TMB) and tumor

neoantigen burden (TNB) across the two groups. We utilized the

tracking tumor immunophenotype (TIP) and tumor immune

dysfunction and exclusion (TIDE) algorithms to explore

biological mechanisms linked to SRS and assess the response to

immunotherapy (19, 20). Predictive value of SRS was further

verified in GSE126044 (21), GSE135222 (22), GSE91061 (23) and

IMvigor210 cohort (24).
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scRNA-seq data collecting and
pre-processing

To enhance the comprehensiveness of our study, we integrated

our previous scRNA-seq cohort (In-house cohort1), which includes

two rectal cancer tissue samples (25), with publicly available

scRNA-seq datasets (GSE132465, GSE144735, and GSE166555)

(26, 27). A total of 43 tumor tissue samples were included. We

utilized Seurat to import the count data and create a Seurat object.

After scaling the data as previously described (28), we selected 2000

highly variable genes and merged all single-cell data. Principal

component analysis (PCA) was conducted using 50 principal

components. To address batch effects present in both our study
Frontiers in Immunology 03
and public data, we applied the Harmony package. The merged

scRNA-seq data underwent clustering analysis at a resolution of 0.2,

and was visualized using UMAP with 50 principal components.

Clusters containing fewer than 100 cells were excluded to ensure

robust results.
Celltypes annotation and copy number
variation inferring

For the first step, cells were primarily annotated according to

marker genes (29), including epithelial cells (EPCAM, KRT8,

KRT19), endothelial cells (VWF, COL1A2, CLDN5), myeloid
FIGURE 1

Workflow of the study.
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cells (CD68, CD14, C1QA), T/NK cells (CD3D, CD3E, CD7), B

cells (MS4A1, CD79A, BANK1), plasma cells (JCHAIN, IGHA2,

MZB1), fibroblast cells (COL1A1, COL3A1, DCN), mast cells

(CPA3, MS4A2, TPSAB1). In the second step, we used the

“FindNeighbors” and “FindClusters” functions in Seurat to

identify cell subtypes. Specific cell types in CRC were defined

using gene signatures and known lineage markers as auxiliary

tools. To identify malignant cells from epithelial cells, the

CopyKAT algorithm (version 0.1.0) (30) was employed to

estimate CNVs. Aneuploid epithelial cells are considered

malignant cells, whereas diploid epithelial cells are regarded as

normal cells.
scRNA-seq data scores calculating

We applied five distinct algorithms, including “AddModuleScore”

“AUCell” “ssGSEA” “singscore” and “UCell”, to calculate the SRS of

malignant epithelial cells. The AddModuleScore (31) algorithm

calculates enrichment scores by averaging the expression values of

genes in a set, providing insights into biological processes. The ssGSEA

algorithm evaluates the enrichment levels of specific gene sets within

individual samples or cells. AUCell assesses gene set enrichment in

scRNA-seq data by ranking gene expression and calculating the area

under the curve. UCell (32) enables unsupervised cell type

identification without the need for prior labels. SingScore quantifies

the activity of biological functions or processes within individual cells,

aiding in the assessment of cell states. By integrating the scores from

these five algorithms, we derived a comprehensive score. Cells with a

comprehensive score greater than 1 were classified as SRS high

malignant tumor cells, whereas those with a score of 1 or less were

categorized as SRS low malignant tumor cells.
Cell communication analysis

To infer cell-to-cell interactions, we employed two tools:

“CellChat” (33) and “CellCall” (34). The CellChat R package

employs an extensive signaling interaction database that includes

various receptor-ligand interactions, such as multimeric complexes,

soluble agonists and antagonists, and both stimulatory and

inhibitory membrane-bound coreceptors. This enables detailed

mapping of the cellular communication landscape. Conversely,

CellCall aggregates ligand-receptor-transcription factor axis

datasets using KEGG pathway information. By combining

intracellular with intercellular signals, CellCall elucidates specific

pathways involved in cellular interactions. A comprehensive

understanding of specific cellular communication pathways was

attained through CellCall, thereby enhancing the broader

interaction network identified through CellChat.
ST data processing

In this study, we utilized the 10× spatial transcriptomic

sequencing method to capture spatial data from two intestinal
Frontiers in Immunology 04
cancer tissue samples (In-house cohort2). Detailed information

on these samples can be found in our previous study (25). To

process the ST data, we followed a series of steps. First, data

standardization was performed using the “SCTransform” function

within the “Seurat” package. Next, dimensionality reduction was

achieved by applying the “RunPCA” function to conduct PCA,

which reduces the dimensionality of the data and highlights the

most significant variations. Following PCA, the “RunUMAP”

function was employed to carry out UMAP for clustering the data.
Re−localization for ST data

The RCTD method was employed to assign cell types from the

reference scRNA-seq dataset to spatial transcriptomic data (35). Cell

type-specific marker genes were identified using the ‘FindAllMarkers’

function in Seurat. This step ensured the accurate identification of cell

type-specific markers. Following this, the standard RCTD analysis

protocol was meticulously followed, applying it to both the reference

scRNA-seq data and the Visium spatial transcriptomics data.
ST heteromorphic cell spatial
network analysis

Heterotypic score algorithm was used according to the previous

study (36). The kNN function in the dbscan package was used to

calculate the distances between spots containing SRS high malignant

tumor cells and spots containing myeloid or endothelial cells.

