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bulk-seq data
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Xianqing Zhou1, Feng Liang1, Shouxiang Yang1, Yuanyin Wang1*,
Qingqing Wang1,2* and Wei Shao1,3*

1Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui
Medical University, Hefei, China, 2Department of Periodontology, Anhui Stomatology Hospital
affiliated to Anhui Medical University, Hefei, China, 3Department of Microbiology and Parasitology,
Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui, China
Background: Gingival fibroblasts (GFs), as a critical component of periodontal

tissue, play a vital role in processes such as collagen synthesis, wound healing,

and tissue repair, thereby maintaining the structural integrity of periodontal

tissues. Interestingly, recent studies have revealed that GFs also contribute to

the pathophysiology of periodontitis by promoting inflammatory responses.

However, its specific molecular mechanism and clinical relevance are still not

fully understood.

Methods: To find pro-inflammatory gingival fibroblasts (PIGFs) in periodontitis, a

comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data from

normal and periodontitis patients was conducted. Then, the role of this celltype

in periodontitis was further explored by using cell communication. By merging

bulk transcriptome data and employing multiple machine learning algorithms,

potential feature genes with PIGFs were further screened, which were verified by

qPCR and immunofluorescence staining. Lastly, a cell function test was used to

examine the part these genes play in the pathogenesis of periodontitis.

Results: Through single-cell sequencing analysis, we identified PIGFs which were

closely related to the development of periodontitis. Cell communication analysis

revealed the specific role of PIGFs in periodontitis. Differential gene analysis,

WGCNA, and machine learning algorithms identified two genes (MME and

TSPAN11) as potential therapeutic targets for periodontitis. Immune infiltration

analysis demonstrated a significant correlation between these genes and the

immune response. Functionally, down-regulation of MME and TSPAN11

promoted the proliferation and migration of GFs and significantly inhibited the

release of inflammatory cytokines and chemokines.

Conclusion: This study identified a subpopulation of GFs closely associated with

the inflammatory response through scRNA-seq analysis. These cells may

contribute to the progression of periodontitis by interacting with various
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immune and non-immune cell types. Notably, MME and TSPAN11 were identified

as key genes associated with this specific GFs subpopulation that may drive

disease progression by exacerbating the inflammatory response, suggesting their

potential as therapeutic targets for periodontitis.
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1 Introduction

Periodontitis is a prevalent inflammatory condition that results

in the deterioration of the supportive structures surrounding the

teeth, potentially leading to tooth loss and systemic inflammation

(1). According to statistics, periodontal disease affects 20% to 50%

of people globally. In adults, it is one of the main causes of tooth

loss. Additionally, there was a 57.3% increase in the frequency of

periodontal disease globally between 1990 and 2010 (2).

Periodontitis is caused by dysbiota and dysregulation of immune

homeostasis, and severe periodontitis represents a significant health

and socio-economic burden due to its health effects and high

treatment costs (3, 4). The objectives of prevention and treatment

include managing bacterial biofilms, addressing risk factors,

stopping disease progression, and restoring lost tooth support (5).

Nevertheless, the pathogenic processes behind periodontitis are still

not fully understood (6).

An essential component of periodontal tissue, gingival fibroblasts

(GFs) are in charge of preserving the integrity and structure of the

tissue. Additionally, they can also function as sentinel cells to modulate

the immune system’s reaction to oral infections that invade gingival

tissue and play a part in the etiology of periodontitis (7). GFs are a

crucial “non-classical” element of the innate immune system that

produce cytokines, chemokines, and other inflammatory mediators

in response to signals associated with germs and injury (8). But like

immune cells, when they become overactive, they can cause tissue

damage and chronic inflammation by secreting proteolytic enzymes

including matrix metalloproteinases (MMPs) and cathepsins,

overrecruiting white blood cells, and stimulating the production of

osteoclasts (7). Notably, recent studies have identified specific

subpopulations of pro-inflammatory gingival fibroblasts (PIGFs) in

periodontitis. Qian et al. (9) reported the presence of a CXCL13+ GFs

subpopulation in chronic periodontitis, which contributes to

inflammation and tissue destruction. Therefore, exploring the specific

pathways and key genes associated with this subpopulation may

provide valuable insights for developing targeted therapeutic

strategies for periodontitis in the future.

Conventional transcriptome bulk sequencing can only retrieve

the average quantity of gene expression for distinct cell types in a

sample. Therefore, it is challenging to distinguish and define various

cell states and types using conventional transcriptome bulk

sequencing, which can also lose information on significant cell
02
subtypes (10). Nevertheless, single-cell sequencing is a novel

technique that makes it possible to evaluate gene expression at

the single-cell level. This provides information about tissue and cell

heterogeneity, which is very helpful in understanding how cells

differ among various illnesses (11).

In our study, we performed scRNA-seq analysis to identify

PIGFs, which were most associated with the onset of periodontitis.

By using cell communication analysis, we were able to thoroughly

examine the role of PIGFs in periodontitis tissues. Subsequently, we

combined with WGCNA and machine learning methods using the

bulk RNA-seq dataset to search potential signature genes associated

with PIGFs that may be involved in periodontitis progression. We

also examined the correlation of these genes with immune cells,

immune checkpoints and HLA genes using ssGSEA. Finally, our

study confirmed the expression of PIGFs-related feature genes in

periodontitis by qPCR and Immunofluorescence staining, and

further investigated the role of these genes by cell transfection.

Overall, our research provided a preliminary evaluation of the

potential function of PIGFs in periodontitis and identified key

characteristic genes associated with PIGFs. These findings may

enhance our understanding of the pathogenesis of periodontitis

and offer potential therapeutic targets for its treatment.
2 Materials and methods

2.1 Data acquisition

The GEO database (https://www.ncbi.nlm.nih.gov/geo/)

provided us with the scRNA-seq (GSE164241) and bulk RNA-seq

(GSE16134 and GSE10334) data for analysis. GSE164241 was used

as a single-cell dataset for scRNA-seq research, containing 8

individuals with periodontitis and 13 healthy subjects. In terms of

bulk RNA-seq datasets, GSE16134 consisted of 310 samples, of

which 69 healthy samples and 241 disease samples served as the

training dataset, while GSE10334 consisted of 247 samples, of which

64 normal and 183 illness samples served as the validation dataset.

