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Pemphigoid diseases constitute a group of organ-specific autoimmune diseases

characterized and caused by autoantibodies targeting autoantigens expressed in

the skin and mucous membranes. Current therapeutic options are still based on

unspecific immunosuppression that is associated with severe adverse events.

Biologics, targeting the IL4-pathway or IgE are expected to change the treatment

landscape of pemphigoid diseases. However, clinical studies demonstrated that

targeting these pathways alone is most likely not sufficient to meet patient and

healthcare partitioners expectations. Hence, model systems are needed to

identify and validate novel therapeutic targets in pemphigoid diseases. These

include pre-clinical animal models, in vitro and ex vivo model systems,

hypothesis-driven drug repurposing, as well as exploitation of real-world-data.

In this review, we will highlight themedical need for pemphigoid diseases, and in-

depth discuss the advantages and disadvantages of the available pemphigoid

disease model systems. Ultimately, we discuss how rapid translation can be

achieved for the benefit of the patients.
KEYWORDS
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Introduction

Pemphigoid diseases (PD) constitute a group of rare autoimmune skin disorders. Based

on target antigen, autoantibody isotype and clinical presentation, seven PD subtypes are

differentiated (1). Of note, despite recent advances (2) there are still unrecognized

autoantigens in a minority of PD patients (3, 4). PD are characterized by autoantibodies

targeting components of the dermal-epidermal junction, resulting in split formation and

inflammation. This process typically necessitates the activation of myeloid cells, but events

triggered by target engagement of autoantibodies have also been directly linked to

subepidermal blister formation (Figure 1). The subepidermal split formation is

characteristic for PD and differentiates them from other autoimmune bullous

dermatoses (AIBD) (5). In this section, we provide a brief introduction into each PD

and highlight the specific unmet medical need.
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Bullous pemphigoid

Bullous pemphigoid (BP) is the most common pemphigoid

disease, with an incidence of 20 cases per million in Germany (6).

However, this incidence varies globally and is increasing over time

(7). A significant factor contributing to this rise is the aging

population and the use of medications that can trigger BP (8).
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BP predominantly manifests in individuals in their late 70s. In those

aged over 80 years, the incidence surges to 150-330 cases per million

per year (1, 9–14). The clinical presentation of BP is heterogenous,

ranging from pruritus without evidence of skin lesions to dense

blistering on inflamed skin (15) and is characterized by the

autoimmune response targeting two structural components of

hemidesmosomes, namely BP180 (type XVII collagen, COL17)
FIGURE 1

Pathogenesis of pemphigoid diseases. Schematic of the current understanding of pemphigoid disease pathogenesis. (A) Loss of tolerance leads to
the generation of autoantigen-specific B cells. Activation, proliferation and maturation of B cells occurs in a T cell-depended manner and is further
promoted by the presence of neutrophils. Mechanisms leading to the shift from the production of non-pathogenic towards pathogenic
autoantibodies are so far poorly understood. Pathogenic autoantibodies are then released into the circulation and reach the skin through the
vasculature. Autoantibody binding to the target antigens in the skin and/or mucous membranes can trigger blister formation through (B) non-
inflammatory and/or (C) inflammatory mechanisms. Non-inflammatory blistering antibody binding to the target antigen, specifically BP180, induces
the internalization of BP180, leading to destabilization of keratinocyte adherence to the basement-membrane. Inflammatory mechanism leading to
blister formation in pemphigoid disease is relatively well-understood. These include release of pro-inflammatory mediators from the targeted cells
and immune cells, which facilitates myeloid cell migration into the skin. Within the skin, myeloid cells bind to the tissue bound immune complexes
and mediate blistering trough protease- and reactive oxygen species (ROS) release. The inserts (D-H) provide some more details on the highlighted
pathogenic events. (D) Within the circulation the half-life of IgG autoantibodies is prolonged by the neonatal Fc receptor (FcRn). (E) After binding of
anti-BP180 antibodies, BP180 is internalized through micropinocytosis. (F) Complement, especially C5 is release from both keratinocytes and
myeloid cells. Cleavage of C5 into C5a recruits and activates myeloid cells to the site of autoantibody deposits in the skin that is mediated through
both C5aR1 and C5aR2. (G) Ultimately, myeloid cells engage the tissue-bound immune complexes in a Fc gamma receptor-mediated fashion,
leading to protease- and ROS-release. These processes are mediated by downstream intracellular signaling following Fc gamma
receptor engagement.
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and BP230. These proteins serve to link the cytoskeleton of basal

keratinocytes to structures in the papillary dermis (16). Antibodies

are usually of the immunoglobulin (Ig)G subclass, but IgA- and

other subclasses have also been documented to cause BP (16).

