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Identification of ALDH2 as a
novel target for the treatment of
acute kidney injury in kidney
transplantation based on
WGCNA and machine learning
algorithms and exploration of its
potential mechanism of action
using animal experiments
Jinpu Peng †, Shili Wang †, Xingyu Pan †, Moudong Wu,
Xiong Zhan, Dan Wang, Guohua Zhu, Wei Wang,
Hongyu Tang, Nini An* and Jun Pei*

Department of Pediatric Surgrey, Guizhou Provincial People’s Hospital, Guiyang, China
Background: Acute kidney injury (AKI) after kidney transplantation is one of the

main causes of graft loss and poor patient prognosis, and it is important to

explore new targets for treating AKI in kidney transplantation.

Methods: Based on the kidney transplantation AKI-related dataset GSE30718, the

most relevant modular genes for AKI among them were firstly screened using

WGCNA and intersected with the DEGs, and the intersected genes were used as

candidate genes for kidney transplantation AKI. Second, machine learning

algorithms were utilized to identify the key genes among them, and the HPA

database was used to explore the expression landscape. Next, we constructed a

rat renal IRI model and explored the role of key genes in renal IRI. Finally, we

combined ssGSEA enrichment analysis with animal experiments to further

validate the potential mechanism of action of key genes.

Results: In total, we identified 98 of the most relevant modular genes for AKI and

417 DEGs, which intersected to yield a total of 24 AKI candidate genes. Next, we

intersected the key genes identified by three types of machine learning, namely,

Random Forest, LASSO regression analysis and SVM, and obtained a total of 1

intersected gene as ALDH2, which we used as a key gene in kidney

transplantation AKI. Using the HPA database, we found that ALDH2 has a high

expression level in renal tissues and is mainly located in renal tubular epithelial

cells. Next, we found in a rat renal IRI model that increasing the expression of

ALDH2 alleviated the impairment of renal function and decreased the expression

of NGAL, a marker of tubular injury, and BAX, an apoptotic protein, as well as

reducing the expression of the inflammatory factors IL1b and IL6. Finally, using

ssGSEA enrichment analysis and animal experiments, we further found that

ALDH2 was able to inhibit the activation of the MAPK signaling pathway.
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Conclusion: ALDH2 may serve as a novel target for the treatment of kidney

transplantation AKI, and increasing the expression level of ALDH2 has a protective

effect on renal IRI, and this protective effect may be achieved by inhibiting the

MAPK signaling pathway.
KEYWORDS

kidney transplantation, acute kidney injury, renal ischemia-reperfusion injury, ALDH2,
machine learning
1 Introduction

Kidney transplantation is the best therapeutic option for patients

with end-stage renal disease (ESRD), with better quality of life and

lower mortality compared to dialysis patients (1). As

immunosuppressive therapy techniques continue to evolve, graft

survival rates have increased dramatically. Nonetheless, there are still

some patients who develop short- or long-term complications after

kidney transplantation, and in severe cases, the patients’ lives are even

jeopardized (2). Acute kidney injury (AKI) is considered to be one of

the major causes of acute and critical illness in kidney transplantation

patients after surgery. This is because the development and progression

of AKI after kidney transplantation is not only strongly associated with

higher mortality, but also contributes to the development of later

chronic diseases, such as chronic kidney disease (CKD) and chronic

cardiovascular disease (3, 4). Not only that, but the occurrence of AKI

will also greatly increase the risk of delayed recovery of graft function

(DGF) and graft loss.

So far, ischemia-reperfusion injury (IRI) of varying degrees

during kidney harvesting and transplantation has been recognized

as one of the main causes of AKI after kidney transplantation (5).

Many molecular and cellular alterations can be observed during IRI,

such as the production of reactive oxygen species (ROS), cytokines,

chemokines, activation of the innate immune system, activation of

the inflammatory response, leukocyte recruitment, and alterations

in a large number of biological regulatory pathways (6). This

ultimately results in damage to endothelial cells and renal tubular

epithelial cells, leading to the development of AKI after kidney

transplantation. Meanwhile, it has also been found that AKI due to

IRI during transplantation is likewise one of the key triggers of acute

rejection after kidney transplantation (7). Therefore, taking

treatment for IRI during kidney transplantation is an important

measure to protect renal function, and the identification and

exploration of new targets are of great significance for treatment.

With the wide availability of high-throughput sequencing

technology, new approaches are provided for the identification of

AKI-related biomarkers after kidney transplantation. The wide

application of machine learning algorithms plays an important role

in solving complex problems in the biomedical field. Machine

learning’s ability to analyze large datasets and discover valuable

relationships makes it an effective tool for elucidating patterns and

providing explanations (8). Integrating bioinformatics analysis and
02
machine learning with each other is important to improve the

accuracy, reliability and predictability of disease diagnosis (8).