For the scRNA-seq dataset, the periodontal group inclusion criteria

were defined as moderate to severe periodontitis, characterized by a

probing depth (PD) >5 mm in more than four interproximal sites,

along with clinical signs of inflammation such as erythema, edema,

and bleeding on probing (BoP). For the bulk RNA-seq datasets,
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tissue samples were collected from patients with moderate to severe

periodontitis, with “diseased” sites meeting the following criteria:

BoP, interproximal PD≥3 mm, and concomitant attachment loss

(AL)≥2 mm.
2.2 scRNA-seq data processing

The R “Seurat” software package (version 4.3.1) was utilized for

the processing of scRNA-seq data (12). First, we utilized data

quality techniques to eliminate cells with mitochondrial gene

expression levels above 20% and gene expression levels below 200

or above 4,000 genes in order to ensure that the majority of cells

were included in the data set used. Then, the “LogNormalize”

function was used to normalize the data. After that, we used the

“Harmony” package to remove batch effects between various data

sets in accordance with the provided tutorial before doing principal

component analysis (PCA) (13). We used the TSNE function to

visualize the clustering cells. In order to identify preferentially

expressed genes within clusters, we utilized the “FindAllMarkers”

function in the “Seurat” package with logFC>0.25 and min.pct>0.25

as thresholds. Finally, we annotated each cell cluster using known

cell type marker genes. The subcluster analysis is the same as the

above steps.
2.3 Identification of DEGs

For bulk RNA-seq analysis, we used the “limma” package to

compare differences in the expression of characteristic genes

between samples with and without periodontitis. LogFC > 0.5 and

adjusted p values <0.05 were used as DEG screening criteria.

Heatmaps and volcano maps were used to visualize results.
2.4 The weighted gene co-expression
network analysis network construction and
module identification

The co-expression network was constructed using the

“WGCNA” software. The following networks were made possible

by using a soft threshold to guarantee the network’s scalability.

Topological overlap matrix (TOM)-based hierarchical clustering

was used to generate gene modules with strong linkages after gene

modules were found using hierarchical clustering trees. Disease-

module correlations were evaluated using Pearson’s correlation

coefficient, and genes present in the module that had the highest

disease correlation coefficient were selected for subsequent analysis.
2.5 Acquisition and pathway enrichment of
hub genes

Through the intersection of transcriptome DEGs, PIGFs

differential genes and WGCNA core module genes, PIGFs-related
Frontiers in Immunology 03
hub genes were obtained. Pathway enrichment of GO and KEGG

was performed through the “clusterProfiler” package, and the 10

most significant important signaling pathways were selected.
2.6 Identification of diagnostic markers
through machine learning

To choose the most suitable feature genes, we employed two

machine learning techniques, the random forest (RF) algorithm and

least absolute shrinkage and selection operator (LASSO) regression,

to forecast illness stages and pinpoint crucial diagnostic factors. For

RF analysis, we determined gene relevance and chose the top 5

genes of gene importance using the R “randomForest” package.

Meanwhile, we performed LASSO regression analysis for lambda

min values using the R “glmnet” package. The core genes of PIGFs

were determined to be the intersection genes that were acquired

using the two machine learning techniques.
2.7 Expression levels and diagnostic utility
of potential biomarkers

The study compared and examined the expression levels of

feature genes using the “limma” and “ggpubr” R packages. Boxplots

were utilized to present the findings. Receiver Operating

Characteristic (ROC) curve analysis was performed simultaneously

for each core gene using the “pROC” software, and the area under the

curve (AUC) was calculated (14).
2.8 ssGSEA and GSEA (gene set enrichment
analysis) for the model gene

The ssGSEA algorithm was utilized by R package “GSVA” to

comprehensively evaluate the Hallmark gene set in the study. In

GSEA, genes were defined functionally in order to clarify their

biological significance. The samples were separated into two

categories based on the model’s median gene expression value,

and differential genes between two groups were retrieved for

examination. The relationship between linked gene sets and hub

genes was examined using Spearman analysis.
2.9 Immune correlation analysis

The percentage of 22 immune cells in samples with

periodontitis and healthy samples was evaluated using the

CIBERSORT technique. Afterwards, the relationship between

pivot genes and immune infiltrating cells was examined using the

Spearman coefficient. Additionally, we examined the relationships

between these genes and chemokine-related and HLA genes in

order to look into the immunological role of hub genes in the onset

and progression of periodontitis. It was deemed statistically

significant when P ≤ 0.05.
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2.10 Collection of periodontal tissue
specimens

Samples of gingival tissue, 10 in good health and 10 with

periodontitis, were taken from patients at the Anhui Medical

University’s Affiliated Stomatology Hospital in Hefei, Anhui

Province. The Anhui Medical University Affiliated Stomatology

Hospital’s Ethics Committee reviewed and approved the study

(Ethics number: 2021006). Every participant provided written

informed permission.
2.11 RNA extraction and quantitative real-
time PCR

The TRIzol reagent (Thermo Fisher Scientific, USA) was

utilized to extract the gingival tissues’ total RNA, which was then

reverse-transcribed into cDNA. SYBR premixed solution Ex Taq

(TaKaRa) was used for qRT-PCR. Formula2−DCT was used to

compute the expression value using the comparative CT method,

and each gene’s expression levels were normalized to GAPDH. The

primer sequences for the genes used in this investigation were

reported in Supplementary Table 1.
2.12 Immunofluorescence assay

The collected gingival tissue was fixed, embedded, sliced and

then antigen was extracted. After applying sheep serum to the slide,

the primary antibody was incubated overnight. We used a

secondary antibody that recognized the primary antibody to stain

the sections for an hour at room temperature, and then we used

DAPI to stain them for three minutes. The stained slices were

photographed using an imaging Zeiss 800 laser scanning

confocal microscope.
2.13 Cell culture

Gingival tissues were obtained as described above. Use PBS

gingival tissue and then cut the gingival tissue into small pieces,

which was used in Dulbecco’s modified Eagle medium (a-MEM;