Autoantibodies in PD develop in a T-cell dependent B cell response

(17). As outlined in Figure 1, binding of autoantibodies to their

target epitopes initiates pathology through inflammation-

dependent and -independent mechanisms (18, 19). Diagnosis of

BP is based on clinical presentation and histopathological analysis.

The diagnosis is confirmed by detection of Ig or complement C3

deposition at the dermal-epidermal junction using direct

immunofluorescence (DIF), and the detection of circulating

BP180 and/or BP230 autoantibodies (20). Treatment of BP

centers on topical or systemic corticosteroid treatment and/or

systemic immunosuppression. Corticosteroid treatment is highly

effective with over 90% achieved remissions within 4-6 weeks (21–

25). The major challenge in BP is maintenance of this initial very

effective treatment response. Depending on diseases severity, 30%-

50% of the patients experience a relapse within 6 months after the

initial diagnosis (26). This, in turn, necessitates prolonged

corticosteroid treatment, which contributes to the high morbidity

and increased mortality in BP (27, 28).
Mucous membrane pemphigoid

Mucous membrane pemphigoid (MMP) is defined as a PD with

predominant mucosal involvement. Studies estimate its incidence at

2.0 per 1 million people per year in the state of Franconia (Germany)

with a prevalence of 24.6 per million people in Germany (1, 11, 29,

30). The disease typically manifests at a mean age of 60 to 65 years

(31). MMP primarily affects mucous membranes in the mouth, nose,

eyes, anogenital area, pharynx, larynx, and esophagus, but can also

involve the skin. The most common affected site is the oral mucosa,

followed by eyes and nose (32). Severity varies highly among patients

and has a range from subtle lesions to devastating esophageal and

conjunctival lesions that are extremely painful and may lead to

esophageal strictures and blindness (31, 33, 34). MMP can be

caused by autoantibodies targeting several different antigens,

including BP180, BP230, laminin 332, COL7, and/or integrin a6b4.
Among these, autoantibodies against BP180 are the most common (1,

32, 35, 36). If clinically suspected, MMP diagnosis is confirmed by the

detection of immunoglobulin and/or C3 deposits using DIF (1). Of

note, in cases where clinical suspicion of MMP is high, but DIF is

negative, repeat biopsies should be conducted to increase the

sensitivity of DIF microscopy (37). Although sometimes

challenging, detecting circulating autoantibodies and determining

their specificity should be attempted (30). MMP is among the more

challenging pemphigoid diseases to treat, often requiring a

combination of immunosuppressants to achieve remission. In

MMP with autoantibodies against laminin 332, a 25-30%

prevalence of mainly solid tumors has been described (38). The

prognosis of MMP varies depending on the organs affected. Overall,

mortality in MMP patients is increased 1.7-fold compared to

matched controls (28).
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Epidermolysis bullosa acquisita

Epidermolysis bullosa acquisita (EBA) is an orphan disease with an

annual incidence of 0.2.-0.5 new cases per million people (11, 39, 40).

EBA can occur at any age, with a mean age at onset of 46.7 years (29,

41–43). Like BP, the clinical presentations varies greatly in EBA

patients. The two most common forms are the inflammatory (or

non-mechano-bullous) and the mechano-bullous form. The

mechano-bullous EBA presents with skin fragility, blisters and

erosions on non-inflamed skin or scarred skin and millia formation.

These symptoms predominantly occur on trauma-prone areas such as

the hands, feet, elbows, and knees (18). Inflammatory EBA presents

with profuse skin lesions on inflamed skin, similar to BP, and trauma

induced lesions around non-inflamed skin (18, 44–46). Mucosal

involvement is common in EBA (34, 47). EBA is caused by IgG or

IgA autoantibodies against type VII collagen (COL7), commonly

targeting the immunodominant NC1 region (48). In approximately

1/3rd of EBA patients IgA autoantibodies are detected, and in 10% of

the patients this is the sole detected immunoglobulin subclass. Similar

to BP, binding of these autoantibodies to their target antigen initiates an

inflammatory cascade resulting blistering and inflammation.