Specifically, if all six neighboring spots around a SRS high malignant

tumor cell contained myeloid or endothelial cells, these spots were

selected for further analysis. The threshold for a spot to be considered

as containing tumor cells was set at 0.2, while the threshold for myeloid

or endothelial cells was set at 0.1. This analysis uncovered numerous

associations between specific cell types, providing insight into the

intricate cellular interactions within the tissue microenvironment.
Spatial map of cell dependencies

MISTy is an interpretable multi-view machine learning framework

designed to analyze highly multiplexed intercellular relationships

within data and thereby facilitate the understanding of cell

interaction patterns and mechanisms (37). Cell-type RCTD estimates

were modeled using three spatial contexts: (1) intrinsic correlations

within a locale, (2) juxta estimations for nearby neighbors (maximum

distance of 5), and (3) para estimations for distant neighbors (radius of

15 spots). The median standardized importance of each context were

interpreted as cell-type dependencies, indicating colocalization or

mutual exclusion, without implying causation.
Spatial signaling analysis

The “COMMOT” package (38) was employed to analyze

signaling directions within spatial transcriptome data. COMMOT,
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short for COMMunication analysis by Optimal Transport, was

designed to infer cell-cell communication by concurrently

evaluating multiple ligand-receptor pairs. This package facilitates

the summarization and comparison of spatial signaling directions

and identifies the downstream impacts of cell-cell communication

on gene expression through ensemble of trees models.
Potential therapy agents for patients with
high SRS

Gene Set Enrichment Analysis (GSEA) (39) was employed to

compare oncogenic pathway activation between high- and low-SRS

patients. Drug sensitivity data for cancer cell lines were obtained

using the Cancer Therapeutics Response Portal (CTRP) and

Profiling Relative Inhibition Simultaneously in Mixtures (PRISM).

The AUC was utilized to assess drug sensitivity. Potential drugs for

high-SRS patients were explored by referencing to previous studies

(40), and the area under the AUC were used as a indicators for

evaluating drug sensitivity. Agents with lower AUC in the high-SRS

group (logFC > 0.2) and those with negative correlation coefficients

(r < -0.15) were selected as the final potential therapeutic agents.

Additionally, molecular docking was also performed. Protein

structures were obtained from the Protein Data Bank, and small

molecule information was retrieved from PubChem. Molecular

docking was carried out using the online tool CB-Dock2.
Cell culture and siRNA transfections

HT29 and SW480 cells, obtained from ATCC, were maintained

in Dulbecco’s Modified Eagle Medium (Gibco, USA) with 10% fetal

bovine serum (CellMax, China) and 1% penicillin-streptomycin. The

cells were maintained at 37°C in a 5%CO2 environment, with routine

testing to ensure they were free of mycoplasma contamination.

Lipofectamine 3000 (Invitrogen, USA) was used for siRNA

transfection according to the manufacturer’s guidelines. The

siRNA, sourced from Ribio, China, is detailed in Supplementary

Table S3 with the specific sequences used in the study.
Western blotting

Total proteins were extracted using radio immunoprecipitation

assay lysis (RIPA) buffer supplemented with phenylmethylsulfonyl

fluoride (PMSF) and a Protease Inhibitor Cocktail (APEXBIO,

USA). Protein concentrations were measured using a BCA kit

from Beyotime, China. Protein lysates (30 µg) were separated on

a 10% SDS-PAGE gel and transferred to polyvinylidene fluoride

(PVDF) membranes. Membranes were blocked using 5% skim milk

in TBST and incubated with primary antibodies against SEMA4C

(1:3000, Cat. no: 28402-1-AP; Proteintech) and b-actin (1:1000,

Cat. no: TA09; OriGene Technologies, Inc.). Following the washing

step, membranes were treated with HRP-conjugated secondary

antibodies (1:10,000, Cat. no: 92632210/92632211; LI-COR
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Biosciences). Protein bands were detected with an ECL kit

(Beyotime, China).
CCK-8 assay and colony formation assays

To evaluate cell proliferation, CRC cells transfected with either

sh-NC or si-SEMA4C lentivirus were seeded into 96-well plates.Cell

proliferation was assessed with the Cell Counting Kit-8 (CCK-8,

Beyotime, China) following the manufacturer’s guidelines. Optical

density (OD) readings at 450 nm were recorded to determine the

cell proliferation rate.

Transfected CRC cell lines were plated at 1,000 cells per well in

6-well plates and cultured in RPMI-1640 medium supplemented

with 10% fetal bovine serum for 10 days to facilitate colony

formation. Colonies were then fixed with methanol and stained

with 1% crystal violet (Beyotime, China). Stained colonies were

imaged for analysis.
Transwell assay

Cell migration was evaluated using a Transwell assay.Cells

(1×105 cells/mL) were suspended in serum-free DMEM and

seeded into the upper chamber of an 8-µm pore insert (Corning,

NY, USA), while the lower chamber contained DMEM with 10%

FBS. After 24 hours of incubation, cotton swabs were used to

remove non-migrated cells, and migrated cells were imaged at 200×

magnification in five random fields. Migration was measured as the

average cell count per field, expressed with the standard deviation.