Gibco, USA) and 10% fetal bovine serum (OriCell, China) at 37°C

and 5% CO2. Seven days later, primary cells began to proliferate

outside the tissue block. When the cells reach 80% confluent, they

are passed and cultured. We used cells from passages 4-8. GFs were

cultured with Porphyromonas gingivalis lipopolysaccharide (Pg-

LPS, InvivoGen, France) for 6 hours to induce periodontitis in vitro.
2.14 Cell transfection

MME and TSPAN11 were targeted using short interfering RNA

(siRNA) and negative control (NC) oligonucleotides (Supplementary
Frontiers in Immunology 04
Table 2). To conduct the cell culture experiment, GFs were inoculated

in a 6-well plate. Liposome 2000 (Invitrogen, USA) was applied to the

cells at a final concentration of 25 nM together with siRNA or

control (General, Anhui, China) in accordance with the

manufacturer’s instructions.
2.15 Proliferation assay with cell counting
kit 8

Each 96-well plate was inoculated with 4,000 cells, and after

transfection 0, 24, 48, 72, and 96 hours, 10 ml of CCK-8 reagent was
added to the culture medium. After an hour of incubation at 37°C,

the cells’ absorbance was measured with a microplate reader at

450 nm.
2.16 Wound healing test

After transferring transfected GFs to a 6-well plate, 80% fusion

was achieved. After scraping the single cell layer with the tip of a 100

ml pipette and washing the cells three times with PBS to get rid of

cell debris, the cells were then given fresh media that was free of

serum. After scraping for 0 and 24 hours, representative pictures of

cell migration were taken in three distinct high-magnification fields.

Estimate the scratch’s width using the ImageJ program.
2.17 Statistical analysis

GraphPad Prism 8.0 and R software (version 4.3.1) were used

for data processing and analysis. The data was expressed using the

mean ± standard deviation. The unpaired T-test was the preferred

statistical analysis approach, with a significance threshold of P-

value <0.05.
3 Results

3.1 Identification of PIGFs by scRNA-seq
analysis

We used the “Seurat” program in R to examine the scRNA-seq

data from GSE164241. Following batch correction using PCA, no

significant batch effects were observed (Figure 1A). Subsequently, a

total of 15 distinct cell types were identified from 21 gingival

samples, including T cells, NK cells, endothelial cells, GFs, plasma

B cells, vascular murals, epithelial cells, neutrophils, macrophages,

myeloid dendritic cells (mDCs), plasmacytoid dendritic cells

(pDCs), B cells, Masts, melanocytes and proliferative cells

(Figures 1B, C). The surface markers used for annotating each

cell type are shown in Figure 1D. Figure 1E illustrated the genes and

biological functions that were specifically and highly expressed

within each of the 15 major cell clusters. The percentage of each
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cell type in the control and periodontitis samples was displayed in

Figure 1F. Notably, the percentage of GFs was lower in periodontitis

samples compared to the normal group, suggesting their potential

involvement in the pathogenesis of periodontitis.
Frontiers in Immunology 05
We re-clustered the GFs according to the above steps and

identified a total of 5 GFs subclusters (Figure 2A). Interestingly,

we discovered that, in comparison to the normal group,

periodontitis samples had a much higher proportion of GFs
FIGURE 1

Single-cell analysis of cell proportion of periodontitis. (A) PCA plot showing the elimination of batch effects between different samples. (B) Cells on
the t-SNE plot of all 21 samples were colored as originating from normal and periodontitis patients. (C) The t-SNE plot visualizes the distribution of
15 cell types in gingival samples. (D) Bubble maps were used to display surface-annotated genes for various cell types. (E) Heatmap showing
representative differentially expressed genes between each celltype. The left panel depicts the dynamic expression patterns of representative DEGs
across each cell type. The right panel presents the corresponding biological functions and pathways associated with each cell type, as identified
through GO and KEGG analysis. (F) Cell proportions of 15 cell types originating from normal and periodontitis samples. GFs, Gingival fibroblasts;
DEGs, differentially expressed genes.
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cluster 0 (Figure 2B). Furthermore, some inflammatory cytokines

and chemokines are highly expressed in it, such as CXCL1, CXCL2,

CXCL6, CXCL13 and IL-24. Afterwards, we conducted functional

and pathway enrichment analyses on the cluster, revealing
Frontiers in Immunology 06
significant enrichment of multiple inflammation-related functions

and pathways, including cellular response to lipopolysaccharide

(LPS) and bacterial-derived molecules, as well as the chemokine,

NF-kB, and TNF signaling pathways (Figure 2C). Based on these
FIGURE 2

scRNA-seq analysis reveals heterogeneity of PIGFs subtypes in periodontitis samples. (A) Subclustering of GFs in normal and periodontitis samples
further identified 5 distinct subtypes. (B) Cell proportions of GFs subclusters in the gingival tissues of normal and periodontitis patients. (C) Heatmap
showing representative differentially expressed genes in each GFs subpopulation. The C1-C5 clusters represent the gene expression patterns of
these different subpopulations as depicted by the gene trend plots on the left. The enriched gene ontology (GO) biological processes associated
with each GFs subpopulation are shown on the right. (D-G) GSEA enrichment plots for representative signaling pathways upregulated in PIGFs
compared to other GFs. GFs, Gingival fibroblasts; PIGFs, Pro-inflammatory gingival fibroblasts.
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findings, we labeled the cluster as pro-inflammatory gingival