Mechanisms of non-inflammatory blistering in EBA are less well

characterized (18). EBA diagnosis is confirmed by linear Ig and/or

complement C3 deposits the dermal-epidermal junction of perilesional

skin in DIF. Contrasting all other pemphigoid diseases, Ig deposition at

the dermal-epidermal junction shows a distinct, so-called u-serrated

binding pattern while all other PDs display an n-serrated pattern in

DIF microscopy. Indirect IF microscopy on human salt-split skin or

ELISA further supports the diagnosis by detecting COL7

autoantibodies or its immunodominant domains (1, 48, 49), but

should only be used in addition of serration analysis because in a

large proportion of EBA patients circulating autoantibodies cannot be

detected (50, 51). If serration analysis is not possible, alternatives

are fluorescent overlay antigen mapping or immunoelectron

microscopy (18). The treatment of EBA is notably difficult. Typically,

achieving remission necessitates extensive immunosuppression (43).

On average, a continuous immunosuppressive treatment regimen of

nine months is required to achieve remission (52). If remission is

achieved, in many cases, continued immunosuppression is needed to

maintain the therapeutic effects. Data on mortality in EBA are scant.

However, a recent retrospective cohort study found that EBA patients

have an approximate 2.5-fold increased risk of mortality compared to

matched controls (28).
p200 pemphigoid

Anti-p200 pemphigoid is a rare autoimmune blistering

disease characterized by subepidermal blisters and erosions

primarily on the skin and sometimes on mucosal surfaces. The

disease is defined by autoantibodies targeting the 200-kDa protein

lamininb4, a key component of the basement membrane zone (2).

Clinically, anti-p200 pemphigoid presents with tense blisters,

erythematous plaques, and urticarial lesions, predominantly

affecting the hands and feet (53). Diagnosis involves detecting
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linear IgG deposits along the basement membrane zone via DIF and

identifying circulating autoantibodies against laminin b4 (53). The

presence of these autoantibodies is critical for differentiating

anti-p200 pemphigoid from other similar blistering diseases.

Treatment typically includes topical or systemic corticosteroids

and immunosuppressive agents to manage inflammation and

autoantibody production. The prognosis for patients with

anti-p200 pemphigoid varies, with early and aggressive treatment

potentially improving outcomes and reducing the risk of

complications (53, 54).
Pemphigoid gestationis

Pemphigoid gestationis (PG) is a pregnancy-caused PD

with an estimated incidence of 1 in 20,000 to 50,000 pregnancies

per year (1, 55, 56). Onset of the disease is typically between the

second trimester and the postpartum period (57). PG manifests

with pruritus and polymorphic inflammatory skin lesions

spreading from the umbilical region to the abdomen and

extremities. In most cases, PG resolves after delivery. However,

relapses during subsequent pregnancies are common (1, 57). PG is

caused by autoantibodies targeting BP180. Similar to other PD, PG

is diagnosed by the detection of tissue-bound immunoglobulins

and/or complement C3 in DIF. Circulating BP180 antibodies can be

detected using indirect IF with salt-split skin as substrate or with

specific ELISAs. Topical corticosteroids can treat most cases of

PG effectively. Interdisciplinary care involving gynecology is

recommended due to the increased risk of adverse embryonic/

fetal and maternal pregnancy outcomes associated with PG (58–60).

Of note, approximately 10% of newborns exhibit PG-typical skin

lesions due to the transplacental transfer of maternal IgG

antibodies (61, 62), which may require supportive neonatal care.
Linear IgA disease

Linear IgA disease (LAD) manifests across all age groups, with

the highest incidence observed during adolescence, early adulthood,

and the sixth decade of life. In pediatric populations, it is the most

prevalent autoimmune blistering disorder, with an average onset

age of 4.5 years. The annual incidence is estimated to range from 0.2

to 2.3 cases per million individuals (63). Clinically, LAD presents

with tense blisters and vesicles, often forming in a characteristic

“crown of jewels” or “string of pearls” pattern, particularly in

children. Lesions can appear on both the skin and mucous

membranes, causing significant discomfort due to associated

pruritus (1, 64). LAD is caused by IgA autoantibodies targeting

the extracellular 97 kDa portion of BP180 and the 120 kDa

ectodomain of BP180, known as LAD-1 (63, 65, 66). Diagnosis of

LAD is primarily based on DIF microscopy, which shows linear IgA

deposits along the basement membrane zone. Identification of

circulating antibodies targeting LAD-1 supports the diagnosis

(67). Dapsone is the treatment of choice for LAD, which, in most

cases rapidly alleviates itch, inflammation and blister formation.
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In children, the disease often resolves spontaneously within a few

