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Background: Immune checkpoint inhibitors (ICIs) have improved the metastatic

melanoma (MM) treatment. However, a significant proportion of patients show

resistance to immunotherapy, and predictive biomarkers for non-responders or

high-risk recurring patients are currently lacking. Recent studies have shown that

tumor-related metabolic fingerprints can be useful in predicting prognosis and

response to therapy in various cancer types. Our study aimed to identify serum-

derived metabolomic signatures that could predict clinical responses in MM

patients treated with ICIs.

Patients and methods: 1H-NMR (proton nuclear magnetic resonance) was used

to analyze the serummetabolomic profiles from 71MM patients undergoing anti-

PD-1 therapy (43 patients as first-line, 27 as second-line, 1 as third-line). Feature

selection was applied to identify key metabolites within these profiles, to develop

risk score models predicting overall survival (OS) and progression-free

survival (PFS).

Results: Amultivariable model was used to identify distinct prognostic factors for

OS. Negative factors included glucose, high-density lipoprotein (HDL)

cholesterol, and apolipoprotein B-very low-density lipoprotein (ApoB-VLDL),

whereas glutamine and free HDL cholesterol emerged as positive factors. They

were then used to construct a risk score model able to stratify patients in

prognostic groups. Similarly, a separate predictive risk score model for PFS was

developed, focusing solely on glucose and apolipoprotein A1 (ApoA1) HDL.

Threefold cross validation resulted in mean concordance indices of 0.72 and

0.74 for PFS and OS, respectively. Importantly, this analysis was replicated in

patients who received first-line ICIs. Interestingly, the prognostic score for OS

included glutamine, glucose, and LDL (low-density lipoprotein) triglycerides,
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whereas only glucose negatively influenced PFS. In this subset, the concordance

indices increased to 0.81 and 0.9 for PFS and OS, respectively.

Conclusions: Our data identified glycolipid signatures as robust predictors of

distinct therapeutic outcomes in MM patients treated with ICIs. These results

could pave the way for novel therapeutic approaches.
KEYWORDS

immune checkpoint inhibitors, NMR, immunotherapy-treated melanoma patients,
tumor-related metabolic fingerprints, serum metabolomic profiles, separate

predictive risk score model
1 Introduction

Targeted therapies and immune checkpoint inhibitors (ICIs)

have dramatically improved the treatment of metastatic melanoma

(MM) in the past decade. Both approaches significantly prolong

patients’ survival; however, targeted therapy can only be used in

BRAF-mutated patients, which represent approximately 50% of the

MM population. Moreover, most patients treated with BRAF/MEK

inhibitors develop resistance to treatment due to the occurrence of

MAPK pathway-activating mutations (1).

ICIs instead can be considered for all patients regardless of

BRAF mutational status and have exhibited improved survival

outcomes. Antibody-based inhibitors of programmed death

protein 1 (PD-1) induce objective responses of approximately

40% in controlled clinical trials when used as a single agent, with

only 10%–30% of the patients achieving long-term and sustained

efficacy. As a result, approximately two-thirds of patients do not

experience long-lasting clinical benefits due to developing primary

or secondary resistance (2, 3).

Numerous ICI resistance mechanisms have been reported. Most

of them involve the recruitment and activation of immunosuppressive

cell populations in the tumor microenvironment (TME),

and their interactions with stroma and extracellular matrix

components (4).
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In addition, accumulating evidence has highlighted the

importance of cancer cell metabolic reprogramming and its

capability to drive tumor growth and immunosuppression (5–7).

Interestingly, tumor-induced metabolic rewiring alters the

metabolome (metabolites profile) of tissues and biological fluids,

and several studies have shown that specific diseases are associated

with different metabolomic fingerprints, suggesting their diagnostic

and prognostic roles (8).

Metabolome is a dynamic entity that changes during tumor

growth and progression (9, 10). Its analysis provides a snapshot of

tumor-induced alterations, including the biomolecular mechanisms

underlying response or resistance to specific treatments, and those

related to the development of specific therapy-induced adverse

effects (11, 12). Therefore, identifying specific metabolomic

profiles holds promise for stratifying patients into distinct groups.

This stratification could guide treatment decisions by predicting

which patients are more likely to benefit from specific therapies,

experience certain adverse events, or respond favorably to dietary

interventions and/or combination therapies.