fibroblasts (PIGFs). Furthermore, GSEA was performed to

explore the biological pathways associated with PIGFs. The

results demonstrated that PIGFs were linked to several

inflammatory signaling pathways, including cytokine-cytokine

receptor interaction, NOD-like receptor signaling pathway, toll-

like receptor signaling pathway and chemokine signaling pathway,

all of which were strongly associated with the pathophysiology of

periodontitis (Figures 2D-G).
3.2 Cell-cell communications analyses
in PIGFs

By employing the “CellChat” algorithm, we investigated cell-

cell communication and elucidated the role of PIGFs in

disease pathophysiology. The results demonstrated that PIGFs

engaged in extensive cellular interactions within the periodontal

microenvironment (Figure 3A). Furthermore, PIGFs exhibited a

broader capacity for both signal reception and transmission

compared to other GFs (Figures 3B, C). Figure 3D presented cell

interaction networks for PIGFs and other GFs, respectively. Notably,

PIGFs exhibited stronger interactions with both immune and non-

immune cell populations compared to other GFs. To further delineate

these interactions, we analyzed and compared the specific ligand-

receptor pairs associated with PIGFs. The analysis revealed that, in

comparison to other GFs, PIGFs specifically interacted with

neutrophils and macrophages via CSF1-CSFR1 and IL-34-CSFR1.

Additionally, PIGFs engaged with T cells through the MIF-(CD74

+CD44) signaling pathway (Figures 3E, F). These specific signaling

pathways suggested that PIGFs might have enhanced immune cell

recruitment, thereby exacerbating inflammatory responses and

contributing to periodontal tissue damage. Interestingly, PIGFs

were observed to interact with endothelial cells via CXCL1/CXCL3/

CXCL6-ACKR1. Previous studies have suggested that endothelial

cells expressing ACKR1 can be activated by pro-inflammatory

chemokines, leading to increased local vascular permeability. This,

in turn, facilitates the infiltration of immune cells into inflamed

tissues, potentially amplifying the inflammatory response and

contributing to tissue destruction (15). These findings suggested

that PIGFs may play a role in enhancing vascular permeability in

endothelial cells, thereby exacerbating immune responses and

aggravating tissue damage.
3.3 Identification of differentially
expressed genes

The above findings suggest that PIGFs may play a role in the

progression of periodontitis by exacerbating the inflammatory

response. Therefore, identifying and targeting PIGFs-related genes

may offer potential therapeutic strategies for periodontitis. To

identify genes associated with PIGFs, we integrated bulk

transcriptome data and analyzed DEGs between healthy and
Frontiers in Immunology 07
disease samples. We identified 1105 DEGs in GSE16134 using the

“limma” package, of which 651 were up-regulated and 454 down-

regulated. Figure 4A displayed the top 30 DEGs with the greatest

differences, while Figure 4B displayed the differential genes

volcano map.
3.4 WGCNA network construction and
module identification

Subsequently, we performed WGCNA to identify core modules

and genes associated with the pathogenesis of periodontitis. A

robust sample clustering was achieved by checking for outliers

and selecting an appropriate cutting threshold. To construct a scale-

free network, a power of b = 5 was chosen (Figure 4C). The co-

expression network that was constructed comprised of 11 modules.

The modules most relevant to the disease were obtained by

calculating their correlation coefficients (r) and P-values. With the

highest positive association (r = 0.67), the turquoise module

contained 690 genes that were used in further research

(Figures 4D, E). In addition, scatter plots of gene significance in

the module in relation to module membership indicated that these

genes were suitable for gene mining (Figure 4F).
3.5 Acquisition and pathway enrichment of
hub genes

In the scRNA-seq analysis, a total of 243 up-regulated and 70

down-regulated genes in PIGFs were obtained compared to other

GFs subpopulations for logFC>0.25 and min.pct>0.25 threshold

and Supplementary Table 3 listed these genes. Subsequently, 25

commonly up-regulated genes and 2 down-regulated genes were

obtained through the intersection of periodontitis differential genes,

PIGFs differential genes and WGCNA core module genes

(Figures 5A, B). The expression levels of these 27 potential

signature genes in GSE16134 were shown using boxplots

(Figure 5C). The results of our analysis of correlations between

these unique genes indicated that these 27 genes may be closely

related to each other (Figure 5D). Potential feature genes in GO

enrichment analysis were shown to be enriched in cellular response

to cell chemotaxis, LPS and granulocyte migration (Figure 5E).

According to the KEGG enrichment analysis, these genes showed a

substantial enrichment in pathways linked to several inflammatory

signaling pathways, including NF-kB signaling pathway, chemokine

signaling pathway, cytokine-cytokine receptor interaction, TNF

signaling pathway and IL-17 signaling pathway (Figure 5F).
3.6 Identification the best characteristic
genes of periodontitis by machine learning

To explore potential feature genes linked to PIGFs in

periodontitis, we chose the machine learning techniques LASSO
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FIGURE 3

Cell communication analysis in GFs subpopulations. (A) Circle plots depict the number and strength of ligand-receptor interactions between pairs of
cell populations. (B) A scatter plot reveals the variations in incoming and outgoing interaction strengths across all cell types. (C) The outgoing and
incoming signaling patterns of GFs and other cell populations. (D) Circle plots depict the number and intensity of interactions between other GFs
and PIGFs and other cells, respectively. The edges indicated the strength of the interactions, with thicker edges indicating stronger interactions.
Numbers on the edges indicated the number of communication signals between the two cell types. (E, F) Bubble plot showing the significant
ligand-receptor pairs between other GFs and PIGFs and other cells, respectively. The size of each dot represents the significance level (p-value), with
larger dots indicating greater statistical significance. The color gradient reflects the strength of cellular communication, where redder hues denote
stronger interactions. GFs, Gingival fibroblasts; PIGFs, Pro-inflammatory gingival fibroblasts.
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and RF for further analysis. 14 genes were produced by using the 27

genes mentioned above as inputs for LASSO regression (Figures 6A,

B). We employed the RF algorithm to obtain 5 genes (Figures 6C, D).

