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postbiotics against inflammation
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Beijing, China, 3Faculty of Veterinary and Animal Science, Muhammad Nawaz Sharif University of
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Background: Natural food-derived bioactive compounds have garnered

increasing attention for their potential to modulate immune responses and

promote gut health. In particular, compounds like mulberry-derived postbiotics

(MDP) may offer novel therapeutic strategies to address inflammation, a key driver

of many metabolic disorders.

Methodology: This study examines the protective effects of MDP against

inflammation in LPS-induced mice, using transcriptomic and microbiome

analyses to explore underlying mechanisms.

Results: MDP pretreatment alleviates LPSinduced villous atrophy and intestinal

barrier damage, promoting recovery of intestinal morphology. Transcriptomic

profiling revealed significant changes in gene expression, with 983 upregulated

and 1220 downregulated genes in the NC vs LPS comparison, and 380 upregulated

and 204 downregulated genes in the LPS vs LPS+MDP comparison. Enrichment

analysis using GO and KEGG pathways revealed significant associations with

transcriptional regulatory activity, and the NOD-like receptor signaling pathway

among the differentially expressed genes. Protein-protein interaction analysis

identified key genes involved in inflammation and immune regulation, with hub

genes like IL6, CXCL10, and MYD88 in the LPS group and CD74, CIITA, and H2-AB1

in the MDP-treated group.

Conclusion: Microbiome analysis suggested MDP may also influence gut

microbiota composition, supporting systemic immune regulation. These findings

highlight MDP’s potential as a food additive for immune modulation and gut health.
KEYWORDS

mulberry-derived postbiotics, lipopolysaccharides, transcriptomics, gut microbiota,
immune response
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GRAPHICAL ABSTRACT
1 Introduction

In recent years, there has been a burgeoning interest in

exploring natural compounds and their derivatives for their

potential therapeutic benefits against oxidative stress and

inflammation, which are implicated in various chronic diseases

and aging processes (1, 2). Among these natural sources, mulberry

(Morus spp.) has gained attention not only for its nutritional value

but also for its bioactive components that possess antioxidant and

anti-inflammatory properties (3, 4). Mulberry-derived postbiotics,

including peptides and other metabolites produced during

fermentation, have emerged as promising candidates in this

regard (5–7). Studies have shown that these bioactive compounds

can mitigate oxidative damage and suppress inflammatory

responses through various mechanisms, including modulation of

cellular signaling pathways and regulation of gene expression (8, 9).

Inflammation is a fundamental immune response to harmful

stimuli, such as pathogens, injury, or toxins, and plays a key role in

tissue repair and host defense (10, 11). Acute inflammation is typically

a protective mechanism aimed at neutralizing the harmful agent and

initiating the healing process. This response is characterized by the

release of inflammatory mediators like cytokines, prostaglandins, and

reactive oxygen species (ROS), which help to contain the threat and

promote tissue repair (12, 13). However, when inflammation becomes

chronic, it can lead to sustained tissue damage and contribute to the

pathogenesis of various diseases, including autoimmune disorders,
Frontiers in Immunology 02
cardiovascular disease, and cancer (14, 15). Chronic inflammation is

often driven by the persistent activation of immune cells such as

macrophages, neutrophils, and T-cells, which release pro-inflammatory

cytokines that maintain the inflammatory cycle (16, 17). One critical

aspect of inflammation is oxidative stress, a condition where there is an

imbalance between ROS production and antioxidant defenses. ROS,

produced by activated immune cells during inflammation, can further

damage tissues and activate inflammatory pathways, leading to a

vicious cycle of inflammation and oxidative damage (18–20). The

relationship between inflammation and oxidative stress is pivotal in the

progression of many chronic inflammatory diseases (10, 18, 21),

highlighting the need for therapeutic strategies that target both

inflammatory mediators and oxidative damage.

Postbiotics refer to the bioactive compounds produced during the

fermentation of probiotic bacteria or by the enzymatic activity of these

bacteria on substrates such as mulberry (22, 23). These compounds

include metabolites such as short-chain fatty acids, peptides,

polysaccharides, and other biologically active molecules (24, 25).

Unlike probiotics, which are live microorganisms, postbiotics offer

the advantage of stability and safety, making them easier to incorporate

into various applications including functional foods, dietary

supplements, and pharmaceuticals (26, 27). Mulberry-derived

postbiotics have attracted attention due to their potential health

benefits beyond traditional probiotics. Studies have demonstrated

that these postbiotics possess antioxidant, anti-inflammatory,

antimicrobial, and immunomodulatory properties, suggesting a
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broad spectrum of therapeutic applications (5, 28). For instance,

peptides derived from mulberry fermentation have been shown to

exhibit antioxidant activity by scavenging free radicals and enhancing

the activity of antioxidant enzymes such as superoxide dismutase

(SOD) and catalase (29, 30). Recent studies have further highlighted

the therapeutic potential of postbiotics in models of gut inflammation,

particularly in mice with LPS-induced inflammation. Postbiotics such

as those derived from mulberry through fermentation have shown

promising effects inmitigating gut inflammation by regulating immune

responses and promoting gut microbiome balance (28). These studies

suggest that postbiotics could help restore gut homeostasis, reduce

inflammatory cytokines production, and enhance epithelial barrier

function, offering a novel therapeutic approach to inflammatory

bowel diseases and other chronic gut conditions.