Nuclear magnetic resonance (NMR) spectroscopy represents a

rapid (no sample preprocessing) and untargeted analytical

approach to dissect metabolomic profiles (13). In this study, we

used NMR to evaluate the metabolome from the serum of MM

patients before anti-PD-1 treatment. We aimed to identify

metabolic signatures predicting both disease-specific features and

clinical outcomes of ICIs therapy.
2 Patients and methods

2.1 Patient population

We built an observational study cohort, by prospectively

recruiting from January 2018 to September 2021, 71 MM patients

treated with anti-PD-1 antibodies (nivolumab or pembrolizumab)

according to the standard dose and schedule (14). In detail,

pembrolizumab was used at 2 mg/kg or at a flat dose (200 mg

every 3 weeks or 400 mg every 6 weeks, respectively), and

nivolumab at 3 mg/kg every 2 weeks or at a flat dose (240 mg
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every 2 weeks or 400 mg every 4 weeks, respectively) until disease

progression, unacceptable toxicity, or patient request.

The following data were collected for each patient: general

features (age, sex, ECOG, body mass index (BMI), concomitant

medications), disease characteristics (site of primary melanoma and

metastases, basal LDH level, BRAF mutational state), treatment

(any previous therapies), and clinical outcomes, including response

to therapy, progression-free survival (PFS), and overall survival

(OS) (Table 1). The study was approved by the local Ethics

Committee of Istituto Tumori “Giovanni Paolo II” of Bari (prot.

no 515/2015 CE) and conducted in accordance with the

international standards of good clinical practice.
Frontiers in Immunology 03
2.2 Clinical assessment

The best objective response rate (BORR) was determined as the

percentage of patients with an objective response (complete response

[CR] or partial response [PR]) per RECIST guideline, version 1.1 (15).

Stable diseases (SD) more than 6 months were evaluated together with

CR and PR due to their similar survival rates. SD of less than 6 months

was considered with progressive disease (PD). PFS was calculated as

the time between the beginning of immunotherapy and tumor

progression or last follow-up. OS was calculated as the length of

time from the start of therapy and patient death or last follow-up.
2.3 Sample preparation

Serum was collected before ICI therapy by centrifugation of

venous blood at 1,900g × 10 min within 30 min of collection. Blood

withdrawal was conducted under fasting conditions exclusively in

the morning between 8:00 and 9:00 am to avoid circadian

variations. Before blood withdrawal, patients were not given

drugs. No dietary indications had previously been given. Samples

were immediately cryopreserved at −80°C at the Institutional

Biobank of Istituto Tumori “Giovanni Paolo II”, Bari.
2.4 Metabolomic profiling using NMR
analysis

Samples containing 1 ml of serum were sent at CERM-University

in Florence and analyzed by 1H NMR-based metabolomics.

NMR samples were prepared and recorded according to

standard procedures for serum/plasma samples for metabolomics

analysis (16). NMR spectra were acquired using a Bruker 600 MHz

spectrometer (Bruker Biospin) operating at 600.13 MHz of Larmor

proton frequency and equipped with a PATXI 1H−13C−15N and 2H

decoupling probe including a z-axis gradient coil, automatic

tuning–matching (ATM), and an automatic, refrigerated sample

changer (SampleJet, Bruker Biospin). A BTO 2000 thermocouple

served to stabilize the temperature at approximately 0.1 K in the

sample. Before measurement, samples were kept for 5 min in the

NMR probe head, for temperature equilibration at 310 K.

For each sample, three one-dimensional 1H NMR spectra were

acquired with water peak suppression and different pulse sequences:

(i) NOESY 1Dpresat, which detects both the signals of small

molecules—metabolites—and those of macromolecules—

lipoproteins, proteins, and lipids; (ii) 1D CPMG, which selectively

reveals the signals of metabolites; (iii) 1D diffusion-edited, which

selectively reveals the signals of macromolecules. Free induction

decays were multiplied by an exponential function equivalent to a

0.3-Hz line-broadening factor before applying Fourier transform.

Transformed spectra were automatically corrected for phase and

baseline distortions and calibrated at the glucose doublet at d 5.24

ppm using TopSpin 4.1 (Bruker Biospin).