Lastly, we utilized the intersections of these gene sets to determine

that MME and TSPAN11 were the most relevant characteristic genes
Frontiers in Immunology 09
linked to PIGFs (Figure 6E). Supplementary Figures 1A, B showed

that these genes were primarily highly expressed in PIGFs, suggesting

a close association with them. To validate the expression patterns of

these key genes, we evaluated them using the training set GSE16134

and the validation set GSE10334. Consistent with the validation set’s
FIGURE 4

DEGs and WGCNA analysis in GSE16134. (A) Heatmap of DEGs. (B) Volcano plot of DEGs. (C) Soft threshold determination in GSE16134
(D) Clustering dendrogram of filtered genes based on a dissimilarity measure of topological overlap matrix. (E) Heatmap of module-trait correlations
by WGCNA. (F) Scatter plot of gene significance for periodontitis and module membership in the MEturquoise module. DEGs, differentially expressed
genes; WGCNA, Weighted gene co-expression network analysis.
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results, our analysis showed that patients with periodontitis had

increased expression levels of MME and TSPAN11 (Figures 6F, G).

Additionally, we explored the potential relevance of these four genes

in periodontitis using ROC curve analysis. The AUC values of the two

genes, MME and TSPAN11, in the training set GSE16134 were 0.906

and 0.852, respectively (Figure 6H). Additionally, the AUC values for

all five genes were greater than 0.8 in validation set GSE10334,

highlighting a possible association with periodontitis (Figure 6I).
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3.7 The ssGSEA and GSEA analysis

To further explore the biological functions, pathways, and

correlations of the feature genes MME and TSPAN11, we

conducted analyses using GSEA and ssGSEA algorithms. The

GSEA results showed that MME and TSPAN11 were associated

with a variety of inflammatory signaling pathways, including NF-

kB signaling pathway, toll-like receptor signaling pathway, NOD-
FIGURE 5

Expression analysis and functional enrichment of potential feature genes. (A) Venn diagram of the intersection of differentially upregulated genes in
periodontitis, differentially upregulated genes in single-cell periodontitis PIGFs and WGCNA core module genes. (B) Venn diagram of the intersection
of differential genes down-regulated in periodontitis, differential genes down-regulated in single-cell periodontitis osteoblasts and WGCNA core
module genes. (C) Expression analysis of 27 potential feature genes between normal and periodontitis samples. (D) Correlation analysis between
potential feature genes. (E) Enrichment analysis of potential feature genes using GO. (F) Enrichment analysis of potential feature genes using the
KEGG. *p < 0.05, **p < 0.01, ***p < 0.001. DEGs, differentially expressed genes; WGCNA, Weighted gene co-expression network analysis.
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like receptor signaling pathway and T cell receptor signaling

pathway (Figures 6J, K). Furthermore, we employed ssGSEA

algorithms to evaluate 50 marker gene sets in periodontitis and

found that multiple gene sets were significantly upregulated in
Frontiers in Immunology 11
periodontitis (Supplementary Figure 2A). We then investigated the

association of two characteristic genes with these gene sets and

found that MME and TSPAN11 were significantly associated with

multiple gene sets (Supplementary Figure 2B).
FIGURE 6

Machine learning identifies optimal feature genes of periodontitis. (A) Coefficient changes of the selected features using the lasso algorithm.
(B) Lasso algorithm for selection features. (C) The impact of the number of decision trees on the error rate was examined. (D) The relative
importance of potential feature genes was calculated in random forest (Top 5 genes’ importance > 2). (E) Venn diagram showing the overlap
between the three algorithms. (F) MME and TSPAN11 mRNA expression in the training group. (G) MME and TSPAN11 mRNA expression in the testing
group. (H) ROC curves of MME and TSPAN11 in the training group. (I) ROC curves of MME and TSPAN11 in the testing group. (J, K) GSEA identifies
signaling pathways involved in MME and TSPAN11. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1537046
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1537046
3.8 Cell-cell communication analysis in
MME and TSPAN11-associated GFs

To further elucidate the functional role of hub genes in PIGFs, we

employed scRNA-seq to classify PIGFs into positive (MME+ and

TSPAN11+) and negative (MME- and TSPAN11-) GFs based on hub

gene expression profiles. Comparative analysis revealed that MME+

and TSPAN11+ GFs exhibited significantly enhanced intercellular

communication capabilities, demonstrating both increased

interaction intensity and number compared to their negative

counterparts (Figures 7A-D). Detailed investigation of cellular

interactions demonstrated that MME+ GFs, functioning as signal

senders, established robust communication networks with multiple

cell types, including neutrophils, T cells, macrophages, and

endothelial cells (Figure 7E). The molecular mechanisms

underlying these interactions were defined by specific ligand-

receptor pathways, which were uniquely observed in MME+ GFs,

acting on target cells through the following pathways: (1) macrophage

interaction via GSF1-GSFR1, IL34-CSFR1, MIF-(CD74+CD44), and

MIF-(CD74+CXCR4) pathways; (2) neutrophil regulation through

MIF-(CD74+CD44) and SAA1-FPR2 pathways; (3) T cell

modulation via CCL19-CCR7, MIF-(CD74+CD44), and MIF-

(CD74+CXCR4) pathways; and (4) endothelial cell signaling

through CXCL3/CXCL6/CXCL8-ACKR1 pathways (Figure 7F).

Similarly, TSPAN11+ GFs displayed enhanced immunomodulatory

properties compared to TSPAN11- GFs (Figure 7G), establishing

significant interactions with immune cells through distinct molecular

pathways that were uniquely associated with the TSPAN11+

population: (1) macrophage regulation via the specific IL34-CSFR1

and MIF-(CD74+CXCR4) pathways; (2) neutrophil interaction

through the unique SAA1-FPR2 pathway; (3) T cell modulation

mediated by the exclusive CCL19-CCR7, MIF-(CD74+CD44), and

MIF-(CD74+CXCR4) pathways; and (4) endothelial cell signaling

through the specific CXCL3/CXCL6/CXCL8-ACKR1 pathways

(Figure 7H). Additionally, we analyzed the biological pathways of

DEGs between the positive and negative subpopulations of these two

genes to uncover their associated biological pathways. KEGG

enrichment analysis of the DEGs revealed upregulation of several

inflammation-related signaling pathways, including NF-kB, IL-17,
and TNF signaling pathways, in MME+ and TSPAN11+ GFs