For the invasion assay, the Transwell membrane was pre-coated

with 1 mg/mL Matrigel (BD Biosciences, NJ, USA) before following

the same protocol as the migration assay.
Cell apoptosis assay

Cell apoptosis was evaluated with an Annexin V-FITC/PI

Detection Kit. Four hours after transfection, cells were exposed to

50 mmol/L 6-OHDA and incubated for 24 hours at 37°C with 5%

CO2. Following incubation, cells were harvested, rinsed twice with

sterile PBS, and labeled with Annexin V-FITC/PI. Apoptosis levels

were then analyzed by flow cytometry.
Statistical analysis

Unpaired Student’s t-test was used for normally distributed

variables, and the Wilcoxon rank-sum test was applied for non-

normally distributed variables when comparing two groups. For

datasets with more than two groups, one-way ANOVA was

employed for parametric data, and the Kruskal-Wallis test

was utilized for non-parametric data. Two-sided Fisher’s exact

test was used to analyze contingency tables. The SRS threshold

value was set based on the mean. Statistical analyses were conducted
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using R (v4.2.1), GraphPad Prism (v9.3.1), and Python (v3.8). (ns: P

> 0.05, *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001).
Results

Landscape of SEMA family expression and
SEMA mutagenesis in pan-cancer

To investigate the genomic characteristics of the 20 SEMA

family genes across multiple cancers, we generated a comprehensive

heatmap. The heatmap illustrated expression profiles across 9,765

samples, comprising 9,398 primary tumors and 367 metastatic

tumors, spanning 27 solid cancer types from TCGA (Figure 2A).

In the pan-cancer analysis, SEMA4B showed the highest expression

levels among all the SEMAs. Additionally, certain SEMAs showed

notably high expression in specific cancer types, such as SEMA5B in

KIRC. A Pearson correlation analysis of all 20 SEMA family

members showed that most SEMAs were significantly positively

correlated (Figure 2B). We also assessed the expression of the 20

SEMA family members by comparing their levels in primary

tumors and adjacent normal tissues (ANTs) across 14 cancer

types. Figure 2C illustrates significant dysregulation of SEMAs in

these cancer types relative to their corresponding ANTs. SEMA3E

was notably downregulated in 13 cancer types, except for uterine

corpus endometrial carcinoma (UCEC), where no significant

downregulation was observed. The detailed expression of

SEMA3E in the 14 cancer types and their corresponding ANTs is

exhibited in Figure 2D.

We calculated the TCW mutation count for each tumor sample

across all cancer types, considering changes from TCW to TTW and

TCW to TGW, where W represents A or T.UCEC, skin cutaneous

melanoma, and colon cancer exhibited the highest TCW mutation

counts (Figure 2E). Using a random forest algorithm, we identified

SEMA3E as the most significant contributor to TCW mutations in

pan-cancer analysis (Figure 2F). Additionally, we evaluated the

associations between TMB and SEMA family members across

different cancer types. The comprehensive heatmap (Figure 2G)

illustrates these correlations, where the color intensity reflecting the

magnitude of the correlation and point size indicating the level of

statistical significance. Notably, we observed that all SEMAs, except

SEMA3G, had significant correlations with TMB in thymoma.
SRS signature predicts prognosis and
immunotherapy response in CRC

All 20 SEMA family members were used to develop a SRS using

a machine learning-based technique within a Leave-One-Out

Cross-Validation framework to fit 101 models. The TCGA-CRC

cohort was utilized as the training dataset, with the GSE39582 and

GSE17537 datasets employed for validation. The optimal model,

which integrated Lasso regression and RSF, achieved an average C-

index of 0.729 (Figure 3A). To determine the optimal model

parameters, we selected the l value that minimized the penalized

likelihood deviation in the TCGA-CRC training cohort (Figure 3B,
Frontiers in Immunology 06
left). For the RSF component, the error rate was assessed as a

function of the classification tree (Figure 3B, middle), and out-of-

bag importance values were used to evaluate gene contributions

(Figure 3B, right). The SRS for each patient was determined by

applying the regression coefficient-weighted expression of

SEMA3E, SEMA4C, and SEMA6C within the RSF model.

Patients in the training and validation cohorts were divided into

SRS-high and SRS-low groups based on the median SRS value. It is

noteworthy that the overall survival (OS) of patients with high SRS

levels was significantly lower compared to those with low SRS levels

(all P-values < 0.05, Figures 3C–E).

The TIDE algorithm assessed patient responses to

immunotherapy. The analysis revealed that SRS was also

positively associated with the TIDE score (Figure 3F) and patients

in the low SRS group exhibited significantly better responsiveness to

immunotherapy in comparison to those in the high SRS group (P <

0.001; Figure 3G for Fisher’s exact test results). Chi-square tests

showed that the SRS-low group had a lower proportion of patients

with III/IV T stage (P = 0.038), lower mortality (P = 0.001), and

lower recurrence (P = 0.012, Figure 3H).

We calculated the TIP to explore potential biological

mechanisms associated with the SRS. The SRS-low group

exhibited significant differences primarily at step 4, which

involves the recruitment of tumor immune-infiltrating cells

(Figure 3I). The SRS-low group exhibited significantly higher

proportions of T cells, dendritic cells, macrophages, and Th17

cells, whereas the SRS-high group showed significantly higher

proportions of neutrophils, eosinophils, B cells, Th2 cells, and

regulatory T cells (Tregs).
The validation of SRS predictive power for
immunotherapy response

We further substantiated our conclusions by examining

multiple immunotherapy validation cohorts. A lower SRS was

linked to better OS and progression-free survival (PFS), with

statistical significance observed in GSE126044 for OS (P = 0.008;

Figure 4A) and PFS (P = 0.041; Figure 4B), and in GSE135222 for

PFS (P = 0.004; Figure 4C). Furthermore, a lower SRS was generally

correlated with a better response to immunotherapy (GSE91061,

P = 0.043; Figure 4D). Post-immunotherapy patients with

progressive disease had higher SRS compared to those with

partial response (P = 0.034) and stable disease (P = 0.007) in

IMvigor 210 cohort (Figure 4E).
Immune characteristics related to SRS

We utilized the IOBR R package to examine the tumor

microenvironment in colorectal cancer. As expected, signatures

linked to favorable immunotherapy outcomes were significantly

enriched in the SRS-low group (Figure 4F). CRCs with low SRS

levels were more likely to exhibit characteristics of hot tumors with

heightened immune responses. In contrast, fibroblasts and Tregs

were predominantly enriched in the SRS-high group. The SRS-high
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group exhibited enrichment of immunosuppressive and immune-

exclusion markers, including the epithelial-mesenchymal transition

(EMT) pathway, suggesting an immunosuppressive state (Figures 4G,

H). These findings suggest that SRS-high CRCs are more likely to be

cold tumors, which typically respond poorly to immunotherapy.