In the present study, we used the kidney transplantation AKI-

related dataset GSE30718 as the basis, and screened the candidate

genes among them that are closely related to AKI using the

weighted gene co-expression network (WGCNA). Three machine

learning algorithms, Random Forest, LASSO and SVM, were used

to identify the key genes among them. We also explored the

potential biological functions of key genes during kidney

transplantation AKI. Finally, we constructed a rat kidney IRI

model and explored the role of key genes and potential regulatory

mechanisms using animal experiments. Provides new insights for

future mitigation of kidney transplantation AKI.
2 Materials and methods

2.1 Data acquisition and processing

We obtained the kidney transplantation acute kidney injury-

related dataset GSE30718 (GPL570, Affymetrix Human Genome

U133 Plus 2.0 Array) via the GEO database (Gene Expression

Omnibus, http://www.ncbi.nlm.nih.gov/geo). These included 8

cases of normal kidneys (Normal) and 28 cases of acute kidney

injury kidneys (AKI). The Normal group was derived from normal

renal tissue samples from the cortical region of eight patients with

renal tumors that were not affected by pathology (9, 10). Next, we

normalize the expression matrix of the dataset GSE30718 by

“Sangerbox” (www.sangerbox.com). Sangerbox is a web-based

tool platform that provides interactive and customizable analysis

tools, including a variety of correlation analyses, pathway

enrichment analyses, weighted correlation network analyses, and

other common tools and features (11).
2.2 Weighted gene co-expression network
analysis (WGCNA) and key module
gene identification

In the present study, we used “WGCNA analysis” in “OECloud

(www.cloud.oebiotech.cn/) “ to identify the most relevant modular

genes for kidney transplantation AKI in the dataset GSE30718. We
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entered the expression profiles of the dataset GSE30718 into

“WGCNA” of “OECloud”, and also entered the grouping

information of the samples as required. Subsequently, we set the

standard deviation threshold to 0.5, the module merge threshold to

0.25, the minimum number of genes to 20, and the segmentation

sensitivity to 2. After running “OECloud”, genes with similar

expression patterns will be categorized into the same module

under the optimal soft threshold conditions. Finally, we select the

module with the highest absolute value of the correlation coefficient

as the key module for subsequent analysis. WGCNA is a common

tool often used to reveal genetic associations between different

samples and to detect candidate therapeutic targets based on the

inter-association of gene sets as well as the association between gene

sets and phenotypes.
2.3 Identification of candidate genes for
kidney transplantation AKI

In order to improve the accuracy of the key module genes, we

firstly used the expression matrix of the dataset GSE30718 as the

basis to obtain the differential genes between the AKI group and the

Normal group by using the “Limma Rapid Difference Analysis

Tool” in the Sangerbox platform. Log2Fold absolute value >1.0 and

adj. P<0.05 were used as the criteria for identifying differential genes

(DEGs). Next, we intersected key module genes with DEGs, and the

intersected genes we defined as kidney transplantation AKI

candidate genes and used them for the next step of analysis.
2.4 Identification of Hub genes using
machine learning algorithms

In this study, we utilized three machine learning algorithms to

characterize the Hub gene.

In the first one, we identify the key genes through the “Random

Forest” algorithm in “OECloud”. We entered the expression profiles

of the kidney transplantation AKI candidate genes into the “Random

Forest” in “OECloud” and entered the grouping information of the

samples as required. “OECloud” automatically runs the Random

Forest algorithm and judges how well the genes classify the model

according to the MeanDecreaseGini value. Where a larger

MeanDecreaseGini value represents a better categorization and the

final results are sorted according to the size of the MeanDecreaseGini

value. We define the top 5 genes as “Random Forest-Key Genes”.

Second, we identified key genes by “LASSO regression analysis”

in “Sangerbox”. We entered the expression profiles of the kidney

transplantation AKI candidate genes into the “LASSO-regression

analysis tool” in “Sangerbox”, and entered the grouping

information of the samples. The “Sangerbox” platform

automatically runs the R package glmnet, which integrates

grouping information and gene expression profiling data for

“LASSO-regression analysis”. Meanwhile, the “Sangerbox”

platform has set up a 3-fold cross-validation in order to obtain

the optimal model. We chose the best lambda value to construct the

“LASSO-regression analysis” model, and we defined the genes with
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coefficient value not equal to 0 as “LASSO- Key Genes” in

this model.