(Supplementary Figures 3A, B). In conclusion, these findings

suggest that GFs expressing MME and TSPAN11 may possess a

strong ability to interact with immune cells, potentially exacerbating

immune responses and promoting the development of periodontitis.
3.9 The correlation between characteristic
genes and immune cells

Subsequently, we further used the scRNA-seq data and bulk

RNA-seq data to investigate the correlation between these two

characteristic genes and immune cells. The Spearman coefficient

was used to evaluate the correlation of MME and TSPAN11 with

various cell types at the single-cell level, and the results showed that

MME and TSPAN11 were positively correlated with neutrophils,
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NK and T cells (Figure 8A). For bulk RNA-seq analysis, we first

employed the CIBERSORT algorithm to explore and compare

immune cell infi ltration patterns between normal and

periodontitis samples. The results revealed significant alterations

in the proportions of multiple immune cell populations in both

normal and periodontitis samples (Figure 8B). Specifically,

periodontitis samples exhibited a marked upregulation in the

infiltration levels of various immune cells, including neutrophils

and plasma cells, which aligned with our scRNA-seq findings

(Figure 8C). Subsequently, the relationship between immune cells

and the identified PIGFs-related hub genes was investigated. The

analysis revealed strong associations between these genes and

specific immune cell populations. Specifically, MME showed a

positive correlation with memory B cells and neutrophils, while

TSPAN11 was positively correlated with Tregs, M2 macrophages,

and neutrophils but negatively correlated with M1 macrophages

(Figures 8D, E). Additionally, we explored the relationships

between these genes and immune-related gene families, including

HLA genes and chemokine-related genes, to elucidate their

potential roles in immune regulation. The results indicated

significant correlations between these genes and several

chemokine-related genes and HLA genes (Figures 8F-H). In

conclusion, MME and TSPAN11 were closely associated with

diverse immune cells, chemokine-related genes and HLA genes,

suggesting their potential role in mediating immune responses in

the pathogenesis of periodontitis. These findings provided novel

insights and potential therapeutic targets for the treatment

of periodontitis.
3.10 Experimental verification

The bioinformatics analysis in this study indicated that MME

and TSPAN11 expression was upregulated in periodontitis samples.

To validate these findings, we performed qPCR to compare their

expression levels between healthy and inflamed gingival tissues.

Consistently, the qPCR results confirmed a significant upregulation

of MME and TSPAN11 in inflamed gingival samples compared to

healthy controls (Figure 9A). Meanwhile, we cultured GFs with LPS

in vitro to simulate the inflammatory environment of periodontitis

and evaluate the expression changes of these genes. As expected,

qPCR analysis revealed a dose-dependent increase in MME and

TSPAN11 expression with rising LPS concentrations (Figure 9B).

Furthermore, immunofluorescence staining was performed to

determine the localization of MME and TSPAN11 within gingival

tissue. The results showed that both proteins were predominantly

expressed in GFs, with higher levels observed in periodontitis

tissues compared to healthy controls. These findings suggest that

MME and TSPAN11 may play a functional role in GFs during the

progression of periodontitis (Figures 9C, D).

Additionally, we investigated the function of MME and TSPAN11

in gingival fibroblasts (GFs). qRT-PCR results showed that the

expression of MME and TSPAN11 was significantly downregulated

following treatment with siRNA fragments. Among the three siRNAs

used for knockdown, si-MME-2 and si-TSPAN11-3 were selected for
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FIGURE 7

Cell-Cell Communication Analysis in MME and TSPAN11-Associated GFs. (E) A scatter plot showing the strength of input and output interactions
between MME-associated GFs and other cell types. (B) A heatmap illustrating the strength and number of interactions between MME-associated GFs
and other cell types. (C) A scatter plot showing the strength of input and output interactions between TSPAN11-associated GFs and other cell types.
(D) A heatmap illustrating the strength and number of interactions between TSPAN11-associated GFs and other cell types. (E) A communication
network associated with MME. The edges indicate the strength of interactions, with thicker edges representing stronger interactions. Numbers on
the edges denote the number of communication signals between the two cell types. (F) A bubble plot showing the ligand-receptor pairs between
MME- and MME+ GF subpopulations and other cells. The size of each dot represents the significance level (p-value), with larger dots indicating
greater statistical significance. The color gradient reflects the strength of cellular communication, where redder hues denote stronger interactions.
(G) A communication network associated with TSPAN11. (H) A bubble plot showing the ligand-receptor pairs between TSPAN11- and TSPAN11+ GF
subpopulations and other cells. GFs, Gingival fibroblasts.
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further studies due to their higher silencing efficiency in GFs

(Figure 9E). CCK-8 assay results revealed that downregulation of

MME and TSPAN11 significantly promoted the proliferative activity

of GFs (Figure 9F). Moreover, wound healing assays demonstrated that
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silencing MME and TSPAN11 enhanced the invasion and migration

abilities of GFs (Figures 9G, H). Given that KEGG pathway analysis

indicated significant elevation of multiple inflammatory pathways in

MME+ GFs and TSPAN11+ GFs, we further examined the effect of
FIGURE 8

Immune cell infiltration analysis. (A) The association between MME and TSPAN11 and cell type was analyzed using scRNA-seq data. (B) A stacked bar
plot depicting the relative abundance of immune cell types in normal and periodontitis groups. (C) Boxplot illustrating the proportion of 22 different
kinds of immune cells in periodontitis versus normal samples. (D) The correlation between immune cells and their association with key characteristic
genes. (E) A heatmap illustrating the correlation between MME, TSPAN11, and 22 types of infiltrating immune cells. (F, G) Heatmaps illustrating the
correlation between chemokine-related genes and 2 feature genes. (H) A heatmap illustrating the correlation between HLA-related genes and
2 feature genes. *p < 0.05, **p < 0.01, ***p < 0.001. ns, no significance; GFs, Gingival fibroblasts.
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MME and TSPAN11 on downstream inflammatory cytokines and