TMB and TNB are well-recognized biomarkers for assessing

patient responses to immunotherapy. To investigate the differences

in these biomarkers between the SRS-high and SRS-low groups, we

conducted a comprehensive analysis. Our findings revealed that the

SRS-low group demonstrated significantly elevated levels of TMB (P
Frontiers in Immunology 07
= 0.041) and TNB (P = 0.015), indicating that this group may

possess greater immunogenicity (Figures 4I, J).
Heterogeneity of malignant tumor
epithelial cells in CRC

scRNA-seq data from CRC tissues were extracted from four

datasets comprising 43 CRC patients and 84,589 cells (Figure 5A).

Major cell clusters were annotated using marker genes, identifying
FIGURE 2

Landscape of SEMAs family expression and mutagenesis in pan-cancer. (A) A comprehensive heatmap illustrates the expression pattern of SEMAs
across solid cancer types from TCGA. (B) The Pearson correlation analysis was performed among all 20 SEMAs family members in pan-cancer.
(C) All 20 SEMAs family members were compared in primary tumors versus adjacent normal tissues (ANT). (D) SEMA3E was significantly
downregulated in 13 of 14 cancer types compared with paracancerous tissue. (E) TCW mutation count in pan-cancer. (F) SEMA3E emerged as the
most important contributor to TCW mutation in pan-cancer. (G) The correlations among TMB and SEMAs were analyzed in pan-cancer. All SEMAs,
except SEMA3G, had significant correlations with TMB in THYM.
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FIGURE 3

SRS construction and differences analysis between SRS-high and SRS-low groups. (A) A combination of 101 machine learning algorithms was
generated through a comprehensive computational framework. The C-index of each model was calculated form the TCGA-CRC, GSE17537, and
GSE39582 cohorts and sorted by the average C-index. (B) Determination of the best l when the penalized likelihood deviation reached its minimum
value in the TCGA-CRC training cohort (left); error rate in the random survival forest as a function of the classification tree (middle); and calculation
of the out-of-bag importance values for the predicted genes (right). (C–E) Kaplan-Meier survival curves for SRS in the TCGA-CRC training cohort
and the GSE17537 and GSE39582 validation cohorts, illustrating overall survival differences. (F) A significant positive association exists between SRS
and the TIDE score. (G) The TIDE algorithm predicts response to immunotherapy between SRS-high and SRS-low groups. (H) Pie charts showing the
chi-squared test results between SRS and clinical characteristics in CRC patients from the GSE39582 cohort. (I) Differences in the degree of
activation between SRS-high and SRS-low groups at each step of TIP. *: P < 0.05, **: P < 0.01, ***: P < 0.001. ns: not significant.
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T/NK cells, B cells, plasma cells, myeloid cells, mast cells,

fibroblasts, endothelial cells, and epithelial cells (Figure 5B). The

proportional composition of these nine cell types across these

samples is shown in Figure 5C.

Malignant tumor epithelial cells were identified by using the

CopyKAT algorithm based on CNV. Among the 14,195 epithelial

cells, 9,426 (66.4%) were predicted to be aneuploid, while the

remaining 4,769 (33.6%) cells were predicted to be diploid

(Figures 5D, E). We re-clustered 9,426 malignant epithelial cells to

differentiate those with high and low SRS. Eight clusters of malignant

epithelial cells were identified, with clusters 7 classified as SRS high
Frontiers in Immunology 09
cluster (EpiH) and the remaining clusters as SRS low cluster (EpiL)

(Figures 5F, G). Cell-to-cell interaction analyses were conducted to

investigate ligand-receptor interactions between malignant epithelial

cells with high or low SRS and other cell types. Results from Cellchat

demonstrated varying interactive strengths among the 10 cell

subtypes, with the greatest interactions between EpiH and myeloid

cells, followed by endothelial cells (Figure 5H).

Then, cell-to-cell communication between malignant epithelial

cells with different SRS and myeloid cells or endothelial cells was

analyzed. The results demonstrate significant ligand-receptor

interactions among different cell types (Figures 5I, J). In the
FIGURE 4

Immunotherapy response differences between SRS-high and SRS-low groups. (A, B) Survival analysis of SRS-high and SRS-low groups in
GSE126044. (C) Survival analysis of SRS-high and SRS-low groups in GSE135222. (D) Distribution of SRS in different immunotherapy response groups
of GSE91061. (E) Distribution of SRS in different immunotherapy response groups of IMvigor 210. (F) The distribution of immunotherapy biomarkers
between SRS-high and SRS-low groups. (G) The distribution of immune suppression signatures between SRS-high and SRS-low groups. (H) The
distribution of immune exclusion signatures SRS-high and SRS-low groups. (I) The distribution of TMB between SRS-high and SRS-low groups.
(J) The distribution of TNB between SRS-high and SRS-low groups. (ns: P > 0.05, *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001).
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interactions between EpiH and myeloid cells, SPP1 signaling

pathways and several ligands such as LAMB1-CD44 and LAMA5-

CD44, among others, show notable signaling capabilities, indicating

that EpiH may play a crucial role in regulating myeloid cell functions.