In the third one, we utilized the “SVM” algorithm in the

“Wekemo Blolncloud Platform” (https://www.bioincloud.tech) to

identify key genes. We entered the expression profiles of kidney

transplantation AKI candidate genes into the “Wekemo Blolncloud

Platform” and normalized the expression profiles. The standardized

correction is divided into three main steps: 1. Within-sample

correction, i.e., the abundance of all FEATURES (genes) in a

sample is divided by the median abundance of that sample; 2.

abundance matrix correction, i.e., log transformation of all

abundance values; 3. within-feature correction, i.e., abundance of

all samples corresponding to a feature minus the mean abundance

of that feature divided by the standard deviation of abundance of

that feature. Next, we ran the “SVM” algorithm in the Wekemo

Blolncloud platform and ranked the genes according to their

contribution to the group differences, and defined the top 5 genes

as “SVM- Key Genes”.

The above three machine learning algorithms have been used in

our previous studies (12, 13). Finally, we intersect the key genes

identified by the three machine learning algorithms described

above, and the intersecting genes we define as Hub genes.
2.5 Hub gene expression landscape

We used the Human Protein Atlas database (HPA: https://

www.proteinatlas.org/) to explore the expression landscape of

Hub genes in various tissues and organs. The “Single Cell”

module of the HPA database was also utilized to study the extent

of Hub gene expression at the cellular level. The results were

all generated from the HPA database. The HPA Database is a

publicly accessible and freely explorable database of all human

proteins in cells, tissues, and organs mapped with the integration

of various histological techniques, including antibody-based

imaging, mass spectrometry-based proteomics, transcriptomics,

and systems biology.
2.6 ssGSEA enrichment analysis

ssGSEA can analyze the pathways that are enriched for gene

expression in each sample. ssGSEA requires pre-selection of a

biologically significant set of genes compared to traditional GSEA

enrichment analysis, and then genes with the same significance or

function within the set of genes are computed together and grouped

into a single enrichment score to analyze the degree of activation of a

specific pathway (14). In this study, in order to understand the

changes of all the KEGG-normalized pathways during kidney

transplantation AKI, we used the ssGSEA enrichment algorithm in

the Sangerbox online analysis tool to enrich 186 pathways in the “C2:

KEGG gene-sets” to explore the changes of the relevant pathways

during kidney transplantation AKI. At the same time, we calculated

the correlation between 186 pathways and Hub genes by “sample

correlation analysis” in “OECloud”, and the results were shown in a

lollipop plot. p<0.05 was considered statistically significant.
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2.7 Establishment of animal models

We selected a total of 20 adult male Sprague-Dawley (SD) rats,

purchased from the SPF (Beijing) Biotechnology Co., Ltd. (SCXK

[JING] 2024-0001, Beijing, China), weighing 250-280g. The animal

model was taken as a renal ischemia reperfusion injury (IRI) model,

as it has been noted that AKI during kidney transplantation is mainly

due to IRI of the kidney during transplantation (5). All rats were

randomly divided into four groups of 5 rats each, namely, Sham

group, Sham+Alda-1 group, IRI group and IRI+Alda-1 group. The

Sham+Alda-1 and IRI+Alda-1 groups were treated with rat Alda-1

(20 mg/Kg) by intraperitoneal injection once daily for 3 days. Alda-1

is a selective agonist of ALDH2 and can effectively increase the

expression level of ALDH2 (15). Rats in the Sham and IRI groups

were treated with equal doses of saline intraperitoneally. On day 4,

after the rats were routinely anesthetized, skinned, disinfected and

toweled, all rats had their right kidneys removed first. Subsequently,

rats in the IRI group and IRI+Alda-1 group were bluntly isolated

from the left renal hilum, and the left renal hilum was clamped using

a noninvasive vascular clip for 45 min, and the color of the kidneys

was observed to change from bright red to purplish-black, suggesting

that renal ischemia was successful. After releasing the vascular clamp,

the kidney color was observed to gradually return to bright red,

indicating successful reperfusion. In contrast, rats in the Sham and

Sham+AIda-1 groups had only blunt separation of the left renal

hilum, but were not treated for ischemia. After 24 hours, four groups

of rats were killed suddenly under anesthesia, and venous blood was

taken to test the renal function of the rats in each group, and the left

kidney was taken for subsequent experiments. Animal experiments

were approved by the Animal Ethics Committee of Guizhou

Provincial People’s Hospital, and all animal studies followed the

ARRIVE guidelines.
2.8 Renal function tests

Under anesthesia, about 3 ml of blood was taken from the lower

vena cava of rats, and the upper serum was centrifuged and placed

in an automatic biochemical analyzer after 15 min of resting, and

the levels of urea nitrogen and creatinine were detected in each

group of rats, which were used to evaluate the renal function

damage of rats in each group.
2.9 Western blot

Proteins in rat kidney tissue were extracted with RIPA lysate

containing protease inhibitors, and protein concentration was

determined by BCA kit (Beyotime, No.P0012). Equal amounts of

protein samples were separated by SDS-PAGE and then transferred

to PVDFmembranes, which were closed and incubated with primary

antibodies overnight at 4°C, all at a dilution concentration of 1:1000.