years. In adults, however, LAD may follow a more chronic course,

requiring prolonged treatment (68, 69).
Lichen planus pemphigoides

Lichen planus pemphigoides (LPP) is an orphan AIBD that

combines features of lichen planus (70) and bullous pemphigoid. It

is characterized by the presence of lichenoid papules and plaques,

which subsequently develop tense blisters. LPP is at least partially

caused by autoantibodies targeting BP180. Clinically, LPP presents

with intensely pruritic, violaceous, polygonal papules and plaques

that are often located on the extremities. The blisters usually

develop on skin areas that were previously unaffected by lichen

planus lesions. Diagnosis is confirmed through DIF, which shows

linear deposits of IgG and/or C3 at the basement membrane zone,

and the presence of circulating autoantibodies targeting BP180. The

pathogenesis of LPP is incompletely understood. It potentially

involves an initial lichenoid inflammation that may promote an

autoimmune response against components of the epidermal

basement membrane, particularly BP180. This could lead to the

formation of BP180-specific autoantibodies that ultimately lead to

subepidermal blistering. Treatment options for LPP include

systemic corticosteroids, which are often the first line of

treatment. LPP usually responds well to treatment, but more

definite data on LPP prognosis is scant due to the rarity of the

disease (71).
Current treatment and unmet medical
need in pemphigoid diseases

PD impose a significant morbidity and dramatically impair the

quality-of-life of the affected patients. Furthermore, PD patients

bear an increased mortality risk, e.g., a 1-year mortality ranging

from 20% to 40% in BP (13, 14, 28, 72). While PG, LAD, and p200

pemphigoid generally respond favorably to therapeutic

interventions, BP, MMP and EBA are notably more challenging

to manage (73). These latter PD often relapse and typically require

prolonged courses of immunosuppressive therapy to achieve

remission (1, 73). Initial treatment of PDs mostly consists of

systemically or (in BP) topically applied corticosteroids (27). The

administration of systemic corticosteroids, such as prednisone, in

elderly patients links to significant adverse effects and an increased

risk of mortality (21, 22, 74). Potent topical corticosteroids, such as

clobetasol propionate, exhibit fewer side effects compared to

systemic corticosteroids. However, their use is limited by

corticosteroid-induced skin atrophy and practical challenges,

particularly in elderly patients (21, 75). Long term treatment is

usually centered on corticosteroid sparing immunosuppressive

drugs (73).

Second- and third-line treatments for PD include

immunosuppressants, high doses of intravenous immunoglobulins,

rituximab, or more recently use of biologics such as dupilumab or
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1537428
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tigges et al. 10.3389/fimmu.2025.1537428
omalizumab. For most PD treatment guidelines are available. For

detailed insights we refer to those guidelines (23, 76–79). The use of

biologics in PD is detailed below when describing drug repurposing to

develop novel treatment options for PD.

The study from Lamberts and colleagues (80) revealed that

patients, clinicians and researchers agreed that the most urgent

need was improvement of therapeutic options for pemphigoid

diseases. Furthermore, half of the patients were unsatisfied with

patient care during the diagnostic process due to misdiagnosis and

long diagnostic delay. PD patients also express the desire for

increased disease awareness among healthcare professionals to

facilitate more accurate and timely diagnosis. Researchers, on the

other hand, seek an increase in clinical trials, a deeper

understanding of disease pathophysiology to aid in drug

development, and an exploration of trigger factors. Besides unmet

patient needs, the increasing incidence of BP and limitations of

currently available treatment options, e.g. incomplete response

rates, severe side effects and costs underline the need for

improvement in the aforementioned areas and the need to keep

developing novel, more efficient and specific treatments. Use of pre-

clinical models for target identification and -validation is one

possibility to improve long-term therapeutic outcomes in PD.
Pre-clinical PD model systems

Pre-clinical studies of PDs are mostly reliant on in vivo animal

models. These models allow to investigate autoantibody-induced

interactions of specific molecules underlying the pathomechanisms

and in identifying suitable therapeutic target candidates (81–84).

The following section summarizes the available pre-clinical animal

models for PDs, their applications, their respective advantages and

disadvantages. In principle, three different types of animal models

are utilized in PD research (Table 1): (Auto)-antibody transfer

models, lymphocyte-transfer models and immunization-induced

models. Spontaneous PD, found primarily in dogs and

occasionally in other domestic animals, is a rare occurrence and

is only rarely used for drug development (83, 85). In addition, the

deletion of the NC14A domain in mice leads to the spontaneous

loss of tolerance and the mice subsequently develop BP-like

symptoms (86).
Antibody transfer induced
model systems

Antibody transfer-induced mouse models have been established

for BP, EBA, MMP and LAD (83). The injection of pathogenic

(auto)-antibodies into mice induces symptoms duplicating features

of the corresponding human disease. In the case of BP, injection of

rabbit IgG targeting the murine-COL17 (mCOL17) domain

corresponding to the NC16A human-COL17 (hCOL17) domain,

have been found to induce dermal-epidermal separation in neonatal

wild-type mice as early as 1993 (87). Further development of this

model led to the usage of adult mice that can reflect that BP
Frontiers in Immunology 05
develops in elderly patients (88, 89). Moreover, transgenic mice