Similarly, the communication between EpiL and myeloid cells also

exhibits significant interactions, particularly through MIF signaling
Frontiers in Immunology 10
pathways. Regarding the endothelial cell analysis, EpiH demonstrates

strong signaling interactions with endothelial cells, especially with the

COL4A2-ITGAV-ITGB8 and LAMA5-ITGA1-ITGB1 ligand-

receptor pairs. The interactions between EpiL and endothelial cells

also show significance, especially with the JAG1-NOTCH4 ligand-

receptor pairs.
FIGURE 5

Single-cell RNA sequencing analysis in CRC. (A) UMAP plots of 84,589 cells from tumor tissues of 43 CRC patients in the 4 cohorts (GSE132465,
GSE144735, GSE166555, and In-house cohort1), showing 8 major cell types. (B) Dot plots displaying marker genes for each major cell type in the 4
cohorts. (C) Proportional distribution of the nine major cell types across the 43 samples. (D) Heatmap of inferred copy number variations in epithelial
cells with CopyKAT algorithm, showing aneuploid (66.4%) and diploid (33.6%) epithelial cells. (E) UMAP plots of aneuploid and diploid epithelial cells.
(F) UMAP plots of Reclustered 9,426 malignant epithelial cells, showing 8 cell types. (G) Bubble plots demonstrating the enrichment scores of SRS
for each reclustered malignant epithelial cell types. (H) Interactive strength of cell-to-cell interactions among the 9 major cell types. (I) Potential
ligand-receptor interactions between malignant epithelial cells and myeloid cells. (J) Potential ligand-receptor interactions between malignant
epithelial cells and endothelial cells.
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Cell-to-cell communication between
malignant epithelial cells and subtypes of
myeloid or endothelial cells

In this study, myeloid cells were re-clustered into five distinct

subtypes in accordance with a previous study (41): monocytes,

conventional DCs (cDCs), SPP1-positive macrophages (Macro_SPP1),

SLC40A1-positive macrophages (Macro_SLC40A1), and proliferating

cells (Figures 6A, B; Supplementary Table S4). Endothelial cells were re-

clustered into four subtypes—tip cells, vein endothelial cells, artery
Frontiers in Immunology 11
endothelial cells, and lymphatic endothelial cells—according to another

study (42) (Figures 6C, D; Supplementary Table S5). The CellCall

analysis demonstrated significant interactions between malignant

epithelial cells with different SRS and the various subtypes of myeloid

and endothelial cells (Figures 6E, F).

Notably, the interaction between EpiL and monocytes displays a

strong signaling potential, particularly through the JAG1-NOTCH1

and JAG2-NOTCH2 pathways. These interactions suggest that EpiL

may actively engage with monocytes, influencing their

differentiation and function. Moreover, the presence of AREG-
FIGURE 6

Communication between malignant epithelial cells and myeloid and endothelial cell subtypes. (A) UMAP plots of 6,177 myeloid cells from tumor
tissues of 43 CRC patients, showing 5 cell subtypes. (B) Dot plots of marker genes for each myeloid cell subtypes. (C) UMAP plots of 1,233
endothelial cells from tumor tissues of 43 CRC patients, showing 4 cell subtypes. (D) Dot plots of marker genes for each endothelial cell subtypes.
(E) Circle diagram illustrating the strength of ligand-receptor interactions among malignant epithelial and myeloid cell subtypes. (F) Circle diagram
illustrating the strength of ligand-receptor interactions among malignant epithelial and endothelial cell subtypes. (G) Identification of highly ranked
ligand-receptor pairs and their associated transcription factors among malignant epithelial and myeloid cell subtypes. (H) Identification of highly
ranked ligand-receptor pairs and their associated transcription factors among malignant epithelial and endothelial cell subtypes.
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EGFR and AREG-ERBB3 interactions indicates potential regulatory

mechanisms in epithelial-myeloid communication. The identified

ligand-receptor pairs, such as INHBA-ACVR1B and INHBA-

ACVR2A/B, further emphasize the functional cross-talk between

epithelial and myeloid cells, potentially affecting cellular

proliferation and signaling cascades. The heatmap highlights

significant interactions between IL-10 and TNF pathways,

indicating a balance of pro-inflammatory and anti-inflammatory

signals between epithelial and myeloid cells (Figure 6G).

Noteworthy interactions include the JAG1-NOTCH1 and

JAG2-NOTCH pathways, which are prominently involved in

mediating communication between EpiH and various endothelial

cell types. These interactions suggest a role for EpiH in modulating

endothelial cell fate and responsiveness. Additionally, the presence

of AREG-EGFR and LIF-IL6ST interactions indicates potential

pathways by which EpiL may regulate endothelial cell activities,

including survival and proliferation. The involvement of BMP and

TGFA signaling—particularly BMP2-BMPR2 and TGFA-EGFR—

further highlights the importance of these pathways in endothelial

function and tissue repair processes. Furthermore, the heatmap

reveals interactions involving chemokines, such as CXCL12-

CXCR4, which may be critical for endothelial cell migration and

recruitment in response to inflammatory stimuli (Figure 6H).
Cell spatial network analysis and spatial
signaling analysis with ST

To further assess the spatial organization of EpiH, EpiL, myeloid,

and endothelial cells, we performed ST analysis on tumor tissue

sections from our previous ST dataset, which includes two intestinal

cancer tissue examples (25). We utilized the RCTD methodology to

deconvolute annotated cell types from scRNA-seq data and integrate

them with ST data. This approach enabled us to infer the predominant

cell types present at each spatial location (Figures 7A–H).