Transcriptomic analysis, which allows for a comprehensive

assessment of gene expression patterns in response to treatment,

provides a powerful tool to elucidate the molecular mechanisms

underlying these protective effects (31, 32). In the context of

studying the protective mechanisms of mulberry-derived

postbiotics against oxidative stress and inflammation,

transcriptomic analysis offers several advantages. Transcriptomics

data encapsulates vital information regarding gene expression

activities within specific cells, tissues, or populations under

particular developmental stages, environmental conditions, or

experimental conditions (32, 33). Unlike other omics data,

transcriptomics data uniquely reflects the temporal and spatial

variations influenced by both diverse internal and external

environmental factors, making it inherently more complex than

genomic data. It allows researchers to identify differentially

expressed genes (DEGs) in response to treatment, uncover

potential biomarkers of oxidative stress and inflammation, and

elucidate the molecular pathways through which mulberry-derived

postbiotics exert their effects. Furthermore, transcriptomic data can

facilitate the discovery of novel therapeutic targets and guide the

development of targeted interventions for oxidative stress-related

diseases (34, 35). In parallel, recent studies have highlighted the

important role of the gut microbiome in modulating inflammatory

responses (36–38). In models of LPS-induced inflammation,

alterations in microbial diversity are often observed, with shifts

towards dysbiosis being linked to the exacerbation of inflammation

(39, 40). Specifically, the reduction in beneficial microbes such as

Firmicutes and an increase in pathogenic bacteria have been

reported in inflammatory conditions, further aggravating the

inflammatory process (41, 42). These findings underscore the

importance of understanding how microbial communities can

influence the inflammatory process, and how therapeutic

strategies, such as the use of postbiotics, may potentially restore

microbial balance and mitigate inflammatory responses. Moreover,

microbial diversity studies will provide crucial insights into how the

gut microbiome responds to mulberry-derived postbiotics (MDP),

revealing shifts in microbial populations that may enhance the anti-

inflammatory and antioxidative properties of these postbiotics. A

deeper understanding of the relationship between microbial
Frontiers in Immunology 03
diversity and host gene expression could further inform the

development of postbiotics-based therapies that synergistically

modulate both the immune system and the gut microbiota to

combat inflammation.

Therefore, by combining transcriptomics analysis with

microbiome profiling, this study aims to uncover the molecular

mechanisms by which MDP interact with the host immune system

and gut microbiota to provide a multifaceted protective effect

against LPS-induced inflammation thereby providing a deeper

understanding of their therapeutic potential. Furthermore, this

integrated approach will offer new insights into the therapeutic

potential of MDP in regulating the microbiome-immune axis and

mitigating chronic inflammatory diseases.
2 Materials and methods

2.1 Production of MDP

Mulberry-derived postbiotic (MDP) was prepared by

fermenting mulberry leaves powder medium composed of 1 g of

glucose, 0.1 gram of K2HPO4.3H2O, and 0.05% MgSO4.7H2O. The

mixture was sterilized at 121°C for 15 minutes, after which bacterial

cultures of Bacillus subtilis H4 and Bacillus amyloliquefaciens

LFB112 were added and incubated at 37°C for 24 h. The

optimized conditions for this process are detailed in our prior

publication (5). Following fermentation, the broth was centrifuged

at 5000×g for 10 min, and the supernatant was filtered using 0.22

µm filter paper. The filtrate was then freeze-dried, and the

composition of the postbiotics was analyzed using advanced

instrumental and analytical methods. The resulting MDP powder

had a dry matter content of 85.35%, with a moisture content of

14.65%, crude fiber (0.01%), total protein (151.32 mg/g), with

soluble protein (149.76 mg/g), and total carbohydrate content of

324.91 mg/g of (expressed in glucose).
2.2 Animals and MDP dosage

A total of 36 C57BL/6 mice (weighing 20-22 g and aged 6-8

weeks) were acquired from Jiangsu Jicui Yakong Biotechnology Co.,

Ltd. (Beijing, China). The mice were housed in a controlled

environment (temp: 21-23°C, relative humidity: 40-70%), with a

12h light-dark cycle). All procedures involving the animals adhered

to the experimental animal welfare standards approved by the

Animal Use and Care Committee of China Agricultural

University. After a week of acclimation, the mice were randomly

assigned to three groups each consisting of 12 mice: control group,

LPS group, and LPS+MDP group. The control group was free of

LPS and MDP, the LPS group was only administered LPS at a dose

of10 µL (2 µg/g body weight) via intraperitoneal injection. In the

LPS+MDP group, MDP was administered orally at a dose of 100

mg/kg body weight and LPS with the same dosage as the LPS group.
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2.3 Histology of the jejunum tissue

The jejunum tissue was fixed with 4% paraformaldehyde, and

dehydrated with ethanol. Subsequently, xylene was used for

equilibration and the tissue was embedded in paraffin. A tissue

slicer was employed to cut tissue sections to a thickness of around 5

µm. The sections were then stained with hematoxylin and eosin

(H&E) stains and were observed under a light microscope and

analyzed using ImageJ image analysis software.
2.4 Gut microbiota analysis

Fecal samples were processed to extract genomic DNA using the

QIAmpR Fast DNA Stool Mini Kit (Qiagen Ltd., Hilden, Germany),

following the manufacturer’s instructions. The V3 and V4 region of the

16S rRNA gene was then amplified using the primers 338F (5′∼3′:
ACTCCTACGGGAGGCAGCAG) and 806R (5 ′∼3 ′ :
GGACTACHVGGGTWTCTAAT). After amplification and

purification, the products were combined in equal molar

concentrations and sequenced on an Illumina HiSeq 2500 platform,

generating 300 bp paired-end reads. Sequence variants in the amplified

V3-V4 region were identified using the same primers. Data analysis was

conducted using the Majorbio Cloud Platform (www.majorbio.com).
2.5 RNA extraction

RNA was extracted from Jejunum samples utilizing the TRIzol

Reagent method, adhering to the manufacturer’s protocol. RNA

quality was assessed with a 5300 Bioanalyzer (Agilent, Invitrogen,

California, USA) and quantified using a Nanodrop-2000

spectrometer (Thermo, Massachusetts, USA). RNA samples

meeting the following criteria were used for library construction:

OD260/280 ratios of 1.8-2.2, OD260/230 ≥2, RQN ≥6.5, and a

minimum concentration of 1 µg. RNA-seq library was prepared
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following the Illumina® Standard mRNA prep, ligation protocol

using 1µg of total RNA. Subsequently, cDNA was synthesized using

a SuperScript cDNA synthesis kit (Invitrogen CA, USA). Size

selection for cDNA fragments targeted at 300 bp was performed

on a 2% Low Range Ultra Agarose gel, followed by PCR

amplification using Phusion DNA polymerase (NEB) for 15

cycles. After quantification with a Qubit 4.0, the sequencing

library was sequenced on the NovaSeq X Plus platform (PE150)

using a NovaSeq Reagent Kit.
2.6 Quality assessment and
read alignments

The quality of the sequencing read was assessed using FastQC

software (v0.12.0). Subsequently, all reads were filtered to remove

adapters, short sequences, low complexity reads, and low quality

data, along with trimming, using Fastp software (v0.20.0). Cleans

reads were then aligned to the reference genome of Mus_musculus

(http://asia.ensembl.org/Mus_musculus/Info/Index) and the genes

with matching rates ranging from 97.91 to 98.09% were

selected.Three cDNA libraries were generated from the mRNA

extracted from the jejunum tissue of C57LB/6 mice in the NC,

LPS, and LPS+MDP groups, and these libraries were sequenced

using the Illumina platform. After filtering out low-quality

sequences and contaminants, the total raw reads averaged

approximately 52001846.67 base pairs, as shown in Table 1. The

filtering process resulted in an average of 48486813.99 clean reads.

Specifically, the NC group produced an average of 54243632.67

high-quality reads from 54943621.33 raw reads, the LPS group

yielded 46603170.67 clean reads from 47307653.33 raw reads, and

the LPS+MDP group had an average of 53778972 reads from

54168265.33 raw reads. All the groups achieved Q20% above 98%

and Q30% exceeding 96%, indicating high quality in the sequencing

data. The assembly results confirm that the sequencing was of

sufficient quality for transcriptomics analysis.
TABLE 1 Transcriptome sequencing in C57LB/6 mice and the statistics of the transcriptome libraries.

Sample Raw reads Raw bases Clean reads Clean bases Error rate (%) Q20 (%) Q30 (%) GC content (%)

N1 55223504 8.34E+09 54672262 8.169E+09 0.012 98.74 96.07 48.05

N2 48137712 7.27E+09 47704424 7.131E+09 0.0119 98.77 96.15 47.77

N7 60769648 9.18E+09 60156212 8.987E+09 0.012 98.74 96.09 47.83

P3 50990090 7.7E+09 50521504 7.552E+09 0.0119 98.77 96.13 47.6

P4 47096430 7.11E+09 46634650 6.98E+09 0.0119 98.79 96.22 47.69

P11 43036440 6.5E+09 42653358 6.37E+09 0.012 98.72 96.03 47.27

H5 51746178 7.81E+09 51242066 7.66E+09 0.012 98.75 96.1 47.75

H9 50174862 7.58E+09 49699270 7.432E+09 0.0119 98.78 96.2 47.85

H11 60983756 9.21E+09 60395580 9.031E+09 0.0119 98.76 96.13 47.71
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2.7 Differentially expressed genes and its
functional analysis

DEGs (differential expression genes) were identified between

two samples by calculating transcript expression levels using the

transcripts per million reads (TPM) technique. RSEM was used to

measure gene abundance. Differential expression analysis was done

with DESeq2. DEGs with log2FC ≥1 and FDR < 0.05 (DESeq2) were

considered substantially expressed genes.
2.8 GO and KEGG analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed to

explore the possible functions of differentially expressed genes. In

this way, the function of DEGs was classified according to the GO

and KEGG. Furthermore, all the DEGs were associated with GO

and KEGG terms. After being compared with the genome

background via Fisher’s exact test, the significantly enriched GO

and KEGG terms were selected for further investigation. Go tools

and Python scipy software, were utilized to visually display the

significantly changed pathways and their enriched genes

through comparison.
2.9 Protein-protein interaction

The string online database offers reliable information regarding

protein-protein interactions (PPI). In our study, the minimum

interaction score for the PPI network set was 0.4. once the PPI

information was extracted, Cytoscape was employed for network

visualization. Cytoscape is an open-access software designed to

visualize complex networks and their interaction with various types

of variables.
2.10 Validation of genes by quantitative
real-time PCR

RNA was extracted from the jejunum tissue using the Triazole

reagent as per the manufacturer’s instructions. The integrity of the

RNA was evaluated using gel electrophoresis and nanodrop. RNA

was reverse transcribed into complementary DNA (cDNA)

following the instructions of the Master mix kit. PCR was

conducted using the M5-Hiper SYBER Premix EsTaq from

Bimake (USA) kit following the manufacturer’s instructions. The

amplification process was conducted by starting with an initial

preincubation for 30 s at 95°C, and denaturation afterward at 95°C

for 5 s, extension at 60°C for 30 s, and finally melting at 95°C for 1 s,

60°C for 1 s, and again 95°C for 1s. The data were analyzed using the

2- DDCt method, with normalization against b-actin. The primers

used are listed in Supplementary Table S1 and were provided by

Sangon Biotech Co., Ltd, Shanghai, China.
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2.11 Statistical interpretation

Transcriptomics and microbial data were analyzed using the

Majorbio website (https://cloud.majorbio.com/page/project/

overview.html accessed on 25.10.2024). The P-value was

determined using a one-way analysis of variance (ANOVA). Data

was represented as mean ± standard and visualized using GraphPad

pr i sm . A P -va lu e l e s s than 0 . 05 wa s r e ga rded a s

statistically significant.
3 Results

3.1 Intake of MDP promoted
intestinal repair

Histological examination of the jejunum revealedmarked intestinal

damage in the LPS-treated group, characterized by significant villous

atrophy and disruption of the intestinal barrier integrity. Specifically,

LPS treatment led to a reduction in villus height, crypt depth, and the

villus-to-crypt (V/C) ratio, all of which are key indicators of intestinal

health and barrier function (Figures 1A–D). These changes suggest that

LPS exposure induced a severe inflammatory response, impairing the

structural integrity and regenerative capacity of the intestinal

epithelium. To provide a comprehensive view of the tissue features,

low-magnification H&E-stained images have been included in the

Supplementary Material (Supplementary Figure S1).