On the second day, after washing the membrane with TBST, the

secondary antibody was incubated at room temperature for 1 h. The

secondary antibody was diluted at a concentration of 1:15,000.

Finally, Western blot bands were analyzed semi-quantitatively
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using Image J software, and P < 0.05 was considered significantly

different. Primary antibodies were purchased from the following

sources: anti-ALDH2 (ABclonal, A1226), anti-NGAL (ABclonal,

A2092), anti-BAX (ABclonal, A0207), anti-IL-6 (Abcam,

ab290735), anti-IL1-b (Abcam, ab315084), anti-P38 (ABclonal,

A5049), anti-p-P38 (ABclonal, AP0057), anti-ERK (ABclonal,

A22447), anti-p-ERK (ABclonal, AP0485), anti-JNK (Proteintech,

28007-1-AP) and anti-p-JNK (ABclonal, AP0631).
2.10 Statistical analysis

Image J and Prism software (GraphPad Software, La Jolla,CA)

were used for statistical analysis of experimental data. Differences

between the two groups were analyzed using the unpaired Student’s

t-test. One-way ANOVA was used for multiple group comparisons.

**** represents P<0.0001, *** represents P<0.001, ** represents

P<0.01, and * represents P<0.05.
3 Results

3.1 Identification of key modular genes for
kidney transplantation AKI

The flow chart of this study is shown in Figure 1. We further

identified AKI-related modular genes in the dataset GSE30718 using

the weighted gene co-expression network (WGCNA). A total of 18

modules were identified when a soft threshold of 20 was chosen based

on scale independence and average connectivity (Figures 2A, D),

where the Grey module was a collection of genes that could not be

attributed to any of the modules and had no reference (Figure 2D).

The genes are clustered as shown in Figure 2B, and the clustered

heatmap of the genes is shown in Figure 2C. Next, we find that the

greenyellow module has the highest correlation, with an absolute

value of 0.83 for the correlation coefficient. Which was negatively

correlated with AKI and positively correlated with Normal

(Figure 2D), and scatter plots of correlation analysis of traits with

modular genes similarly confirmed these findings (Figures 2E, F).

This implies that most of the genes in the greenyellow module were

highly expressed in the Normal group and lowly expressed in the AKI

group, and that the reduced expression of these genes may be closely

related to the development of AKI. Increasing the expression levels of

these genes may be able to be a potential target for alleviating AKI in

kidney transplantation. Therefore, we used the genes in the

greenyellow module for the next step of the analysis, which

contained 98 genes.
3.2 Identification of AKI candidate genes
for kidney transplantation

First, we identified differential genes (DEGs) in the dataset

GSE30718. We identified a total of 417 differentially expressed

genes, of which 228 genes were up-regulated and 189 genes were

down-regulated in AKI compared to Normal (Figure 3A). Next, we
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intersected the 417 DEGs with the 98 greenyellow module genes

and identified a total of 24 intersecting genes, which we defined as

kidney transplantation AKI candidate genes (Figure 3B). The gene

expression heat map is shown in Figure 3C.
3.3 Identification of Hub genes

In the present study, we first statistically analyzed the

expression levels of the 24 genes mentioned above. We found that

the expression of 21 of these genes was significantly lower in the

AKI group, and only TTC7B, SERPINE1, and GRAMD4 were

significantly higher in the AKI group than in the Normal group

(Figure 4A). This is consistent with the expressive properties of the

greenyellow module. Next, we utilized three machine learning

algorithms to identify key genes.

In the Random Forest algorithm, we ranked the genes according

to the size of the MeanDecreaseGini value, and we defined the top 5
Frontiers in Immunology 05
genes as the Random Forest key genes: SIK1, ALDH2, NR4A2, FOS

and SERPINE1 (Figure 4B).

In the “LASSO-regression analysis” algorithm, through triple-

fold cross-validation, we found that the error was minimized for

lambda (ℷ) value = 0.04 (Figure 4C). Therefore, we constructed a

“LASSO-regression analysis” model based on “ℷ = 0.04”

(Figure 4D). Under this model, we identified a total of 10 genes

with coefficient values not equal to 0, which we used as LASSO-key

genes, namely, TRPM6, NR4A2, ALDH2, MGAT4B, NR4A1,

BTG2, DUSP1, FOS, EGR1, and FOSB (Figure 4D).