The spatial network analysis of EpiH in relation to myeloid and

endothelial cells is illustrated in the Figures 7I–L, where purple dots

represent spots containing EpiH and yellow dots denote the

presence of myeloid or endothelial cells. In the EpiH_Myeloid

panel, the clustering of yellow spots in proximity to EpiH regions

suggests potential spatial interactions that may facilitate

communication and functional modulation between these cell

types. This spatial arrangement likely reflects the dynamic role of

EpiH in influencing myeloid cell behavior, including recruitment

and activation within the local microenvironment. Similarly, the

EpiH_Endothelial panel reveals a comparable pattern of endothelial

cells adjacent to EpiH spots, with the presence of yellow dots near

EpiH indicating potential interactions critical for angiogenesis,

tissue repair, and overall vascular integrity. Based on the results

from MISTy, epithelial cells with high SRS demonstrated a

congruence in clustering patterns and a heightened correlation in

spatial interactions with myeloid and endothelial cells within the

internal space (Figures 7M, N). Considering the significance of the

INHBA-ACVR1B and SEMA3E-PLXND1 signaling pathways in

the interaction between EpiH and myeloid or endothelial cells,

COMMOT software was utilized to infer the spatial signaling
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directionality of these two pathways. Figure 7O illustrates the

INHBA-ACVR1B signaling pathway, and Figure 7P depicts the

SEMA3E-PLXND1 signaling pathway.
Potential therapeutic drugs screening

Notable prognostic disparities were observed between populations

characterized by high and low SRS levels. GSEA indicated that

pathways related to EMT, angiogenesis, hypoxia, and TNF-alpha

signaling via the NF-kB pathway were markedly activated in SRS-

high patients (Figure 8A). Due to the inadequate immunotherapy

response in patients with high SRS, we utilized the CTRP and PRISM

platforms to identify potential therapeutic drugs for these individuals.

We employed Oxaliplatin, a standard CRC treatment, as a benchmark

to confirm the robustness of our methodology. Our algorithm revealed

that patients exhibiting low ERCC1 expression levels responded more

effectively to cisplatin therapy, corroborating established clinical

findings and indicating possible advantages for chemotherapy

(Figure 8B). Finally, we screened two CTRP-derived agent

(tanespimycin and clofarabine; Figure 8C) and four PRISM-derived

agents (nutlin-3, LGX818, CGM097, and GDC-0152; Figure 8D). We

further explored the molecular docking interactions of the target gene

SEMA4C with tanespimycin, clofarabine, nutlin-3, and LGX818. The

simulations revealed that the binding energy of SEMA4C with

tanespimycin was -8.0 kcal/mol, with clofarabine was -6.5 kcal/mol,

with nutlin-3 was -6.3 kcal/mol, and with LGX818 was -6.6 kcal/mol

(Figures 8E–H). These results indicate that their potential as

therapeutic agents for targeting SEMA4C.
Cell function experiments

Drug screening analysis revealed that SEMA4C could be

targeted by multiple drugs, whereas no potential intervention

drugs were identified for the other two genes. Additionally,

research on the biological role of SEMA4C in colorectal cancer

remains limited. Given this, SEMA4C was selected for further

investigation to assess its function in CRC progression at the

cellular level. To demonstrate the tumor-promoting role of

SEMA4C in CRC, we developed knockdown vectors for SEMAC4

(si-SEMA4C#1, si-SEMA4C#2) alongside RNAi negative control

vectors (si-NC) and transfected them into HT29 and SW480 cell

lines. Western blot analysis confirmed the successful transfection

and a significant reduction in SEMAC4 expression in both cell lines

when using si-SEMA4C#1 and si-SEMA4C#2 (Figure 9A). CCK-8

and colony formation assays demonstrated significantly reduced

cell viability and proliferation in the knockdown groups relative to

the controls (Figures 9B, C). Transwell assays demonstrated a

marked decrease in the migration and invasion abilities of HT29

and SW480 cells in the knockdown groups compared to the control

group (Figures 9D–F). Additionally, flow cytometry results

indicated an increase in cell apoptosis in the knockdown groups

(Figure 9G). These findings suggest that SEMA4C contributes to

CRC cell growth and migration, highlighting its potential role as a

tumor promoter.
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Discussion

This study presents a novel computational framework that

incorporates ten unique machine learning algorithms and their

101 potential combinations. This extensive analysis led to the
Frontiers in Immunology 13
identification of the SRS, which exhibits high predictive accuracy

for the prognosis of colorectal cancer CRC. Moreover, we utilized

the SRS for risk stratification of CRC patients, evaluating their

response to immunotherapy. Our findings suggest that CRC

patients exhibiting a low SRS demonstrate enhanced survival rates
FIGURE 7

ST analysis of malignant epithelial, myeloid and endothelial cells in two CRC examples. (A–H) Co-localization of malignant epithelial cells with SRS-
high (EpiH), SRS-low (EpiH), myeloid and endothelial cells. (I–L) The spatial network analysis of EpiH in relation to myeloid and endothelial cells.
Purple dots represent spots containing EpiH and yellow dots denote the presence of myeloid or endothelial cells. (M, N) Extrapolation of spatial
clustering and projection of spatial correlations among different cell types based on the MISTy algorithm. (O) Spatial signaling directionality analysis
of the INHBA-ACVR1B pathways. (P) Spatial signaling directionality analysis of the SEMA3E-PLXND1 pathways.
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and exhibit a greater likelihood of benefiting from immunotherapy.