In contrast, pretreatment with mulberry-derived postbiotics

(MDP) in the LPS+MDP group significantly ameliorated the LPS-

induced damage. MDP administration led to a restoration of

normal intestinal morphology, with pronounced improvements in

both villus height (Figure 1B) and crypt depth (Figure 1C). The

villus-to-crypt ratio (Figure 1D), a critical parameter for assessing

the balance between epithelial cell proliferation and differentiation,

was also significantly enhanced in the MDP-treated group

compared to the LPS-only group. These findings suggest that

MDP not only mitigates the detrimental effects of LPS but also

promotes the recovery of intestinal architecture, which is essential

for maintaining mucosal integrity and function.
3.2 Modulation of gene expression by LPS
and MDP treatment

The differential gene expression profiles across the experimental

groups were visualized through a volcano plot (Figure 2), which

highlights the significantly upregulated and downregulated genes in

each comparison. In the comparison between the negative control group

(NC) and the LPS-treated group (NC vs LPS), a total of 983 genes were

upregulated, while 1220 genes were downregulated (Figure 2A). This

suggests that LPS treatment induces a broad and significant alteration in

gene expression, consistent with its known inflammatory effects. In the

comparison between the LPS and the mulberry-derived postbiotic

treatment group (LPS vs LPS+MDP), the data revealed 380
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FIGURE 2

Insights into RNA sequence results. The volcano plot of RNA-seq results presented for the NC vs LPS group shows the upregulated and
downregulated genes (A), and LPS vs LPS+MDP (B). The blue dots represent the down-regulated genes while the red dots represent the up-
regulated genes. The horizontal line shows p < 0.05, and the vertical line represents absolute log2 fold-change (FC ≥ 2) The Venn plot shows the
number of overlapping and unique DEGs in each comparison (C) and the heat map shows the cluster of the DEGs (D).
FIGURE 1

(A) Representative H&E staining images of jejunum tissue from NC, LPS, and LPS+MDP groups. (B) Villi length measurements in the jejunum. (C) Crypt depth
analysis in the jejunum. (D) Villi to crypt ratio (V/C) in the jejunum. Data are expressed as means ± standard deviation (SD) from three independent
experiments (n=3). Statistical significance was determined using Student’s t-test for comparisons between the groups, with p-values indicated as follows: **P
< 0.01, *P < 0.05.
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upregulated genes and 204 downregulated genes (Figure 2B). These gene

expression changes provide valuable insights into the molecular

mechanisms underlying LPS-induced inflammation, which serves as a

model for understanding the severity of intestinal damage.

A Venn diagram (Figure 2C) further elucidates the overlap and

distinct sets of differentially expressed genes (DEGs) between the three

groups. Specifically, 2120 DEGs were identified in the NC vs LPS

comparison, while 19 DEGs were observed in the LPS vs LPS+MDP

comparison. Importantly, 83 DEGs were common in both comparisons,

suggesting that these genes are potentially critical in the response to LPS

and the modulation by MDP treatment. These shared genes may

represent key regulatory pathways involved in the inflammatory

process and the recovery of intestinal function. These pathways could

be the focus of further investigation to determine the specific molecular

mechanisms by which MDP mitigates LPS-induced intestinal

inflammation. Furthermore, cluster analysis represented by a heatmap

was performed on the DEGs from each comparison (Figure 2D). The

clustering results demonstrated that genes with similar expression

patterns within each group tended to cluster together, confirming the

consistency of the data across biological replicates. The cluster analysis

strengthens our understanding of howMDP influences gene expression,

providing a clearer picture of its potential to restore intestinal

homeostasis in the context of LPS-induced inflammation.
3.3 Identification of key biological
pathways through GO Enrichment analysis

A Gene Ontology (GO) functional enrichment analysis was

conducted on the differentially expressed genes (DEGs) within NC
Frontiers in Immunology 07
vs LPS and LPS vs LPS+MDP groups. The differentially expressed

genes (DEGs) were categorized into three main Gene Ontology

(GO) functional groups: biological process (BP), cellular

component (CC), and molecular function (MF), based on their

annotations. As shown in Figure 3A, when comparing the NC

group to the LPS-treated group, enrichment was observed in several

key biological processes within the BP category. These included

processes such as cellular signaling, biological regulation, immune

system response, and responses to stimuli. In the MF category, the

DEGs predominantly represented activities related to binding,

catalytic activity, and molecular function regulation. In Figure 3B,

we present the comparison between the LPS and LPS+MDP groups.

In the Biological Process (BP) category, the top three enriched

pathways were common for both the NC vs. LPS and LPS vs. MDP

comparisons. This suggests that both treatments induce similar core

immune processes. The consistency in enriched pathways indicates

that the addition of MDP to LPS does not alter the key biological

processes activated by LPS alone, such as immune system processes,

cellular responses to stimuli, and biological regulation. This result

implies that MDP likely modulates or fine-tuned the immune

response rather than introducing entirely new biological

processes. This suggests that MDP may primarily act as a

modulator of the immune system rather than as a direct inducer

of new inflammatory processes. Such analysis could reveal specific

molecular targets or signaling pathways that MDP acts upon to

attenuate the severity of LPS-induced intestinal inflammation.

However, a deeper analysis of additional DEGs and downstream

pathways may uncover more subtle effects of the combined

treatment, providing further insights into how MDP influences

the immune response alongside LPS.
FIGURE 3

GO terms annotations of the DEGs in the NC vs LPS (A) and LPS vs LPS+MDP group (B). The figure displays the GO terms that are significantly
enriched (p<0.05). The abscissa corresponds to the terms in GO categories, including biological processes (BP), cellular components (CC), and
Molecular Functions (MF). Each rectangular shape represents the most significant GO terms, and the numbers indicate the genes in each GO term.
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3.4 KEGG pathway modulation by LPS and
MDP treatment

AKyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis was carried out on the DEGs in the related groups. The top

20 KEGG pathways for NC vs LPS and LPS vs LPS+MDP groups are

presented in Figure 4. The top 20 enriched pathways were

determined by performing KEGG functional enrichment analysis

on the differentially expressed genes (DEGs) in the NC vs LPS and

LPS vs LPS+MDP comparisons. In the NC vs LPS group, pathways

such as the cytokine-cytokine receptor interaction, NOD-like

receptor signaling, transcriptional misregulation, and the PI3K-

Akt signaling pathway were significantly enriched (Figure 4A).