chemokines. Our findings revealed that downregulation of MME and

TSPAN11 markedly reduced the expression of IL-1b, IL-6, IL-8,
CXCL1, CXCL2, CXCL13, and CCL2 in GFs treated with LPS
Frontiers in Immunology 15
(Figures 9I, J). Collectively, these results strongly suggest that MME

and TSPAN11 play critical roles in regulating GFs’ inflammatory

responses and cellular behaviors, highlighting their potential as

therapeutic targets for periodontitis.
FIGURE 9

Expression and functional validation of characterized genes. (A) qRT-PCR results show the mRNA expression levels of MME and TSPAN11 in the
gingivae of individuals in the healthy and periodontitis groups. GAPDH was used for normalization relative to the control group. (B) Expression levels
of MME and TSPAN11 mRNA in GFs cultured with LPS concentration. (C) Immunofluorescence staining of MME, in which vimentin positive
represents GFs. (D) Immunofluorescence staining of TSPAN11, in which vimentin positive represents GFs. (E) qRT-PCR analysis of MME and TSPAN11
expression in GFs cells treated with siRNAs. (F) The proliferation capacity of GFs transfected with NC, si-MME and si-TSPAN11 was detected by
CCK-8 assay. (G) The migration and invasion ability of the cells treated with si-NC and si-MME were detected by wound healing. (H) The migration
and invasion ability of the cells treated with si-NC and si-TSPAN11 were detected by wound healing. (I) The expression of various pro-inflammatory
cytokines and chemokines in GFs transfected with si-NC and si-MME. (J) The expression of various pro-inflammatory cytokines and chemokines in
GFs transfected with si-NC and si-TSPAN11. Data were shown as mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001. GFs, Gingival fibroblasts.
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4 Discussion

With the advent of scRNA-seq technology, single-cell

expression profiling has enabled the exploration of disease

pathogenesis at the cellular level, overcoming the information loss

inherent in conventional transcriptomic sequencing and offering

novel insights into the identification of potential disease-associated

genes. In this study, we integrated scRNA-seq and bulk RNA-seq

analyses to investigate the underlying mechanisms of periodontitis

pathogenesis. After processing and analyzing the scRNA-seq data,

we a distinct subpopulation of GFs that was strongly associated with

inflammatory responses, and their proportion in periodontitis was

greater than that of healthy controls. Analysis of its cellular

interactions showed that PIGFs showed stronger cellular

communication ability compared with other GFs subtypes,

indicating its importance in the pathogenesis of periodontitis. To

validate our findings, we analyzed another periodontitis-related

scRNA-seq dataset (GSE171213), further reinforcing the

robustness and reliability of our results (Supplementary

Figures 4A-L). Additionally, to identify characteristic genes

closely associated with this subpopulation, we integrated the

uniquely highly expressed genes within this subset with DEGs

and modular core genes from bulk RNA-seq data, ultimately

identifying a total of 27 candidate genes. LASSO regression and

RF, two machine learning algorithms, were finally utilized to

determine the two best signature genes (MME and TSPAN11)

that are highly related with the onset or progression of

periodontitis. ROC analysis suggested their potential relevance in

disease risk assessment. Through immunoinfiltration analysis, we

discovered that they were strongly connected to a range of immune

cells, HLA-related genes, and chemokine-related genes, indicating a

close relationship between these characteristic genes and immunity.

Finally, we explored the functions of these two genes through a

variety of experimental techniques and found that inhibition of

these two genes can promote the proliferation and migration of GFs

and inhibit the production of inflammatory factors in GFs. In

conclusion, our study identifies PIGFs associated with

periodontitis and reveals their role in the pathogenesis of

periodontitis. MME and TSPAN11, two characteristic genes

associated with PIGFs, may become targets for the treatment of

periodontitis in the future.

Previous studies have shown that GFs (6, 8, 16) and epithelial

cells (6, 17), the primary cellular components of gingival mucosal

tissue, contribute to the inflammatory phase of periodontitis by

secreting chemokines such as CXCL1, CXCL2, CXCL12, CCL2, and

CCL19, which play a crucial role in recruiting lymphocytes and

neutrophils to the affected gingival tissue and amplifying the

inflammatory response (18). Moreover, GFs overproduce

additional inflammatory mediators, such as prostaglandin E2

(PGE2), MMPs (MMP1, MMP3, MMP8, and MMP9), and

cytokines (IL-1b and IL-6) (19, 20). In this study, we found that

PIGFs have a strong ability to output signals by “cellchat” analysis.

It can participate in the occurrence of periodontitis by releasing a

variety of chemokines to interact with other cells. Specifically,

PIGFs may interact with NK/T cells, mDC, and B cells through
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CXCL12-CXCR4 axis, which may recruit multiple immune cells to

the site of inflammation thereby destroying the integrity of

periodontal tissue. In addition, it can act on endothelial cells via

the CXCL1/ACKR1 and CXCL13/ACKR1 axes, and we

hypothesized that this may promote endothelial cell angiogenesis,

leading to gingival bleeding in periodontitis. The above results

indicated the important regulatory role of PIGFs in the

periodontal inflammatory process.

By integrating the PIGF signature gene with WGCNA and

various machine learning approaches, we identified two key

signature genes associated with PIGFs that may play a significant

role in the progression of periodontitis. The MME gene is located

on human chromosome 3q21-27, which functions as a tumor

suppressor and is linked to a number of malignancies (21). It can

also regulate inflammatory responses and insulin signaling in white

preadipocytes (22). Furthermore, it encodes for a neutral

endopeptidase, the expression of which is associated with the

severity of the periodontitis and is mostly expressed on

neutrophils and GFs associated with periodontitis (23). There are

few studies on TSPAN11. The orientation of bone stroma tissue is

reported to be determined by TSPAN11-mediated fibrous adhesion

patch assembly. TSPAN11 silencing significantly disrupts the

arrangement of osteoblasts, and the arrangement is orthogonal as

the bone matrix is further constructed (24). This study revealed that

MME and TSPAN11 are primarily expressed in fibroblasts, and the

results of immunological correlation and cell communication

suggest that they are intimately associated with several immune

cells. Functionally, inhibition of these two genes in fibroblasts

resulted in downregulation of several inflammatory cytokines and

chemokines, which is consistent with bioinformatics results,

suggesting that these two genes may be targets for the treatment

of periodontitis.