In the “SVM” algorithm, we ranked the genes according to their

contribution to the group differences, and the top 5 genes were

defined as SVM- key genes: ALDH2, SIK1, SERPINE1, GRAMD4,

and DUSP1 (Figure 4E).

Finally, we intersected the key genes identified by the three

machine learning algorithms described above, and a total of one

intersecting gene, ALDH2, was identified, which we defined as a

Hub gene (Figure 4F).
FIGURE 1

Flowchart of the current study.
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FIGURE 2

Identification of key modules using WGCNA. (A) represents the determination of the optimal b value using a scale-free topological model, with b =
20 chosen as a soft threshold based on average connectivity and scale independence; (B) represents the gene clustering dendrogram; (C) represents
a heat map of gene clustering; (D) represents a heat map of the correlation between different modules and features; (E) represents the scatter plot
of the correlation between AKI and greenyellow module, and the results show that AKI is negatively correlated with greenyellow module; (F)
represents the scatter plot of the correlation between the Normal and greenyellow modules, and the results show that the Normal and greenyellow
modules are positively correlated.
FIGURE 3

Identification of candidate genes for kidney transplantation AKI. (A) represents a volcano plot of gene expression differences in AKI compared to the
Normal group in dataset GSE30718; (B) represents the Greenyellow module with DEGs intersecting Veen diagrams; (C) represents the expression
heat map of the 24 intersecting genes.
Frontiers in Immunology frontiersin.org06
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3.4 Hub gene expression
landscape analysis

In the present study, we explored the expression landscape of the

Hub gene ALDH2 at the tissue organ and cellular levels using the HPA

database. First, in terms of protein expression level, ALDH2 was highly

expressed in renal tissues, and its expression level was located in the

third position among all tissues and organs (Supplementary

Figure 1A). In terms of mRNA expression levels, ALDH2 was

likewise in the third position in renal tissues, after liver tissues and

adipose tissues (Supplementary Figure 1B). Second, in terms of single-

cell expression levels, ALDH2 was highly expressed in renal tubular

epithelial cells, and its expression was only lower than that in

hepatocytes (Supplementary Figure 1C). Single-cell sequencing of

renal tissues similarly revealed that ALDH2 was predominantly

located in proximal tubular epithelial cells for expression

(Supplementary Figure 1D). Finally, we found that ALDH2 was

predominantly expressed in the renal tubules in normal renal tissues

by immunohistochemical results from the HPA database, in keeping

with the previous results (Supplementary Figure 1E). From this, we

determined that ALDH2 is a highly expressed protein located in renal

tubular epithelial cells.
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3.5 ALDH2 alleviate renal ischemia-
reperfusion injury

We intervened to increase the expression level of ALDH2 in

renal tissues using Alda-1, a selective agonist of ALDH2, based on

the rat renal IRI model in the present study. The flowchart for this

experiment is shown in Figure 5A. We found that renal function

was significantly impaired when the kidneys were subjected to IRI

(Figure 5B), and ALDH2 expression levels were significantly

reduced in renal tissues (Figures 5C, D), which is in keeping with

the results of our previous analysis. When Alda-1 was administered,

the expression level of ALDH2 in renal tissues was significantly

increased (Figures 5C, D), demonstrating that Alda-1, as an agonist

of ALDH2, can significantly increase the expression level of ALDH2

in renal tissues. Next, we found that the degree of impairment of

renal function was significantly alleviated after increasing ALDH2

expression compared with the IRI group (Figure 5B). This implies

that ALDH2 has a protective effect on renal function in rats. The

expression levels of NGAL, a marker of renal tubular injury, and

BAX, an apoptotic protein, were detected by Western blot, and it

was found that the expression levels of NGAL and BAX were

significantly increased in the IRI group compared with the Sham
FIGURE 4

Identification of Hub genes. (A) represents a statistical plot of the expression levels of 24 genes between the AKI and Normal groups; (B) stands for Random
Forest algorithm to identify key genes, where the x-axis represents the MeanDecreaseGini value and the bars on the right represent the relative abundance
of genes; (C) represents the cross-validation error plot in the LASSO regression analysis. Where the x-axis represents the logarithmic value of lamabda and
the y-axis represents the model deviation in cross-validation, the smaller the deviation, the better the model fit. Ultimately, we determined that 0.04 was the
best lambda (ℷ) value. (D) represents the plot of the LASSO-regression analysis model constructed at ℷ = 0.04, where the colored curves are for genes with
coefficient values not equal to 0 and the gray curves are for genes with coefficients equal to 0; (E) represents SVM algorithm to identify key genes. Where
the squares on the right side represent two subgroups (AKI group and Normal), with green representing low gene expression and red representing high gene
expression; (F) represents the intersection veen plot of key genes identified by the three machine learning algorithms.
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group. After being boosted ALDH2, the expression levels of NGAL