These pathways underscore the critical involvement of immune

signaling, cellular stress responses, and altered transcriptional

regulation, which collectively drive the inflammation and tissue

damage associated with LPS-induced intestinal injury. In contrast,

the LPS vs LPS+MDP group showed significant enrichment in

pathways related to Staphylococcus aureus infection, transcriptional

misregulation, NOD-like receptor signaling, and antigen processing

and presentation (Figure 4B). While many of the pathways activated

by LPS remained prominent, the addition of MDP influenced the

dynamics of immune modulation. Notably, the enrichment in

antigen processing and presentation pathways suggests that MDP

may enhance the adaptive immune response, potentially facilitating

a more targeted resolution of inflammation.
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3.5 Mapping protein-protein interaction of
the LPS and MDP-influenced DEGs

The protein-protein interaction (PPI) network analysis was

performed on the differentially expressed genes (DEGs) from

enriched pathways between the NC vs LPS and LPS vs LPS+MDP

groups using the STRING database, with a medium confidence score

(0.4), as shown in the Figure 5. The cytoHubba plugin in Cytoscape

3.9.1 was used to determine the hub genes within the regulatory

network. PPI networks were constructed based on data from the

STRING database. In the NC vs LPS group, a total of 169 genes

from three KEGG-enriched pathways were selected, while in the LPS vs

LPS+MDP group, 31 KEGG-enriched genes in the pathways related to

inflammation and immune response were chosen to map the PPI

network using the STRING database (http://string-db.org, accessed on

5 November 2024) (Figures 5A, B). The PPI network for the NC vs

LPS group consisted of 143 nodes and 1,442 edges, while the LPS vs

LPS+MDP group had 35 nodes and 301 edges. Using cytoHubba,

the top 10 hub genes were identified in each group. For the NC vs

LPS group, the hub genes included IL6, CD4, CXCL10, CCL2, CSF2,

CXCL1, IL18, CXCL9, MYD88, and ITGAM (Figure 5C), while the

hub genes in the LPS vs LPS+MDP group included CD74, CIITA,

H2-AB1, H2-DMA, H2-AA, H2-DMB1, H2-EB1, DEFA21, ITGAM,

and DEFA5 genes (Figure 5D). The prominence of genes involved

in antigen processing and presentation (H2-AB1, CIITA, and

others) reflects the potential role of MDP in enhancing adaptive
FIGURE 4

KEGG enrichment pathways of the DEGs in the NC vs LPS group (A) and LPS vs LPS+MDP group (B). The X-axis represents the enrichment factor,
while the Y-axis lists the name of the enriched pathways. The size of each dot reflects the number of genes associated with each pathway, and the
color of the dots indicates the significance level, with the corresponding p-value as shown in the figure legend.
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immunity, suggesting that MDP may fine-tune the immune

response by promoting antigen recognition and presentation. The

presence of ITGAM in both groups points to its role in modulating

immune cell adhesion and migration, a key factor in controlling

inflammation. These findings suggest that MDP influences the

immune network by enriching pathways related to antigen

presentation, highlighting its potential to refine adaptive immune

responses. Furthermore, the important information related to these

genes is summarized in Table 2.
3.6 qRT-PCR confirmation of the DEGs

To validate the accuracy of our RNA-sequencing results, qRT-

PCR was employed to validate the expression of 10 differentially

expressed genes (DEGs) selected randomly, thereby confirming the

accuracy of the RNA-seq results in this study. The expression

patterns of all validated genes were consistent with those

observed in the sequencing data (Figure 6A). Notably, 6 genes

were significantly upregulated (Figure 6B), and 4 genes were

significantly downregulated in the treatment group relative to the

control (Figure 6C), further underscoring the robustness and

reliability of the transcriptome data. These findings demonstrate

that the RNA-seq analysis accurately reflected the transcriptomic

changes occurring in the system (Figure 6).
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3.7 Impact of MDP on microbial diversity
and community structure

To further assess the impact of MDP treatment on microbial

diversity, we calculated rarefaction, and rank abundance curves, alpha

and beta diversity indices, including Observed, Shannon, ACE

(Abundance-based Coverage Estimator), and Chao, PoCA, and

NMSD diversity indices respectively (Figure 7). Figures 7A, B present

the rarefaction and rank abundance curves for the three experimental

groups, providing insights into the sequencing depth and richness of

microbial communities under different treatments. Based on the

rarefaction optimum species saturation was achieved, indicating that

the sample size was adequate for accurately assessing bacterial diversity.

The rank abundance curves showed that the OTUs differed greatly in

abundance, and had low uniformity in their distribution within each

sample. Figure 7C illustrates how the alpha diversity metrics differ

across the three experimental groups. The LPS+MDP group exhibited

notable shifts in these indices compared to the NC and LPS groups,

suggesting that MDP treatment influences not only the overall diversity

but also the structure of the microbial communities. This indicates that

MDP may have a significant effect on the microbial population’s

resilience and composition following LPS-induced inflammation.