A total of 24 metabolites (Supplementary Table S1) were assigned

in all the spectra and their concentrations analyzed. Metabolites were
TABLE 1 Main patient characteristics and outcomes to
checkpoint immunotherapy.

Patients features Numbers

Median age at metastatic disease,
years (range)

61 (31-92)

Sex, male/female, n (%) 39/32 (55/45)

ECOG performance status, median (range) 0 (1-2)

Body mass index

Total population
Responder
Non-responder

26,83
25,1
27,06

Concomitant medication, n (%)

Anti-diabetic drugs
Hypocholesterolemic agents

7 (9,8%)
6 (8,4%)

Type of melanoma, n (%)

Cutaneous
Uveal
Mucosal
Unknown origin

57(80)
3 (4)
2 (3)
9 (13)

BRAF status, n (%)

Mutated V600
Mutated not V600
Wild type

26 (37)
3 (4)
42(59)

LDH, n (%)

<ULN
>ULN
Unspecified

39 (55)
29 (41)
3 (4)

Previous systemic therapy for metastatic disease, n (%)

Yes
No

28 (40)
43 (60)

Best response, n (%)

ORR
DCR

21 (30)
24 (34)

PFS median, months 3

OS median, months 8
ORR, overall response rate; complete response + partial response. DCR, disease control rate;
complete response + partial response + stable disease > 6 months. PFS, progression-free
survival; OS, overall survival.
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analyzed using the In Vitro Diagnostics research (IVDr) B.I. Quant-

PS tool (Bruker, Biospin). The IVDr Lipoprotein Subclass Analysis

B.I. LISA tool (Bruker, Biospin) was used to extract 114 parameters

associated with lipoproteins (main parameters, calculated features,

main fractions, subfractions, and particle numbers).
2.5 Data preprocessing and feature
selection

Data were preprocessed using the caret R package. To perform

feature selection, the Recursive Feature Elimination (RFE) method of

the caret package has been applied to the normalized dataset, with 10-

fold cross-validation. The RFE feature selection has been applied using

BORR as a dependent variable. In detail, BORR was dichotomized

grouping patients into “responder” and “not-responder”, including

CR, SD, PR responses, and PD cases, respectively.
2.6 Statistical analysis

All statistical analyses were performed using R (version 4.2.1).

Univariate and multivariate Cox-hazard regression models were

fitted through R packages “survival” and “survminer”. R package

“binda” was used to dichotomize variables.

2.6.1 Risk score calculation
The significant features of the multivariate Cox hazard

regression models and their coefficients were used to calculate

risk score (RS), using the general formula:

RS = metabolite1 x b metabolite 1metabolite2 x b metabolite 2

+metabolite3 x b metabolite 3
2.6.2 Threefold cross validation
The risk scores underwent threefold cross-validation

considering that sample size and concordance index (CI) were

calculated through the “survcomp” R package.

2.6.3 Survival curves
Patients were stratified according to the median values of RSs in

“low risk” and “high risk” groups, and Kaplan–Meier curves were

compared using the log-rank test. Graphs and forest plots were created

using the “ggplot2” and “forestmodel” R packages respectively.
3 Results

3.1 Patient cohort

A total of 71 serum samples from MM patients treated with

anti-PD-1 (nivolumab: 42 patients, pembrolizumab: 29 patients)

were analyzed. There were 43 patients (61%) who received anti-PD-

1 as first-line treatment. Of patients that received ICIs as second
Frontiers in Immunology 04
line, 22 (31%) were previously treated with BRAF and MEK

inhibitors and 5 patients (7%) with ipilimumab. Only one patient

(1%) received two previous lines of therapy (first line: target

therapy, second line: ipilimumab). All the samples were collected

before anti-PD-1 treatment.

Main patient characteristics included cutaneous melanoma

80%, LDH<ULN in 55% of patients, M1c stage in 31%, and

BRAF V600 mutation in 37% of patients. Median age at

metastatic disease was 61 years (range 31-92) and median ECOG:

0 (0-2) median BMI was 26.83 (Table 1). Only seven and six

patients were given hypoglycemic and hypocholesterolemic

medications, respectively, as concomitant treatments.