and BAX were reduced compared with the IRI group,

demonstrating that ALDH2 was able to alleviate the levels of

injury and apoptosis in renal tubular epithelial cells (Figures 5E,

G). This shows that ALDH2 has a protective effect on renal IRI.
3.6 ALDH2 alleviates inflammatory
response during renal IRI

We examined the expression levels of inflammatory factors IL1b
and IL6 in the renal tissues of rats in each group byWestern blot in the

present study. We found that the expression levels of inflammatory

factors were significantly increased in the renal tissues of rats in the IRI

group compared with the Sham group, demonstrating that ischemia-

reperfusion injury induces an inflammatory response in the renal

tissues (Figures 5F, G). When the expression of ALDH2 was increased,

the expression levels of inflammatory factors IL1b and IL6 were

significantly reduced in renal tissues compared with the IRI group,

demonstrating that ALDH2 was able to reduce the secretion of

inflammatory factors in the course of renal IRI (Figures 5F, G).
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We found in the above results that increasing the expression of

ALDH2 was effective in alleviating renal IRI, while also reducing the

level of inflammation in renal tissues. To further explore the

potential protective mechanism of ALDH2, we utilized ssGSEA to

explore the biological functional differences during kidney

transplantation AKI in the current study. We found that a large

number of biological pathways were significantly altered between

the AKI and Normal groups, which we demonstrated with heat

maps (Figure 6A). To further analyze the potential regulatory

mechanisms of ALDH2 during kidney transplantation for AKI,

we explored the correlation between ALDH2 and the expression

levels of 186 KEGG signaling pathways using correlation analysis.

We found that ALDH2 was closely linked to the expression of a

large number of signaling pathways during kidney transplantation

for AKI (Figure 6B). Also, we found that ALDH2 was negatively

correlated with the expression of most signaling pathways, implying

that ALDH2 was able to inhibit biological pathways during kidney

transplantation for AKI (Figure 6B). Among them, the MAPK
FIGURE 5

ALDH2 alleviates renal ischemia-reperfusion injury. (A) represents the flowchart of this experiment; (B) represents the expression level of renal
function in each group of rats; (C) represents the Western blot strip plot of ALDH2 expression levels in rat kidney tissues; (D) represents the Western
blot strip statistics of ALDH2 expression levels; (E) represents Western blot strip plots of NGAL and BAX expression levels in rat kidney tissues; (F)
represents the Western blot strip plot of the expression levels of inflammatory factors (IL1b and IL6) in rat kidney tissues; (G) represents Western blot
band statistics. **** represents P<0.0001, *** represents P<0.001, ** represents P<0.01, * represents P<0.05 and, ns represents P>0.05.
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signaling pathway has attracted our attention. In our previous

study, we found that inhibition of the MAPK signaling pathway

was effective in alleviating IRI in the kidney (16). In the present

study, we found that ALDH2 expression was negatively correlated

with the activation of the MAPK signaling pathway (Figure 6B).

This implies that increasing the expression of ALDH2 inhibits the

activation of the MAPK signaling pathway. Next, we examined the

expression level of MAPK signaling pathway in the kidney tissues of

rats in each group using Western blot. We found that the MAPK

signaling pathway was significantly activated in the IRI group

compared with the Sham group (Figures 6C, D). However, after

the expression level of ALDH2 was increased, the expression level of

the MAPK signaling pathway was significantly reduced (Figures 6C,

D). This implies that ALDH2 is able to inhibit the expression level

of the MAPK signaling pathway, which is consistent with the results

of ssGSEA enrichment analysis. Therefore, we suggest that the

protective effect of ALDH2 may be achieved by inhibiting the

MAPK signaling pathway.
4 Discussion

Kidney transplantation is the treatment of choice for end-stage

renal disease and likewise the most common type of organ

transplantation available. During kidney transplantation, AKI

caused by renal IRI is an unavoidable event that may trigger a
Frontiers in Immunology 09
series of pathophysiologic processes leading to delayed recovery of

graft function (DGF), impaired graft function, and rejection (17).