Furthermore, the results of the PERMANOVA analysis using the

unweighted Unifarc distance (R2 = 0.3428, P=0.077) revealed the

differences between the microbial communities of the NC, LPS, and
FIGURE 5

The protein-protein interaction (PPI) network analysis was performed on the most enriched pathways in the NC vs LPS and LPS vs LPS+MDP groups (A, B).
The interaction was performed with a confidence score of 0.9. Top 10 hub genes in the NC vs LPS group (C), and in the LPS vs LPS+MDP groups extracted
from the PPI network (D).
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LPS+MDP groups (Figure 7D). These findings underscore the impact

of MDP treatment on the microbial community composition, with

MDP-induced shifts in community structure compared to the LPS and

control groups. The Unweighted Unifrac distances provided strong

evidence that MDP treatment can lead to substantial changes in the

microbial community, which may be linked to its anti-inflammatory

effects or its ability tomodulate the gut microbiome in response to LPS-

induced inflammation. Furthermore, the NMDS plot based on the

Bray-Curtis distance (R2 = 0.3663, P=0.042) revealed clear differences

among the NC, LPS, and LPS+MDP groups (Figure 7E) These results

indicated that MDP treatment is linked to a significant alteration in

microbial community composition.
3.8 MDP supplementation ameliorates LPS-
induced changes in gut microbial
abundance and taxonomic profiling

We examined 16S RNA gene sequences from 9 fecal samples

across 3 groups (NC, LPS, and LPS+MDP) to assess changes in

microbial communities following MDP treatment (Figure 8). The
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changes in the gut microbiota across different taxonomic levels

(phylum, family, and genus) for all groups are shown in Figures 8A-

D. The taxonomic analysis revealed that the microbial communities in

all three groups were primarily dominated by three major phyla:

Firmicutes, Bacteroidetes, and Verrucomicrobiota. These phyla

accounted for the largest proportion of the microbiome across the

samples, with relative abundances varying. Furthermore, we observed

that three predominant phyla including Firmicutes showed an

abundance of (40.36-72.93%), Bacteroidetes (20.32-46.16%), and

Verrucomicrobiota (1.3-21.27%) (Figure 8A). Among these,

Firmicutes emerged as the predominant phylum, especially in the

LPS+MDP group, where its abundance was significantly higher

compared to the other groups. In contrast, the Bacteroidetes phylum

was more prevalent in the NC group, suggesting that the LPS-induced

inflammation and subsequent MDP treatment could alter the relative

abundance of these key microbial groups. The heat map visually

displayed the distribution of the top dominant species in different

groups in all samples and explored the species change trend between

the control group and the treatment group (Figure 8B). These

microbiota alterations were also confirmed by Circo’s analysis at the

OTU level, where distinct bacterial populations were observed among
TABLE 2 The top 10 important hub genes with the relative information from the datasets.

Top 10 hub genes of DEGs in NC vs LPS comparison

Source
genes

Gene description Regulation Log2FC p-value

IL6 Interleukin 6 Up 8.37 1.56E-11

CD4 CD4 antigen Down -1.61 0.0002

CXCL10 Chemokine (C-X-C motif) ligand 10 Up 4.91 2.67E-14

CCL2 Chemokine (C-C motif) ligand 2 Up 5.45 8.95E-23

CSF2 colony-stimulating factor 2 Up 2.88 0.006

CXCL1 Chemokine (C-X-C motif) ligand 1 Up 6.82 4.20E-20

IL18 Interleukin 18 receptor 1 Down -1.16 2.01E-05

CXCL9 Chemokine (C-X-C motif) ligand 9 Up 3.37 8.87E-09

MYD88 Myeloid differentiation primary response gene 88 Up 2.3 2.72E-09

ITGAM Integrin alpha M Down -1.05 0.0001

Top 10 hub genes of DEGs in LPS vs LPS+MDP comparison

CD74
CD74 antigen (invariant polypeptide of major histocompatibility complex, class II
antigen-associated)

Up 1.86 2.20E-07

CIITA Class II trans-activator Up 2.15 8.89E-24

H2-AB1 Histocompatibility 2, class II antigen A, beta 1 Up 1.63 1.30E-07

H2-DMA Histocompatibility 2, class II, locus DMa Up 2.22 6.67E-14

H2-AA Histocompatibility 2, class II antigen A, alpha Up 1.76 3.65E-07

H2-DMB1 Histocompatibility 2, class II, locus Mb1 Up 2.85 6.57E-21

H2-EB1 Histocompatibility 2, class II antigen E beta Up 1.66 1.67E-07

DEFA21 Defensin, alpha, 21 Up 7.69 7.19E-17

ITGAM Integrin alpha M Up 1.95 5.02E-13

DEFA5 Defensin, alpha, 5 Up 4.97 1.77E-07
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the different groups (Figure 8C). Moreover, the sample hierarchical

cluster tree was used to show the similarities and differences in species

composition among samples, and combined with the stacked column

chart, the overall composition differences of samples and the

distribution of species composition among different samples were

more intuitively displayed. Specifically, in the LPS group, there was a

decrease in the proportion of Firmicutes and an increase in the

proportion of Bacteroidetes compared to the NC mice

(Supplementary Table S2). However, MDP supplementation

significantly reversed these shifts in bacterial proportions in the LPS-

induced inflammatory mice.
4 Discussion

In this study, we investigated the protective effects of mulberry-

derived postbiotics on inflammation in LPS-induced mice, with a

particular focus on their impact on the transcriptomic landscape

and gut microbiome. Our results provide compelling evidence that

these postbiotics modulate key molecular pathways associated with

immune response and inflammatory regulation. Specifically, we
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observed significant alterations in gene expression and microbiome