Of 71 patients assessed for response to anti PD-1, 10% (7

patients) had a complete response (CR), 20% (14 patients) had a

partial response (PR), and 4% (3 patients) showed a long-term

stable disease (SD), with 34% disease control rate (DCR) and 30%

overall response rate (ORR). There were 45 patients (63%) who did

not respond to immunotherapy, and 2 patients (3%) had an SD with

a PFS of less than 6 months.

Median PFS was 3 and 4 months for the whole cohort and the

ICI first-line-treated subgroup, respectively; median OS was 8

months for both subsets.

Four patients discontinued anti-PD-1 therapy due to treatment-

related toxicity, whereas five patients interrupted therapy after

achieving a confirmed complete response and four due to a very

good partial (near-complete) response and completing at least 2

years of treatment, in line with clinical practice.

To characterize the metabolomic profiles of MM patients,

baseline serum samples were subjected to untargeted

metabolomic analysis using ¹H-NMR spectroscopy. This

approach enabled the quantification of a wide range of low-

molecular-weight metabolites, and lipoprotein-related parameters

(Supplementary Table S1). The resulting quantitative data,

encompassing a metabolic fingerprint of each sample, was

employed for subsequent bioinformatic analyses.
3.2 Metabolomic-based risk models for
melanoma patients treated with ICIs

Using the RFE method for feature selection, we identified the

top 20 metabolites most effective in discriminating between

responder and non-responder patients (Supplementary Figure 1).

These top 20 features, encompassing both lipoproteins and

metabolites, were then dichotomized based on their median

values and analyzed using a univariate Cox regression model. Our

results showed that glucose (HR: 2.8, 95% CI: 1.52-5.15) and ApoB

VLDL (HR: 2.75, 95% CI: 1.51-5.02) were associated with greater

risk of death, whereas glutamine (HR: 0.34, 95% CI: 0.18-0.62),

ApoA1 HDL (HR: 0.44, 95% CI: 0.24-0.81), HDL cholesterol (HR:

0.5, 95% CI: 0.27-0.91), free HDL cholesterol (HR: 0.48, 95% CI:

0.27-0.88), and ApoA1 (HR: 0.51, 95%CI: 0.28-0.93) were

associated with a lower risk (Table 2).

We also evaluated baseline LDH values from medical records,

dichotomized above and below the normal range. We found a
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statistical trend with worse survival for patients with higher LDH

levels (HR: 1.74, 95% CI: 0.96-3.13).

A multivariate COX-hazard regression model revealed that

glucose, glutamine, HLD.chol, FreeChol.HDL, and APO.B.VLDL

are independent prognostic factors (Figure 1A), and so they were

used to calculate a prognostic risk score.

RiskScoreOS  =  (1:68 * Glucose)  +  ( − 1:34 * Glutamine) 

+  (1:93 * HDL :Chol)  +  ( − 1:24 * FreeChol :HDL) 

+  (1:3 * APO :B :VLDL)

The model has been confirmed also excluding patients

which underwent hypoglycemic/hypocholesteromic agents

(Supplementary Figure 3).

The model underwent threefold cross validation which

evidenced a mean CI of 0.74, as displayed in Figure 1B.
Frontiers in Immunology 05
Comparison of baseline clinical features stratifying according to

RiskScoreOS evidenced that the distribution of the number of

metastatic sites differs significantly between the low-risk and

high-risk groups (p = 0.044). In detail, among patients with fewer

than three metastatic sites, a higher proportion belongs to the high-

risk group (64%) compared with the low-risk group (40%).

Conversely, among those with three or more metastatic sites, 60%

are in the low-risk group versus 36% in the high-risk group

(Supplementary Table 3).

Following stratification by the median risk score, Kaplan–Meier

curves were used to visualize the OS of patients in the high- and

low-risk groups. Interestingly, the “low risk” group showed a

statistically significant survival advantage compared with the

“high risk” group (p-value: 0.00048, Figure 1C).

To understand the impact of baseline serum metabolome on

PFS, we used a univariate Cox hazard regression model showing

that glucose, ApoA1, HDL cholesterol, HDL ApoA1, free HDL
TABLE 2 Univariate Cox hazard regression model for OS of the entire cohort.