either carrying hCOL17 or mCOL17 expressing the human NC16A

domain have been introduced and develop BP upon injection of

human IgG autoantibodies (90, 91). Based on this principle,

antibody transfer models have been developed for EBA and MMP

(92, 93). These models show a high disease penetrance in most

inbred mouse strains (94, 95).

Data from antibody transfer-induced models of EBA have been

the basis to obtain orphan designation for dimethyl fumarate and

coversin/nomacopan in BP (96–99). The dual complement factor 5

(C5) and leukotriene B4 (LTB4) inhibitor nomacopan was

successfully evaluated in a phase 2a nonrandomized controlled

trial (100, 101). More recently, again based on data in an

antibody transfer model of MMP (101), a patent on the use of

CXCL8 inhibitors for the treatment of MMP was filed (102).

Collectively, this illustrates the applicability of antibody transfer

PD mouse models for clinical translation.
Lymphocyte transfer induced
model systems

These models are based on the transfer of lymphocytes from an

antigen-deficient mouse strain (with or without immunization with

the respective antigen) into immunodeficient mice with the

expression of the respective antigen (103). A lymphocyte transfer

model has been established for BP (Table 1). Here, wild-type mice

are immunized with human COL17 by grafting skin from hCOL17

transgenic mice. Transfer of lymphocytes from these mice into

immunodeficient mice expressing the hCOL17 transgene in the skin

induces a strong anti-hCOL17-specific humoral immune response.

These mice develop a clinical phenotype resembling the clinical,

histological, and immunopathological features of the human disease

(104). This model has mainly been used to unravel the pathogenesis

of autoantibody production in BP, for example, the requirement of

CD4 T cells (105). Notably, IVIG treatment, a second- or third-line

treatment option for BP, is also effective in this model (106). This

demonstrates that the lymphocyte transfer model of BP is in

principle well suited to identify and validate novel treatment

strategies in BP.
Immunization induced model systems

Immunization-induced PD model systems have been

established for BP and EBA (107–109) (Table 1). Immunization-

induced BP shows a low disease penetrance and almost exclusively

manifests in female mice. Due to these limitations, this model is not

widely used. By contrast, the immunization-induced EBA mouse

model based on a single immunization with recombinant mCOL7

(109) induces clinical disease manifestation in 60%-80% of the mice

within 4-10 weeks. Mouse strains that are susceptible to

immunization-induced EBA are SJL/J and B6.SJL-H2s C3c/1CyJ

mice. The latter are C57Bl6/J mice that carry the H2s haplotype

from the SJL/J strain. After single immunization, peak disease
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TABLE 1 Pre-clinical models of pemphigoid disease.

Pemphigoid
disease

Mode of
induction

Species
(most
commonly
used strains)

Disease
Penetrance

Comments Advantages Disadvantages Reference

Spontaneous pemphigoid diseases in animals

BP Spontaneous Cat rare Very rare and time
of disease outbreak
is not controllable

• Closely
resembling BP
in humans

• Very rare and
time of disease
outbreak is
not controllable

(197)

BP Spontaneous Dog rare – – – (198)
(199)

BP Spontaneous Pig rare – – – (200)

BP Spontaneous Horse rare – – – (201)

BP Spontaneous Mice High Deletion of the
NC14A domain in
the mice required

Closely resembling
BP in humans

– (86)

MMP Spontaneous Dog rare – – – (202)

EBA Spontaneous Dog rare – – – (203)

Antibody transfer-induced pemphigoid disease

BP Rabbit anti-
mouse COL17

Neonatal mice
(BALB/c)

100% • High penetrance
• Fast

• Use of neonatal
mice
• Pharmacological
intervention
challenging

(87)

BP Rabbit anti-
mouse COL17

Adult mice
(SJL, BALB/c,
C57BL/6J,
C57BL/10)

100% • High penetrance
• Stable and
extensive
disease induction

• Pre-sensitization
with rabbit
IgG necessary

(88)

BP Sheep anti-
mouse COL17

Adult mice
(BALB/c)

100% Sheep IgG led to an
earlier onset and
more active disease
compared to
rabbit IgG