These insights offer a rational framework for the administration of

immunotherapy in clinical practice, marking a substantial

advancement toward more effective personalized medicine

strategies. Furthermore, we identified potential pharmacological

agents that may inhibit the progression of CRC to a high SRS

phenotype, thereby presenting novel opportunities for CRC

preventive strategies. In contrast to previous research, which

primarily focused on the prognostic implications of the signature,

this study incorporated bulk transcriptome analysis, scRNA-seq,

and ST to attain a more comprehensive understanding of the SRS.
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These findings provide robust biological evidence and explanations

for the SRS, emphasizing its potential in guiding personalized

medicine approaches.

Our study utilized an innovative computational framework to

identify a strong prognostic signature, SRS. Kaplan-Meier curve

analysis demonstrated that the SRS effectively stratifies CRC

patients’ risk concerning OS. Additionally, SRS is associated with

more advanced CRC stages and metastasis occurrence, linked to

adverse clinical outcomes. Approximately 30% of patients

diagnosed with locally advanced CRC eventually progress to

metastatic disease, underscoring the critical need for early
FIGURE 8

Potential agents for patients with high SRS. (A) Identification of significantly activated pathways in the SRS-high group using the GSEA algorithm.
(B) Predicting oxaliplatin sensitivity to assess the computational algorithm’s feasibility. (C, D) Analyzing correlation and differences in drug sensitivity
for potential candidates from the CTRP and PRISM datasets. (E–H) Conducting molecular docking studies between SEMA4C and the compounds
tanespimycin, clofarabine, nutlin-3, and LGX818.
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predictive measures to enhance prognosis and therapeutic

outcomes (43). Notably, our study revealed that the SRS predicts

not only prognosis but also the occurrence and progression of CRC.

It demonstrated outstanding diagnostic performance across various

datasets, affirming its broad applicability. SRS is a crucial tool for

assessing CRC patient survival rates and enhancing personalized

medicine approaches.

In constructing the SRS, three SEMAs family genes were

ultimately included: SEMA3E, SEMA4C, and SEMA6C. Class-3

SEMAs are a subfamily of seven vertebrate SEMAs known for being
Frontiers in Immunology 15
the only secreted type (44). Initially identified as axon guidance

factors, they also play roles in immune responses, angiogenesis,

lymphangiogenesis, and other physiological and developmental

functions. Notably, SEMA3E is a particularly intriguing gene due

to its dual role in cancer biology. Research has demonstrated that

SEMA3E could inhibit tumor angiogenesis (45). However, SEMA3E

also has an important role in promoting tumor progression. This

pro-tumorigenic effect is mediated by activating the oncogenic

tyrosine kinase ERBB2 and the PI3K/AKT signaling pathways

(46, 47). Furin-like pro-protein convertases, commonly found in
FIGURE 9

Verification of the tumor-promoting effect of SEMA4C in CRC. (A) Western blot analysis of SEMA4C expression in HT29 and SW480 cell lines.
(B, C) CCK-8 and colony formation assays were conducted to evaluate the impact of SEMA4C downregulation on the proliferation and viability of HT29
and SW480 cell lines. (D–F) Transwell assays were performed to evaluate the influence of SEMA4C downregulation on the cell migration and invasion.
(G) Impact of SEMA4C downregulation on the cell apoptosis was analyzed by flow cytometry assay. (*: P < 0.05; **: P < 0.01; ***: P < 0.001).
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advanced invasive and metastatic cancers, regulate SEMA3E (48).

These enzymes cleave SEMA3E into the p61 fragment, revealing a

new signaling function. This fragment allows PLEXIND1 to interact

with the oncogenic kinase ERBB2, initiating its signaling cascade.

Although both SEMA3E and p61 bind to PlexinD1, only p61 can

complex with ERBB2 and activate downstream pathways.

Consequently, cancer cells may increase the conversion of

precursor-SEMA3E into the pro-metastatic p61, promoting tumor

progression (46). Additionally, A recent study revealed that

SEMA3E knockout inhibits dendritic cell (DC) migration by

modulating CCR7 expression and increasing programmed death

ligand 2 levels, compared to wild-type mice (49). These findings

illustrate that SEMA3E plays a role in regulating DC migration and

function during inflammation. The transmembrane protein

SEMA4C is overexpressed in several malignant tumors, including

breast, esophageal, gastric, and colorectal cancers. The biological

function of SEMA4C in macrophage recruitment was reported to

contribute to the malignant nature of tumors. It could interact with

the PLEXINB2 receptor to activate the NF-kB pathway, which

induced the production of colony-stimulating factor 1, thereby

promoting tumor growth and progression (50). Research on the

role of SEMA6C in tumors is scarce. SEMA6C has recently been

identified as a novel activator of focal adhesion kinase and Yes-

associated protein that operates independently of cell adhesion

mechanisms. This activation is essential for the viability and

growth of cancer cells (51). By influencing key signaling

pathways, SEMA6C plays a significant role in promoting tumor

progression and survival, making it a potential target for therapeutic

interventions in cancer treatment.

We analyzed immune-related signatures between the two groups

using the GSEA algorithm and the IOBR R package. The SRS-high

group showed significant activation of various oncogenic pathways

and exhibited a greater propensity for a cold tumor phenotype (52). In

contrast, the SRS-low group exhibited elevated TMB and TNB,

meaning a richer variety of immune cell types and an increased

presence of tumor neoantigens. These factors may enhance the

immune response, making the tumor more easily recognized by the

immune system, thereby improving the response to immunotherapy

(53). Survival analysis indicated better prognostic outcomes for the

SRS-low group, validated across multiple immunotherapy cohorts.