Characteristic N HR1 95% CI1 p-value

Basal LDH* 68

1 — —

2 1.74 0.96, 3.13 0.066

Glucose_d 71

0 — —

1 2.80 1.52, 5.15 <0.001

Glutamine_d 71

0 — —

1 0.34 0.18, 0.62 <0.001

HDL.Chol_d 71

0 — —

1 0.50 0.27, 0.91 0.023

Apo.A1.HDL_d 71

0 — —

1 0.44 0.24, 0.81 0.008

Apo.A1_d 71

0 — —

1 0.51 0.28, 0.93 0.028

FreeChol.HDL.1_d 71

0 — —

1 0.48 0.27, 0.88 0.018

Apo.B.VLDL_d 71

0 — —

1 2.75 1.51, 5.02 <0.001
1HR, hazard ratio; CI, confidence interval.
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cholesterol, and LDL triglycerides were significantly associated with

disease progression (Table 3). According to these results, the

multivariate model identified glucose and ApoA1 as negative risk

factors, whereas HDL ApoA1 showed a protective role (Figure 2A).

The model has been confirmed also excluding patients

which underwent hypoglycemic/hypocholesteromic agents

(Supplementary Figure 4).

The use of these variables to build a new PFS Risk model (Risk

score PFS = (1.03*Glucose)+(-2.01*Apo.A1.HDL)) highlighted that

high-risk patients have shorter PFS compared with the low-risk

ones (p-value: 0.0077) (Figure 2C). PFS Risk Score reached a mean

CI of 0.72 (Figure 2B). Comparison of baseline clinical features

stratifying according to Risk score PFS did not evidence no

statistically significant association (Supplementary Table 4).
Frontiers in Immunology 06
3.3 Metabolomic-based risk models for
melanoma patients treated with first-line ICIs

To better understand how the baseline serum metabolome

impacts response to immunotherapy, and to identify potential

predictive markers, we built a metabolomic-based risk model for

the restricted group of MM patients who received first-line ICI

treatment (n=43). The top 20 features were selected using the same

RFE approach described earlier (Supplementary Figure 2).

Glucose, glutamine, HDL cholesterol, LDL triglycerides, and

free LDL cholesterol were all identified as significant features in the

OS-based univariate COX hazard regression model (Table 4).

Multivariate analysis highlighted glucose and LDL triglycerides as

negative prognostic factors and glutamine as positive one
FIGURE 1

Impact of the univariate significant features on OS. (A) Multivariate Cox-hazard regression model; (B) threefold cross validation of OS RiskScore
depicting density of the concordance index; (C) Kaplan–Meier survival curves stratifying patients according to the risk score calculated using the
multivariate model.
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(Figure 3A). Kaplan–Meier curves comparing low- and high-risk

subgroups (ICI-Risk ScoreOS = (2.03*Glucose)+(-1.97*Glutamine) +

(1.74*TG.LDL)) confirmed that the prognostic model was able to

significantly stratify patients (Figure 3C), with a mean CI after

threefold cross validation of 0.9 (Figure 3B).

In addition, the univariate Cox hazard regression model

revealed glucose and LDL triglycerides as independent negative

predictive factors for PFS (Table 5). However, multivariate COX

analysis showed only glucose as an independent prognostic factor

(Figure 4A). According to this result, MM patients treated with

first-line immunotherapy and stratified using a glucose-based risk

score (ICI-Risk ScorePFS = (0.82*Glucose)), with a mean CI of 0.81

(Figure 4B), showed statistically significant differences in Kaplan–

Meier curves (Figure 4C).
4 Discussion

ICI immunotherapy has significantly broadened the treatment

landscape for MM, with a significant proportion of patients

obtaining long-lasting and deep responses (2, 3). However,

despite extensive research, validated clinical-grade biomarkers

capable of discriminating responsive or resistant cases to ICI have

not been identified yet (4, 17–19). Moreover, additional studies are

required to identify resistance mechanisms and to develop novel

combination treatments improving currently available therapies.

Together with tumor cell-intrinsic features (e.g., loss of antigen

presentation or expression of immunosuppressive molecules),

antitumor immune responses are also impaired by several other

mechanisms mediated by the tumor microenvironment (TME),
Frontiers in Immunology 07
including stromal barriers, recruitment of immunoregulatory cells,

hypoxia, and metabolic imbalance (20).