composition that correlate with reduced inflammatory markers and

improved immune function. The intestinal mucosa is essential for

defending against harmful substances and regulating immune

responses (43, 44). This barrier, maintained by tight junctions

and supported by immune cells in the lamina propria, is

disrupted in conditions like LPS-induced endotoxemia, leading to

impaired intestinal integrity (45). In our study, LPS treatment

caused significant damage to the intestinal architecture, including

villous atrophy and reduced villus height and crypt depth, which are

indicators of compromised barrier function (46). The disruption of

the villus-crypt ratio (V/C) further confirmed epithelial stress and a

failure to maintain homeostasis (47). Interestingly, pretreatment

with mulberry-derived postbiotics (MDP) mitigated these

histological changes, restoring villus length, and crypt depth, and

normalizing the V/C ratio in the LPS+MDP group. These results

suggest that MDP offers protective effects on the intestinal mucosa,

aiding recovery from LPS-induced damage. Previous studies have

shown that postbiotics promote mucosal healing by enhancing

epithelial cell turnover, reducing inflammation, and restoring

tight junctions (23, 48). The present findings are consistent with
FIGURE 6

The qRT-PCR validation of RNA-seq results and differential expression analysis of selected genes. The relative log2 fold change (log2FC) of gene expression is
plotted on the y-axis, with individual genes represented on the x-axis. Genes that are upregulated are positioned above the horizontal reference line, while
downregulated genes appear below it (A). The qRT-PCR analysis of selected differentially expressed genes (DEGs) across three groups: NC, LPS, and LPS
+MDP. Data are expressed as means ± standard deviation (SD) from three independent experiments. Statistical significance was determined using Student’s
t-test for comparisons between the groups, with p-values indicated as follows: ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. The x-axis represents the
relative gene expression levels, and the y-axis shows individual genes. (B) displays genes that are upregulated, while (C) shows genes that are downregulated.
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these studies, indicating that MDP may play a key role in

maintaining or restoring the function of the intestinal barrier in

the context of inflammatory insults. Recent studies further

demonstrate that postbiotics can enhance mucosal barrier

integrity by promoting the proliferation of epithelial cells and

increasing the expression of tight junction proteins, which helps

restore intestinal permeability compromised during inflammation

(49, 50). The Jejunum was specifically chosen for this analysis due to

its crucial role in nutrient absorption and its accessibility for

studying early microbial and immune interactions, despite the

fact that microbial activity predominantly occurs in the colon and

ileum (51). This choice is supported by the previous work that

highlights the jejunum’s involvement in immune responses and the

modulation of gut microbiota even in the presence of significant

microbial activity further downstream in the digestive tract (52).
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Furthermore, the jejunum is an important site for the initial

immune responses to microbial disturbances and has been shown

to exhibit a high density of immune cells that can influence systemic

inflammation (53). While the colon and ileum are indeed more

heavily populated by microbiota, the jejunum provides valuable

insights into the early events of immune modulation and microbial

interactions (52), which are key in understanding the overall

therapeutic impact of MDP.

The results from the differential expression analysis and

functional enrichment suggest that LPS treatment induces a

robust immune response, activating key biological processes such

as immune system regulation, cellular signaling, and responses to

stimuli. These findings are consistent with previous studies showing

that LPS, a potent bacterial endotoxin, triggers immune activation

through the Toll-like receptor 4 (TLR4) pathway, which plays a
FIGURE 7

Rarefaction and the rank abundance curves of OTUs (A, B). The Alpha Diversity: Box plots illustrate the alpha diversity of the microbial communities,
including four different metrics: Observed OTUs, Shannon Index, Chao, and ACE (C). PCoA plot (D), and Non-metric Multidimensional Scaling
(NMDS) plots showing the beta diversity of the microbial communities across samples (E).
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critical role in inflammation and host defense mechanisms (54, 55).

The observed enrichment of genes involved in immune processes,

such as IL6, CXCL10, and CCL2, further supports the notion that

LPS predominantly activates inflammatory responses. Interestingly,

when comparing the LPS and LPS+MDP treatments, the overlap in

enriched biological processes suggests that MDP does not introduce

fundamentally new immune pathways but rather modulates the

existing LPS-induced immune response. KEGG pathway analysis

further supports these observations, identifying several key

pathways associated with immune regulation, stress responses,

and antimicrobial activity. Both the NC vs LPS and LPS vs LPS

+MDP comparisons revealed significant enrichment in pathways

related to immune responses, cellular defense, and responses to

external stimuli. These pathways are essential for the host’s defense

against infections and in managing systemic stress (56). While

many of the pathways activated by LPS remained prominent, the

addition of MDP influenced the dynamics of immune modulation.

Notably, the enrichment in antigen processing and presentation

pathways suggests that MDP may enhance the adaptive immune

response, potentially facilitating a more targeted resolution of

inflammation. This contrasts with the broader, nonspecific

inflammatory activation observed in LPS treatment alone.

Furthermore, the persistent enrichment in NOD-like receptor

signaling indicates that MDP may refine the innate immune

response, ensuring a more controlled activation of inflammatory

pathways without overwhelming the system, as seen in the

LPS group.

The pathways related to transcriptional misregulation observed

in both LPS and LPS+MDP groups suggest that MDP may play a

role in stabilizing gene expression patterns disrupted by LPS,
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potentially reducing the overexpression of pro-inflammatory

cytokines and other mediators that contribute to chronic

inflammation. By modulating transcriptional networks, MDP

could restore cellular homeostasis and reduce the prolonged

inflammatory response triggered by LPS. This suggests that MDP

could be a potential modulator of immune responses, particularly in

conditions where fine-tuning the immune system is crucial for

optimal function.

Hub genes identified through protein-protein interaction (PPI)

network analysis, such as IL6, CXCL10,MYD88, and ITGAM in the

NC vs LPS group, represent central regulatory nodes in immune

signaling and inflammation. IL6 and CXCL10, for instance, are

well-known mediators of immune cell recruitment and

inflammatory cascades (57). In the comparison between LPS and

LPS+MDP, genes like CD74, CIITA, and HLA-related genes (H2-

AB1, H2-DMA) emerged as central players, emphasizing the role of

antigen presentation in the adaptive immune response. CD74 and

CIITA are involved in the major histocompatibility complex

(MHC) class II pathway, suggesting that MDP enhances antigen

presentation and thus bolsters adaptive immunity (58, 59). Recent

studies have also shown that postbiotics, particularly those from the

Lactobacillus genus, can enhance antigen presentation by increasing

MHC class II expression on antigen-presenting cells, thereby

improving adaptive immunity in inflammatory settings (25). The

identification of these hub genes provides a valuable target list for

further research into the mechanisms through which MDP

modulates both innate and adaptive immune responses.