The research has certain shortcomings. First, our research

mainly used publicly accessible scRNA-seq and bulk RNA-seq

data, which lacked essential clinical details such as the severity,

stage, or grading of periodontitis. Consequently, the absence of

comprehensive clinical context may limit our ability to fully explore

the role of PIGFs in periodontitis across different disease stages or

severity levels. Future studies incorporating well-annotated clinical

data would help to further elucidate the functional contributions of

PIGFs in periodontitis progression. Second, although we used the

“Cell Chat” package in R to explore the interactions of PIGFs with

other cells in the pathogenesis of periodontitis, these results require

further validation. Additionally, in vitro experiments suggest that

PIGFs-related hub genes may contribute to the development of

periodontitis by mediating the release of inflammatory factors from

GFs. However, the specific mechanism of its action still needs

further study. Finally, we used immunofluorescence staining and

qPCR to confirm the outcomes of the bioinformatics analysis.

Nevertheless, considering the specificity of patient samples and

the limited applicability of gingival tissue excision in clinical

diagnostics, further validation using non-invasive approaches,

such as saliva and gingival crevicular fluid, and large-scale clinical

cohorts is needed to assess the broader relevance of these

feature genes.
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5 Conclusion

By scRNA-seq analysis, we identified a subpopulation of

fibroblasts closely related to the inflammatory response, which may

interactively participate in the pathogenesis of periodontitis by

exacerbating the immune response. Additionally, we identified two

genes (MME and TSPAN11) associated with this subpopulation that

may be involved in the pathogenesis of periodontitis by promoting

immune cell recruitment and exacerbating the immune response.

Functionally, inhibiting these two genes can promote the

proliferation and migration of GFs and reduce the production of

chemokines and inflammatory factors in GFs, thereby mitigating the

progression of periodontitis. Our study may provide novel insights

into the pathophysiology of periodontitis, highlighting the critical

role of GFs subpopulations and their associated genes in disease

development, which may provide hope for more effective treatments

for periodontitis.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at GEO data repository (https://www.ncbi.nlm.nih.

gov/geo/) and includes the accession numbers: GSE164241,

GSE16134, and GSE10334.
Ethics statement

The studies involving humans were approved by Anhui Medical

University Affiliated Stomatology Hospital’s Ethics Committee

(Ethics number: 2021006). The studies were conducted in

accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

EW: Conceptualization, Data curation, Formal Analysis,

Software, Writing – original draft, Writing – review & editing.

FG: Data curation, Writing – original draft. QZ: Formal Analysis,

Writing – original draft. ZG: Investigation, Writing – original draft.

YZ: Methodology, Writing – original draft. JL: Project

administration, Writing – original draft. XY: Resources, Writing –

original draft. WB: Methodology, Writing – original draft. XZ: Data

curation, Writing – original draft. FL: Conceptualization, Writing –

original draft. SY: Project administration, Writing – original draft.

YW: Supervision, Writing – review & editing. QW: Writing –
Frontiers in Immunology 17
review & editing, Funding acquisition. WS: Funding acquisition,

Writing – review & editing, Writing – original draft.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the National Natural Science Foundation of China (82071770);

Research Level Improvement Project of Anhui Medical University

(2021xkjT001); Basic and Clinical Cooperative Research and

Promotion Program of Anhui Medical University (2021xkjt039);

Natural Science Foundation of Anhui Province (2208085QH245);

the National Natural Science Foundation of China (82201127).
Acknowledgments

The authors thank the GEO database for the information provided.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1537046/full#supplementary-material
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1537046/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1537046/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1537046
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1537046
References
1. Shang J, Liu H, Zheng Y, Zhang Z. Role of oxidative stress in the relationship
between periodontitis and systemic diseases. Front Physiol. (2023) 14:1210449.
doi: 10.3389/fphys.2023.1210449

2. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global
prevalence of periodontal disease and lack of its surveillance. ScientificWorldJournal.
(2020) 2020:2146160. doi: 10.1155/2020/2146160

3. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis
Primers. (2017) 3:17038. doi: 10.1038/nrdp.2017.38

4. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global,
regional, and national incidence, prevalence, and years lived with disability for 301
acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic
analysis for the Global Burden of Disease Study 2013. Lancet. (2015) 386:743–800.
doi: 10.1016/s0140-6736(15)60692-4

5. Northridge ME, Kumar A, Kaur R. Disparities in access to oral health care.
Annu Rev Public Health. (2020) 41:513–35. doi: 10.1146/annurev-publhealth-
040119-094318

6. Williams DW, Greenwell-Wild T, Brenchley L, Dutzan N, Overmiller A, Sawaya
AP, et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating
tissue immunity. Cell. (2021) 184:4090–104.e15. doi: 10.1016/j.cell.2021.05.013

7. Davidson S, Coles M, Thomas T, Kollias G, Ludewig B, Turley S, et al. Fibroblasts
as immune regulators in infection, inflammation and cancer. Nat Rev Immunol. (2021)
21:704–17. doi: 10.1038/s41577-021-00540-z

8. Wielento A, Lagosz-Cwik KB, Potempa J, Grabiec AM. The role of gingival
fibroblasts in the pathogenesis of periodontitis. J Dent Res. (2023) 102:489–96.
doi: 10.1177/00220345231151921

9. Qian SJ, Huang QR, Chen RY, Mo JJ, Zhou LY, Zhao Y, et al. Single-cell RNA
sequencing identifies new inflammation-promoting cell subsets in asian patients with
chronic periodontitis. Front Immunol . (2021) 12:711337. doi: 10.3389/
fimmu.2021.711337

10. Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with
single-cell sequencing. Nat Rev Cancer. (2017) 17:557–69. doi: 10.1038/nrc.2017.58
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