Metabolic alterations have been increasingly recognized as a

crucial hallmark of cancer, regulating tumorigenesis, proliferation,

survival, invasiveness, and immunosuppressive capabilities (21).

Indeed, cancer cells are characterized by uncontrolled and non-

finalistic proliferation, which requires large amounts of nutrients

and energy and triggers continuous changes in their metabolic

profiles. Metabolic reprogramming is essential to supporting tumor

growth even in adverse conditions, such as limited oxygen and

nutrient availability. Dysregulation in carbohydrate, amino acid,

and lipid metabolism are distinctive features of cancer cells (22).

Metabolic rewiring alters metabolite concentrations in the TME,

affecting the activation status and recruitment of different immune

cells, thus potentially interfering with clinically relevant responses

to immunotherapy (6).

Serum metabolomic signatures can be easily quantified, and

they could provide an indirect snapshot of the TME metabolic

status. Our study aimed to develop a metabolomic-based model

capable of predicting clinical outcomes in MM patients treated

with ICIs.

We profiled the serum of 71 MM patients at baseline (before ICI

treatment) using NMR spectroscopy, an analytical approach

offering minimal sample preparation and high experimental

reproducibility, thus potentially suitable for clinical applications

(23). NMR analysis has been extensively used to detect the

metabolic behavior of melanoma cell lines and xenograft models

(24, 25).

In our study, we applied for the first time NMR-based

metabolomics on the serum of MM patients treated with ICIs to
TABLE 3 Univariate Cox hazard regression model for PFS of the entire cohort.

Characteristic N HR1 95% CI1 p-value

Glucose_d 71

0 — —

1 2.68 1.54, 4.67 <0.001

Chol.HDL_d 71

0 — —

1 0.59 0.35, 1.02 0.057

Apo.A1.HDL_d 71

0 — —

1 0.48 0.28, 0.83 0.008

Apo.A1_d 71

0 — —

1 0.58 0.34, 1.00 0.048

FreeChol.HDL.1_d 71

0 — —

1 0.57 0.33, 0.98 0.041
1HR, hazard ratio; CI, confidence interval.
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build risk score models predicting OS and PFS. A similar approach

has been previously applied in patients with non-small-cell lung

cancer (26). Our data demonstrated that glucose is a high-risk

factor. In line with our findings, a consistent body of evidence

indicates that elevated blood glucose levels in MM, akin to those

observed in diabetes, exert a negative prognostic impact and

detrimentally influence the efficacy of checkpoint inhibitor

therapy (27–29). Notably, in a large cohort study of MM patients

treated with immune checkpoint inhibitors, Jan et al. (30)

demonstrated that type 2 diabetes was associated with

significantly worse survival outcomes, with the most pronounced

detrimental effect observed in patients with a low body mass index.

An elevated serum glucose level could be indicative of high

glucose availability in the TME, which fuels cancer cell proliferation

through the Warburg effect (31) and immunosuppression (6).
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Increased cancer cell metabolism reduces glucose availability for

tumor-infiltrating CD8 T cells, inducing their exhaustion (32).

More importantly, by increasing their glycolytic activity, tumors

release large amounts of lactate in the extracellular space, which

inhibits T and NK cell proliferation and cytotoxicity, while

promoting Treg and myeloid-derived suppressor cell (MDSC)

survival (33, 34). A key enzyme in lactate metabolism is lactate

dehydrogenase (LDH). As expected, elevated LDH serum levels at

baseline are predictive of shorter survival in patients with

melanoma also in our cohort of patients. LDH is a complex

biomarker associated with the activation of several oncogenic

signaling pathways, as well as with increased metabolic activity,

invasiveness, and reduced immunogenicity (35). Our data suggest

that high glucose consumption and increased LDH activity foster

immunosuppression and reduced ICI efficacy in MM patients, as
FIGURE 2

Impact of the univariate significant features on PFS. (A) Multivariate Cox-hazard regression model; (B) threefold cross validation of PFS RiskScore
depicting density of the concordance index; (C) Kaplan–Meier survival curves stratifying patients according to the risk score calculated through the
multivariate model.
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recently observed in an anti-PD-1 + anti-LAG-3 retrospective study

(27). In another study by Triozzi and colleagues (36), the baseline

metabolomic profile was assessed in 40 patients with MM

undergoing treatment with PD-1 inhibitors. The identified

metabolomic signatures were correlated with the oxidative and

glycolytic activity of circulating T lymphocytes, as well as with the

expression of genes associated with metabolic functions. In line with

our data, Triozzi and colleagues demonstrated that lower

pretreatment glycemic values, increased oxidative metabolism in

circulating immune cells, and higher expression of Glut-14, an

intracellular glucose transporter, were predominant in anti-PD-1

responder patients.