Collectively, these findings highlight that MDP’s primary role is

likely to optimize immune responses initiated by LPS, rather than

altering the fundamental immune pathways involved.
FIGURE 8

The microbial distribution in the control, LPS, and LPS+MDP groups. Bar plots showing the relative abundance of microbial taxa at the phylum,
family, and genus levels (A). The heatmap shows the distribution of the top dominant species (B), Circo’s analysis at the OTU level (C), and sample
hierarchical cluster tree (D).
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Our results revealed significant shifts in microbial diversity

following MDP treatment. We observed that Firmicutes and

Bacteroidetes dominated the microbial communities, with

Firmicutes being more abundant in the LPS+MDP group and

Bacteroidetes prevalent in the NC group. These results are

consistent with previous studies linking Firmicutes to conditions

of dysbiosis and Bacteroidetes to a balanced gut microbiota (60, 61).

Additionally, Verrucomicrobiota was more abundant in the LPS and

LPS+MDP groups, suggesting that MDP may promote the growth

of beneficial microbes, such as Akkermansia muciniphila, known for

its role in gut health and immune modulation (62, 63). Recent

literature supports this finding, with studies indicating that

postbiotics derived from various probiotic strains can selectively

promote beneficial microbes, such as Akkermansia muciniphila,

which has been associated with improvements in gut barrier

function and reduction of inflammatory markers in the gut (64).

The diversity indices (Shannon, ACE, Chao) illustrated significant

recovery of microbial diversity in the LPS+MDP group, aligning

with findings that microbial diversity is often reduced under

inflammatory conditions and that interventions like MDP can

restore this balance (65). PERMANOVA analysis further

confirmed that MDP treatment significantly altered microbial

composition, underscoring its potential therapeutic role in

modulating gut microbiota in inflammatory contexts. This

restoration of microbial diversity is in line with emerging

evidence that postbiotics can help re-establish microbial balance

in the gut, leading to improvements in intestinal health and

immune function (66).

In this study, we observed that mulberry-derived postbiotics

(MDP) modulated both immune pathways and the gut microbiome

in LPS-induced inflammation, suggesting a synergistic interaction

between host gene expression and microbial composition. Key hub

genes such as IL6, CXCL10, andMYD88were significantly altered in

the LPS-treated mice, indicating a robust immune response.

Specifically, IL6 and CXCL10 are inflammatory cytokines that

recruit immune cells and trigger inflammatory cascades (67, 68).

In the LPS+MDP group, these pro-inflammatory markers were

downregulated, correlating with the restoration of intestinal barrier

integrity and reduced inflammation. This modulation of immune

signaling byMDP could be linked to shifts in microbial populations,

particularly the increase in Firmicutes and Verrucomicrobiota,

which are associated with anti-inflammatory effects and immune

regulation (69, 70). For instance, Akkermansia muciniphila, a key

member of Verrucomicrobiota, has been shown to enhance

mucosal barrier function and modulate immune responses via

Toll-like receptor (TLR) signaling (71). This aligns with the

reduction in CXCL10, as Akkermansia promotes tolerance and

reduces systemic inflammation.

Additionally, genes involved in antigen presentation, such as

CD74 and CIITA (72), were upregulated in the LPS+MDP group,

suggesting that MDP enhances adaptive immunity. Bacteroidetes,

particularly Bacteroides fragilis, which increased in the LPS+MDP

group, are known to promote immune tolerance and regulate T

regulatory cells (Tregs) (73, 74), further supporting the immune-

modulatory effects of MDP. These microbial shifts likely contribute
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to the observed improvements in immune homeostasis, as

Bacteroidetes species help resolve inflammation and maintain

balance in immune responses (75, 76). Firmicutes, which became

more abundant in the LPS+MDP group, are known to regulate

immune responses, likely through their role in maintaining

intestinal health and modulating systemic inflammation (38).

Taken together, the transcriptomic and microbial data indicate

that MDP’s therapeutic effects are mediated by both direct

immune modulation and the restoration of a balanced gut

microbiome, which works synergistically to reduce inflammation

and improve gut health. Taken together, the transcriptomic and

microbial data indicate that MDP’s therapeutic effects are mediated

by both direct immune modulation and the restoration of a

balanced gut microbiome, which works synergistically to reduce

inflammation and improve gut health. These findings underscore

the importance of the microbiome-immune axis in regulating

inflammatory responses and highlight MDP as a potential

therapeutic strategy for managing inflammatory diseases. The

integration of transcriptomics analysis provides vital insights into

specific pathways modulated by MDP, enabling the identification of

key molecular targets for further therapeutic interventions.

Moreover, the broad implications of these finding suggests that

the implementation of MDP could extend beyond gastrointestinal

health, potentially benefiting individuals with systemic

inflammatory conditions. The ability of these postbiotics to

enhance beneficial microbial populations while suppressing

pathogenic ones may also pave the way for personalized

microbiome targeted therapies, aligning with contemporary

approaches to precision medicine. Future studies should focus on

validating these findings in clinical settings and exploring the long-

term effect and safety profiles of MDP. Furthermore, examining the

synergistic effects of these MDP with traditional treatments may

yield enhanced therapeutic outcomes for patients suffering with

chronic inflammatory diseases.
5 Conclusion

In conclusion, this study provides evidence that mulberry-

derived postbiotics (MDP) exert protective effects in LPS-induced

inflammation by ameliorating histological damage to the intestinal

mucosa, restoring key architectural features such as villus length,

crypt depth, and the villus-crypt ratio. Transcriptomic analysis

revealed that MDP modulated the LPS-induced immune response

by influencing pre-existing immune pathways, rather than

introducing novel pathways. Notably, MDP enhanced antigen

presentation and adaptive immunity through the regulation of

hub genes involved in immune signaling. Additionally, MDP

treatment resulted in a shift in microbial diversity, promoting the

expansion of beneficial bacteria, including Akkermansia

muciniphila, known for its roles in gut health and immune

modulation. These findings suggest that MDP holds therapeutic

potential for restoring immune homeostasis and gut microbiota

balance in inflammatory conditions, making it a promising strategy

for managing dysbiosis and enhancing gut health.
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