How to effectively mitigate kidney transplantation AKI is a great

challenge that is being faced. With the current widespread use of

high-throughput sequencing technology, it has provided

tremendous help in exploring the molecular landscape and

underlying mechanisms of disease (18). Combining sequencing

data and comprehensive bioinformatics analysis techniques with

each other provides sufficient theoretical basis for discovering new

targets and mechanisms for disease treatment. We used WGCNA

and machine learning algorithms to identify key genes in kidney

transplantation AKI in the current study and investigated the

expression landscape of key genes, correlation with immune cell

infiltration, and biological pathways potentially regulated. Finally,

we also used animal experiments to validate the roles and possible

mechanisms of key genes. A new option for the future treatment of

kidney transplantation AKI.

We first identified a total of 98 modular genes most closely

associated with kidney transplantation AKI using WGCNA in the

current study. Intersecting them with DEGs yielded a total of 24

genes, which we used as candidate genes associated with kidney

transplantation AKI. When we analyzed the expression levels of 24

genes, we found that 21 of them had significantly lower expression

in the AKI group, and only 3 genes had significantly higher

expression in the AKI group than in the Normal group. This

means that most of the candidate genes were negatively
FIGURE 6

ssGSEA enrichment analysis and validation of the MAPK signaling pathway. (A) represents a heatmap of the expression levels of 186 KEGG signaling
pathways between the AKI and Normal groups in dataset GSE30718; (B) represents a lollipop plot of the correlation analysis of the Hub gene ALDH2
with 186 KEGG signaling pathways; (C) represents the western blot bar graph of the expression level of MAPK signaling pathway in the kidney tissues
of rats in each group; (D) represents the Western blot strip statistics of the MAPK signaling pathway. **** represents P<0.0001, *** represents
P<0.001 and, ns represents P>0.05.
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associated with the development of AKI in kidney transplantation, a

result that is consistent with the analysis of WGCNA, where the

module with the highest correlation coefficient was negatively

associated with AKI. To further explore the key genes involved,

we performed calculations using three machine learning algorithms

(Random Forest, LASSO regression analysis, and SVM algorithm),

and finally identified ALDH2 as the most critical gene for kidney

transplantation AKI. Meanwhile, the expression level of ALDH2 in

the AKI group was significantly lower than that in the Normal

group, which may imply that increasing the expression level of

ALDH2 may be a new target for alleviating AKI.

Aldehyde dehydrogenase-2 (ALDH2) is one of the members of

the aldehyde dehydrogenase (ALDH) family, which is mainly

responsible for the detoxification of biological and xenoaldehydes

(19). ALDH is widely distributed and is present in bacteria, fungi

and all eukaryotic organisms (19, 20). In the study of human

genomics, 19 functional ALDH genes were found to be widely

expressed in tissues, among which the role of ALDH2 attracted the

attention of researchers (19). In humans, ALDH2 is a polypeptide

containing 517 amino acids and is encoded by the cytosolic gene on

chromosome 12q24 (21). Like most members of the ALDH family,

ALDH2 is a tetrameric enzyme with ∼56 kDa that possesses not

only dehydrogenase activity but also reductase and esterase

activities (15, 19). ALDH2 is ubiquitously expressed in all tissues,

with the most abundant expression levels in the liver, which was

similarly confirmed when the ALDH2 expression landscape was

studied through the HPA database, which is known for the key role

that leads to the major involvement of ALDH2 in ethanol

metabolism in the liver (15, 19). In addition to this, ALDH2 was

similarly detected in large quantities in organs such as kidney (22),

heart (23), brain (24), and lungs (25), reconfirming the prevalence

of its expression in tissues and organs.

In recent years, with the increasing research on the molecular

characterization of ALDH2 in the kidney, its role in disease has

been emphasized. Increasing evidence suggests that ALDH2 is

important in regulating oxidative stress, autophagy, and apoptosis

in the kidney. Xu T et al. found that ALDH2 could regulate

autophagic response through Beclin-1 signaling pathway to

alleviate acute kidney injury (26). Kim J et al, on the other hand,

found that the lack of ALDH2 activity in renal tissues aggravated

renal tissue injury in cisplatin-induced renal injury by increasing

the generation of ROS, enhancing cisplatin sensitivity and

cytotoxicity (27). Chen et al. found that knockdown of ALDH2 in

mouse kidney IRI would significantly aggravate the degree of renal

function injury and increase the level of apoptosis, as well as

exacerbate the inflammatory response of the kidney after renal

IRI in mice (28). Thus, it is clear that the reduction of ALDH2

expression level is an important factor leading to the increased

degree of renal injury, and increasing the expression of ALDH2

plays a crucial role in alleviating renal injury. We intervened with

Alda-1, an ALDH2-specific agonist, to increase ALDH2 expression

levels in renal tissues in the current study. We found that increasing

the expression of ALDH2 significantly alleviated the degree of renal

functional impairment after IRI in rat kidneys, the expression of the

renal tubular injury marker NGAL and the apoptotic protein BAX

was significantly reduced, and the expression levels of inflammatory
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factors (IL1b and IL6) were significantly reduced. This again

demonstrates that ALDH2 has a protective effect against renal IRI.