Our data have also highlighted the protective role of glutamine.

Metabolomic studies performed in melanoma patient-derived

xenografts have revealed an intriguing inverse relationship

between glutamine levels and histone methylation within cancer

cells (36). This epigenetic interplay, influenced by the depletion of

a-ketoglutarate, has been implicated in both melanoma

differentiation and resistance to therapy under conditions of low

glutamine levels (37). Conversely, a direct association between

glutamine metabolism and autophagy has been identified,

suggesting a potential enhancement of antigen exposure that

could synergize with ICI (38, 39). Furthermore, high levels of

glutamine and an increase of its metabolism could boost cytotoxic

and pro-inflammatory capabilities of T lymphocytes (40).

The risk model we developed also contains specific lipid

metabolites. Together with glucose and glutamine, ApoA-I holds

a key position in the lipidic metabolic network. Embedded in

various biological contexts, ApoA-I is the primary protein

constituent of plasma HDL and it has been linked to survival
Frontiers in Immunology 09
across diverse human cancers. Indeed, it affects clinical outcomes

by shaping the tumor microenvironment and by influencing

immune system antitumor activity. In vivo studies have

demonstrated the potent anti-tumorigenic effects of ApoA1,

including significant suppression of tumor growth and metastasis

in mouse tumor models (41, 42). Additionally, pretreatment levels

of ApoA1 are predicting favorable outcomes in patients undergoing

anti-PD1 therapy for metastatic colorectal cancer, intrahepatic

cholangiocarcinoma, and nasopharyngeal carcinoma (43–45). On

the opposite side of high-density lipoproteins are low-density

lipoproteins, which have been associated with resistance to

immune checkpoint inhibitors by suppressing T lymphocytes and

driving tumor anti-apoptotic mechanisms mediated by heme

oxygenase-1 (46). In our risk model, ApoB-VLDL has a negative

predictive role, which has already been reported to be involved in

the regulation of the expression of multiple genes in the

development of hepatocellular carcinoma (47).

Our study fits within the comprehensive analysis of the

influence of lipid metabolism on tumor immune response. Within

this framework, the double-edged sword role of various lipid

components in tumor immunity becomes apparent (48–50). In

both melanoma and other potentially responsive tumors to ICIs, a

contradictory influence is exhibited by pre-therapy levels and

modifications of cholesterol, triglycerides, and oleic and palmitic

acids (51, 52).

In this regard, rather than focusing solely on individual lipid

components, our experience suggests that a risk formula capable of

weighing the influence of individual metabolites within the general

metabolomic context allows for a more faithful representation of

each component’s role. This distinction has been necessary in the
TABLE 4 Univariate Cox hazard regression model for OS of first-line ICI-treated MM patients.

Characteristic N HR1 95% CI1 p-value

Glutamine_d 43

0 — —

1 0.24 0.09, 0.64 0.004

Glucose_d 43

0 — —

1 5.27 1.90, 14.6 0.001

HDL.Chol_d 43

0 — —

1 0.31 0.12, 0.80 0.016

TG.LDL_d 43

0 — —

1 3.69 1.41, 9.70 0.008

Chol.LDL.3_d 43

0 — —

1 0.36 0.14, 0.92 0.033
1HR, hazard ratio; CI, confidence interval.
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FIGURE 3

Prognostic role of the different metabolites in patients treated with first-line ICI. (A) Multivariable Cox-hazard regression model; (B) threefold cross
validation of OS RiskScore depicting density of the concordance index; (C) Kaplan–Meier survival curves comparing OS of patients stratified
according to the risk score.
TABLE 5 Univariate Cox hazard regression model for PFS of first-line ICI-treated MM patients.