• High penetrance • Later disease
onset
• Lesion
development mostly
limited to side of
IgG injection

(204)

BP Rabbit anti-
mouse COL17

Adult mice
(BALB/c,
C57BL/6J)

100% Disease inducing
effect of IgG is
dose-dependent

• High penetrance
• Reproduce major
clinical and
immunopathological
characteristics of
human disease

(89)

BP Mouse anti-
mouse BP230

Neonatal
scurfy mice

Disease
development in
the majority
of mice

• Blistering over
the whole body

• Use of neonatal
mice
• Only
development of
microscopic blisters
• Pharmacological
intervention
challenging

(205)

BP Mouse anti-
mouse
NC14-1

Adult mice
(C57BL/6J)

100% • High penetrance
• Extensive blister
development
• Early
lesion development

• No induction of
mucosal lesions

(206)

BP patient IgG Neonatal mice
(COL17 m−/–,h+)

100% • Use of human
IgG
• Fast erythema

• Use of neonatal
mice
• Pharmacological

(90)

(Continued)
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TABLE 1 Continued

Pemphigoid
disease

Mode of
induction

Species
(most
commonly
used strains)

Disease
Penetrance

Comments Advantages Disadvantages Reference

Antibody transfer-induced pemphigoid disease

development
• High penetrance
• Close to
human BP

intervention
challenging

BP anti-
human
BP180NC16A

Neonatal mice
(BP180NC16A
(NC16A+/+))

100% • High penetrance
• Use of anti-
human IgG
• Quick
lesion development

• Use of neonatal
mice
• Number of
eosinophils in
infiltrate does not
reflect human BP
• Pharmacological
intervention
challenging

(91)

BP monoclonal
anti-
human
COL17

Neonatal mice
(COL17 m–/–,h+)

88% • Similar results to
patient IgG usage

• Use of neonatal
mice
• Pharmacological
intervention
challenging

(207)

EBA Rabbit or
human anti-
mouse COL7

Adult mice
(C57BL/6J,
BALB/c)

100% Many susceptible
strains with varying
disease penetrance

• High penetrance • Anti-rabbit (or
human) IgG
immune response

(208)

EBA rabbit
anti-COL7

Adult
mice (SKH1)

100% Affected body area
is IgG
dose-dependent

• High penetrance
• Blistering at
different regions of
the body
• Longer lasting
disease phenotype

• No mucosal
involvement often
found in
human EBA

(209)

EBA affinity-
purified
human
anti-CMP

Adult
mice (SKH1)

100% • High penetrance
• Use of
human IgG

(210)

EBA affinity-
purified rabbit
anti-
mouse COL7

Adult mice
(BALB/c)

Not stated Dependent on
COL7-domain
specificity,
antibodies exhibit
different
disease phenotypes

• Development of
extensive and
widespread lesions

(211)

EBA rabbit anti-
mouse COL7

Adult mice
(BALB/cJ,
C57BL/6J)

100% Dose-dependent
onset and
lesion development

• Used IgG
exhibits cross-
reactivity with
human skin
• High penetrance

• Skin blistering
induction is
strain-dependent

(212)

EBA rabbit anti-
mouse COL7

Adult mice
(BALB/cJ,
C57BL/6J)

Not stated Investigated the
involvement of T-
cells on
disease
development

(213)

EBA rabbit anti-
human COL7

Adult mice
(COL7 m−/−,h+)

Not stated Antibodies to
different COL7
epitopes were
tested. Dose-
dependent effect on
skin lesions

• Only available
humanized
EBA model

(214)

(Continued)
F
rontiers in Immuno
logy
 07
 frontiersin.org

https://doi.org/10.3389/fimmu.2025.1537428
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tigges et al. 10.3389/fimmu.2025.1537428
TABLE 1 Continued

Pemphigoid
disease

Mode of
induction

Species
(most
commonly
used strains)

Disease
Penetrance

Comments Advantages Disadvantages Reference

Antibody transfer-induced pemphigoid disease

MMP rabbit
anti- LAM332

Neonatal mice
(BALB/c, DBA/
2NCr, W/Wv)

100% at
higher
concentrations

Lesions developed
predominately at
sides of friction
and trauma

• Quick
development of
microscopic blisters

• Use of neonatal
mice
• Dose-dependent
disease severity
• Pharmacological
intervention
challenging
• No development
of generalized
disease observed

(215)

MMP Rabbit anti-
mouse
LAM332

Adult mice
(BALB/c, C57BL/
6, a.o.)