Furthermore, TIDE analysis revealed an enhanced response to

immunotherapy within the SRS-low group, indicating that SRS may

serve as a valuable tool for the early identification of populations

sensitive to immunotherapy.

scRNA-seq and ST were employed to explore the heterogeneity

of malignant epithelial cells for a comprehensive understanding of

the SRS in CRC. This study sought to elucidate the influence of

SEMAs on the progression of CRC and its implications for

immunotherapeutic strategies. Malignant epithelial cells with high

SRS interacts strongly with myeloid and endothelial cells through

SPP1 and COL4A2-ITGAV-ITGB8 signaling pathways,

respectively. Similarly, Malignant epithelial cells with low SRS

shows significant interactions with myeloid cells via MIF

signaling and with endothelial cells through JAG1-NOTCH4

signaling pathways. ST analysis provided insights into the

interaction patterns between various cell types within the tumor
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microenvironment. Malignant epithelial cells exhibiting high SRS

demonstrated stronger communication with myeloid and

endothelial cells compared to those with low SRS, aligning with

scRNA-seq analysis findings. The heterogeneity observed indicates

that malignant epithelial cells with varying SRS levels possess

unique biological traits, highlighting SEMAs as a potential

therapeutic target for CRC.

Our study conducted a comprehensive analysis of SEMAs gene

expressions in CRC using bulk RNA, scRNA-seq and ST, revealing

expression disparities among cellular subpopulations. The study

highlights SEMAs’ involvement in tumor immune evasion and drug

resistance. Nonetheless, we recognize various limitations within this

study. Initially, we assessed and confirmed the SRS signature in both

the training and external validation sets. These cohorts differed in

size and sequencing platforms, although we utilized Z-score

normalization to mitigate these differences. Validating our

findings requires a large-scale, multi-center prospective study.

Additionally, in vivo studies are required to elucidate the

biological functions of SRS-related genes in CRC. In conclusion,

although we have assessed the sensitivity of SRS-high subgroups to

various small molecule drugs, further validation through in vitro

drug assays and clinical trials is necessary.
Conclusion

We developed the SRS using a machine learning framework,

which improved performance in predicting patient prognosis across

different cohorts and showed significant correlations with

immunotherapy response. The SRS has the potential to be an

effective tool for predicting prognosis and tailoring personalized

treatment for CRC patients. Our study provides new insights into

the molecular mechanisms of CRC development and progression

through bulk RNA sequencing, scRNA-seq, and ST.
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ANT adjacent normal tissue
Frontiers in Immunol
AUC area under the dose-response curve
CCK8 cell counting kit-8
CCLE broad institute cancer cell line encyclopedia
CCLs cancer cell lines
cDCs conventional DCs
C-index concordance index
CNV copy number variation
COMMOT COMMunication analysis by Optimal Transport
CRC colorectal cancer
CTRP cancer therapeutics response portal
DCs dendritic cells
EMT epithelial-mesenchymal transition
EpiH malignant epithelial cells with SRS-high
EpiL malignant epithelial cells with SRS-low
GDC genomic data commons
GSEA gene set enrichment analysis
GTEx genotype-tissue expression
ICIs immune checkpoint inhibitors
IOBR Immuno-Oncology Biological Research
KEGG Kyoto Encyclopedia of Genes and Genomes
Macro_SLC40A1 SLC40A1-positive macrophages
ogy 19
Macro_SPP1 SPP1-positive macrophages
MAF mutation annotation format
OS overall survival
PCA principal component analysis
PCs principal components
PMSF phenylmethylsulfonyl fluoride
PRISM profiling relative inhibition simultaneously in mixtures
PVDF polyvinylidene fluoride
RCTD robust cell type decomposition
RIPA radio immunoprecipitation assay lysis
scRNA-seq single-cell RNA sequencing
SEMAs semaphorins
ST spatial transcriptomic
TCGA the cancer genome atlas
TIDE tumor immune dysfunction and exclusion
TIP tracking tumor immunophenotype
TMB tumor mutation burden
TME tumor microenvironment
TNB tumor neoantigen burden
Tregs regulatory T cells
UCEC uterine corpus endometrial carcinoma
UMAP uniform manifold approximation and projection
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1536545
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integrative analysis of semaphorins family genes in colorectal cancer: implications for prognosis and immunotherapy
	Introduction
	Materials and methods
	Overview design of the study
	Landscape of SEMA family expression and mutagenesis in pan-cancer
	Prognostic signature construction based on integrative machine learning in CRC
	Comprehensive analysis of immune-omics molecular characterization and immunotherapy response based on SRS
	scRNA-seq data collecting and pre-processing
	Celltypes annotation and copy number variation inferring
	scRNA-seq data scores calculating
	Cell communication analysis
	ST data processing
	Re&minus;localization for ST data
	ST heteromorphic cell spatial network analysis
	Spatial map of cell dependencies
	Spatial signaling analysis
	Potential therapy agents for patients with high SRS
	Cell culture and siRNA transfections
	Western blotting
	CCK-8 assay and colony formation assays
	Transwell assay
	Cell apoptosis assay
	Statistical analysis

	Results
	Landscape of SEMA family expression and SEMA mutagenesis in pan-cancer
	SRS signature predicts prognosis and immunotherapy response in CRC
	The validation of SRS predictive power for immunotherapy response
	Immune characteristics related to SRS
	Heterogeneity of malignant tumor epithelial cells in CRC
	Cell-to-cell communication between malignant epithelial cells and subtypes of myeloid or endothelial cells
	Cell spatial network analysis and spatial signaling analysis with ST
	Potential therapeutic drugs screening
	Cell function experiments

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References
	Glossary