Characteristic N HR1 95% CI1 p-value

Glucose_d 43

0 — —

1 3.03 1.45, 6.32 0.003

TG.LDL.1_d 43

0 — —

1 2.59 1.26, 5.33 0.010
F
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1HR, hazard ratio; CI, confidence interval.
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absence of a statistically significant difference between the BMI of

responsive and non-responsive patients, thus lacking a clear

reflection of obesity on these metabolic parameters.

It is important to recognize that the metabolic profile underlying

this risk model, characterized primarily by hyperglycemia and

hyperlipidemia, has been shown to be associated with poorer

outcomes in patients treated with PD-1 inhibitors, regardless of

tumor burden classification. Using the “three metastatic sites”

threshold, which is based on prior meta-analyses of prospective

clinical trials in MM (53, 54), we observed that fewer than three

metastatic sites correlated with worse outcomes in our cohort. While

this finding may seem counterintuitive at first glance, it is crucial to

emphasize that prognosis and response to immunotherapy are often
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more strongly influenced by the site and extent of metastases, rather

than their sheer number (55). This is particularly relevant in the

context of our retrospective analysis, which is based on a real-world

patient cohort that includes a significant proportion (22 patients)

with M1d stage disease.

While this observation lends further support to the biological

rationale behind our findings, it is essential to acknowledge that

hyperglycemia and hyperlipidemia have also been associated with

reduced OS, independent of tumor burden, as previously

demonstrated in non-oncologic cohorts (56, 57). This represents a

potential confounding factor in our analysis. However, the

consistency of our data, evidenced by the correlation between

glucose levels and both OS and PFS, as well as the confirmation
FIGURE 4

Predictive role of the different metabolites in patients treated with first-line ICI. (A) Multivariable Cox-hazard regression model; (B) threefold cross
validation of PFS RiskScore depicting density of Concordance index; (C) Kaplan–Meier survival curves comparing PFS of patients stratified according
to the risk score.
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of similar findings in existing literature, reinforces the robustness of

our model.

The metabolomic fingerprints identified by our NMR analysis

suggest that a set of pharmacological and dietary interventions

could synergize with ICI and overcome therapeutic resistance. In

this scenario, a repurposing strategy has been recently launched for

hypoglycemic drugs as metformin (58), hypercholesteremic, and

other lipid-lowering drugs such as statins and PCSK9 inhibitors (59,

60) and beta blockers (61), all of which leverage metabolism to steer

the course of therapeutic response in favorable direction.

Several limitations are worth noting in our analysis. First, the

sample cohort was relatively small, with only 71 patients

characterized by treatment heterogeneity (43 of the 71 patients

received ICI as first-line therapy). Second, our unselected real-world

population exhibited lower ORR, PFS, and OS compared with

published clinical trials. This could be attributed to factors such

as prior lines of therapy and a higher frequency of negative

prognostic factors, like elevated LDH levels (observed in 41% of

patients). Additionally, while circulating metabolite changes remain

a valuable biomarker, they may reflect systemic alterations arising

from cross-organ communication rather than being exclusively

tumor-derived. This systemic interplay can complicate the

attribution of specific metabolic signatures directly to tumor

activity, highlighting the need for integrative approaches to

dissect tumor-specific versus host-related metabolic responses.

Finally, our analysis is limited to a single baseline quantification

of the serum metabolome and it does not explore potential changes

in metabolic signatures over time during ICI treatment. Therefore,

caution should be exercised when interpreting the relationship

between metabolic parameters and clinical outcomes in MM

patients treated with ICIs. Nonetheless, the promising results of

the threefold cross-validation, with a high concordance index,

particularly in the subset of first-line ICI-treated patients, suggest

the need for a well-designed clinical trial to further validate and

define the application of prognostic and predictive risk scores.
5 Conclusions

Predictive biomarkers for immunotherapy are related to a

mosaic of different factors. Indeed, a complex combination of

clinical features, serum factors, tumor and immune cell

heterogeneity, genetic signatures, and other TME-related elements

could all help to define an immunotherapy-responsive or resistant

patient. Along this line, our data indicate that also baseline serum-

derived metabolic fingerprints can be used to calculate metabolic

risk scores with a prognostic value in MM patients treated with ICI.

Further research is needed to verify whether these data can be an

easily applicable tool in clinical practice.
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