Not stated • Reflects major
histo- and
immunopathological
characteristics of
human MMP

(216)

MMP rabbit
anti- LAM332

Adult mice
(BALB/c, DBA/
2NCr, a.o)

100% except
lowest
concentration

• Quick occurrence
of subepidermal
blistering
• Pharmacological
interventions
possible

• No development
of frank blistering
• Disease
development
strain-dependent

(217)

MMP Patient IgG/
rabbit
anti- LAM332

Adult mice(SCID
(human
skin engrafted))

100% except
lowest
concentration

• Usage of human
IgG possible

• Higher resistance
of human skin to
blistering
• Higher antibody
doses required

(217)

LAD monoclonal
mouse IgA
and anti-
human
COL17

Adult mice(SCID
(human
skin engrafted))

High IgA
disposition and
split formation at
BMZ but rare
blister
development

• Only LAD
model available

• No full disease
development
• Low IgA
titers used

(218)

Lymphocyte transfer-induced pemphigoid disease

BP immunized
splenocytes
from human
skin
graftedCOL17
m−/−,h+

Adult mice (Rag-
2−/−/COL17 m−/−,

h+)

70-80% of mice
develop skin
changes but 100%
display
histopathological
markers

• Targeting of
human immune
response possible
• Active and
stable model

• Several
steps required

(104)

Immunization-induced pemphigoid disease

BP Immunization Mice (female
SJL/J)

55% of female
mice developed
skin lesions but
none of the
male mice

• Stable
disease model

• Limited to
female mice

(108)

EBA Immunization Mice (SJL/J and
B6.SJL-H2s

C3c/1CyJ)

45-100%
development of
skin blistering
phenotype in
susceptible strains

Repeated and single
immunization
possible

• Stable
disease model

• Strain dependent
disease development

(107)
(109)

EBA Immunization Mice (SJL) 100% • High penetrance
• Stable
disease model

(211)
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BP, Bullous pemphigoid; MMP, Mucous membrane pemphigoid; EBA, Epidermolysis bullosa acquisita; LAD, Linear IgA bullous disease.
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severity is observed after around 10 weeks, reaching a plateau that is

maintained for at least 10 months (109). Based on these

characteristics, immunization-induced EBA has been used to

evaluate the effects of established and emerging treatments of PD

(92, 96, 108, 110, 111).
Advantages and disadvantages of the
pre-clinical animal model systems

All murine models duplicate key aspects of human PD.

Furthermore, parallel use of antibody transfer-induced models

and lymphocyte transfer- or immunization-induced models also

allows to disentangle the afferent (loss of tolerance, autoantibody

production) from the effector (autoantibody-induced tissue

damage) phase. In the antibody transfer-induced models,

especially when the antibodies are injected locally into the skin of

the ear, clinical symptoms manifest within days following the

transfer of pathogenic IgG, allowing for timely analysis. A

significant limitation of these models, however, is its restriction to

studying only the effector phase of the disease, as symptoms abate

within days post-autoantibody transfer. Furthermore, these models

are not conducive to examining the mechanisms of tolerance loss or

the production of autoantibodies (83). As these models are still

almost exclusively based on the transfer of rabbit or human IgG into

mice, an antibody response towards rabbit or human IgG limits

long-term observations (112). Conversely, lymphocyte transfer-

and especially immunization-induced PD mouse models are

characterized by a prolonged manifestation of a clinical PD

phenotype, enabling the evaluation of long-term interventions

and the investigation of factors influencing tolerance loss and

autoantibody production. Yet, these models are significantly more

time-consuming and resource-intensive compared to the

autoantibody transfer models. There are also significant

disadvantages associated with both models. Firstly, both models

rely on murine signaling pathways and cell interactions, which may

not accurately translate to human physiology, thus limiting their

predictive value for clinical trials (83). Secondly, animal trials

inherently involve animal suffering and death. Third, a significant

proportion of drug development centers on specific antibodies.

Often, these do not cross-react between species, which needs to be

addressed and may be challenging. Hence, the potential advantages

have to be carefully weighed against the burden and death of

experimental animals.
Experimental interventions in pre-
clinical PD model systems for target
identification and validation

These models have significantly contributed to our

understanding of PD pathogenesis and have led to the

identification and validation of several new therapeutic targets.

Equally, these models also excluded several molecules as targets,

which is at least equally important. Table 2 summarizes the cellular
Frontiers in Immunology 09
and molecular targets investigated in preclinical PD mouse models.

The following paragraphs highlight those targets that have emerged

as most promising.