With the above analysis, we demonstrated that ALDH2 has a

protective effect against kidney injury. However, the potential

mechanism of ALDH2’s role in kidney transplantation AKI is

currently unknown to us. Therefore, we explored the level of

change of 186 KEGG signaling pathways in AKI in the present

study using ssGSEA enrichment analysis for ALDH2 and KEGG

pathways using correlation analysis. The results indicate that

ALDH2 correlates with the level of changes in multiple signaling

pathways. Among them, the MAPK signaling pathway has attracted

our attention.

The Mitogen-activated protein kinase (MAPK) signaling

pathway is a series of highly conserved enzymatic response

cascades that regulate many biological processes including: cell

proliferation, differentiation, transformation, inflammation, and

apoptosis (29). The current study found that MAPK is mainly

categorized into four subfamilies, namely, ERK, P38, JNK, and

ERK5 (30). Normally, MAPK is in a non-phosphorylated state and

undergoes phosphorylation modification leading to enhancement

of its activity when subjected to external stimuli. Inhibition of the

MAPK signaling pathway reduces the expression of inflammatory

factors and is one of the important mechanisms for alleviating

kidney disease. Ma L et al. found that Baicalin could attenuate

oxidative stress and inflammatory responses in diabetic

nephropathy by inhibiting the MAPK signaling pathway (31).

Chen L et al, on the other hand, demonstrated that trans-

cinnamaldehyde could alleviate renal IRI by inhibiting the JNK/

p38 MAPK signaling pathway and attenuating the inflammatory

response (32). In addition to this, the relationship between ALDH2

and the MAPK signaling pathway has also attracted the attention of

researchers. Zhong Z et al. found that ALDH2 was able to inhibit

the MAPK signaling pathway to alleviate liver injury (33). Jin J et al,

on the other hand, found that ALDH2 was able to inhibit the MAPK

signaling pathway and ameliorate the level of oxidative stress and

inflammation in LPS-induced AKI, thereby alleviating renal injury

(34). However, so far, no study has reported the relationship

between ALDH2 and MAPK signaling pathways in kidney

transplantation AKI. Our present findings showed that ALDH2

was negatively correlated with the MAPK signaling pathway in

kidney transplantation AKI, demonstrating that ALDH2 is also able

to inhibit the activation of the MAPK signaling pathway in kidney

transplantation AKI. We also verified the above conclusion using

animal experiments that increasing the expression level of ALDH2

significantly inhibited the activation of the MAPK signaling

pathway in rat kidney IRI. Therefore, we suggest that ALDH2

exerts i ts protect ive effects by inhibit ing the MAPK

signaling pathway.

In summary, we identified ALDH2 as a key gene for kidney

transplantation AKI using WGCNA and machine learning

algorithms. Combining bioinformatics and animal experiments,

we found that ALDH2 may alleviate renal IRI by inhibiting the

MAPK signaling pathway and reducing inflammatory responses.

Our study provides a new therapeutic target for the treatment of

AKI caused by ischemia-reperfusion during kidney transplantation.

However, we recognize that this study has some limitations. First, in
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the bioinformatics analysis section, our analysis is a secondary

mining of previously published datasets, which may lead to

different conclusions due to different analytical ideas and

perspectives; Second, in the animal experimental part, we utilized

rat renal IRI to validate the potential role and mechanism of

ALDH2, which is a model only for AKI caused by IRI during

kidney transplantation and not a substitute for AKI caused by

pharmacological factors or immune rejection; Finally, in the

mechanism of action section, we only explored the potential role

of the MAPK signaling pathway, and subsequent validation of other

pathways is still needed.
5 Conclusion

The current study utilized WGCNA and machine learning

algorithms (Random Forest, LASSO regression analysis and SVM

algorithm) to identify ALDH2 as a key gene in kidney

transplantation AKI. Combined with ssGSEA enrichment analysis

and animal experiments, we found that ALDH2 may alleviate renal

IRI by inhibiting the MAPK signaling pathway and reducing

inflammatory responses. ALDH2 may serve as a novel target for

mitigating kidney transplantation AKI, providing new options for

the treatment of kidney transplantation AKI.
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