Dimethyl fumarate (DMF) is approved for psoriasis

(Skilarence®) and multiple sclerosis (Tecfidera®). In the antibody

transfer-induced EBA mouse model, DMF reduced EBA severity by

more than 50%, and, even more strikingly, led to resolving of lesions

when used in therapeutic settings in the immunization-induced

EBA mouse model. Investigating of the mode of action (MOA)

demonstrated that DMF impairs neutrophil activation in vitro as

well as tissue disruption ex vivo in an ERK1/2, p38 MAPK and Akt-

dependent manner (96). Based on these results, orphan designation

(98) was granted by the European Medicines Agency (EMA).

Following this publication, a BP patient was successfully treated

with DMF (113). The planned phase 2 clinical trial aiming to

evaluate the safety and efficacy of DMF in BP could, however, not be

initiated. Nomacopan, also known as Coversin, received orphan

designation for the treatment of BP, again based on data from

antibody transfer-induced EBA (97, 99). As a dual inhibitor of

leukotriene B4 (LTB4) and complement component C5, its efficacy

was validated in the antibody transfer-induced EBA model,

following the identification of LTB4 and the C5a/C5aR1-axis as

key factors for autoantibody-induced tissue damage in the model

(97, 114–116). The subsequent phase 2a clinical trial including 9 BP

patients showed that nomacopan is safe and may have therapeutic

benefits for suppressing acute disease flares (100). The ß-isoform of

phosphoinositide 3-kinase (PI3Kß) was identified as a target in a

study that showed that genetic and pharmacological inhibition of

PI3Kß leads to substantial disease protection in antibody transfer-

induced EBA. Regarding the MOA, PI3Kß mediates several

immune complex (IC)-elicited neutrophil responses in vitro,

including release of reactive oxygen species (ROS) (117). A

follow-up study, investigating the impact of PI3K-inhibitors with

different selectivity for PI3Ka, b, g or d, supported these findings.

Here, only the Pi3Kb-selective TGX-221 impaired the clinical

disease manifestation of antibody transfer-induced EBA – of note,

also when topically applied. In parallel, the impact of different

PI3K-inhibtors on neutrophil functions was evaluated. In these

experiments, TGX-221 impaired IL-8-induced neutrophil

migration, spreading of neutrophils on immobilized IC and

IC-induced ROS release from neutrophils (118). Given that

PI3Kb-selective inhibitors are in clinical trials for other

indications (119, 120), targeting this pathway (preferably by

topical application) in PD seems valid.
Alternatives to pre-clinical model
systems in target identification
and validation

As detailed above, investigations using pre-clinical model systems

of PD additionally employed in vitro methods to identify the MOA of

the tested compounds. Although not systematically addressed, a large

proportion of the compounds shown to inhibit key pathogenic

pathways in PD (Figure 1) were also able to impair the onset of
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TABLE 2 Experimental interventions in pre-clinical animal models of PD.

Disease
mouse
model

Target Experimental intervention Result Reference

Not effective

EBA/BP MRP8 and 14 MRP8/14 deficient mice mice fully susceptible to disease (219)

EBA TREM1 TREM1 deficient mice mice fully susceptible to disease (220)

EBA CCL3/MIP1a CCL3/MIP1a deficient mice mice fully susceptible to disease (221)

BP FcgRIIb FcgRIIb deficient mice mice fully susceptible to disease (222)

EBA C6 C6 deficient mice mice fully susceptible to disease (116)

EBA CD130 sgp130Fc mice fully susceptible to disease (223)

EBA MMP3 MMP3 deficient mice mice fully susceptible to disease (224)

EBA Hsp70 anti-Hsp70-antibody Hsp70 blockade leads to increased disease activity increased
disease activity

(225)

BP C5aR2 C5aR2 deficient mice C5aR2 deficient mice exhibit increased disease activity (226)

BP FcgRII FcgRII deficient mice FcgRII deficient mice exhibit increased disease activity (226)

BP C5aR1 PMX-53 mice fully susceptible to disease (226)

EBA PI3Kg AMG319 mice fully susceptible to disease (118)

EBA PI3Kd AMG319 mice fully susceptible to disease (118)

EBA PI3Ka HS-173 mice fully susceptible to disease (118)

EBA Caspase-1 Caspase-1 deficient mice mice fully susceptible to disease (227)

EBA FcgRIIb FcgRIIb deficient mice FcgRIIb deficient mice exhibit increased disease activity (228)

EBA FcgRI FcgRI deficient mice mice fully susceptible to disease (228)

EBA FcgRII FcgRII deficient mice mice fully susceptible to disease (228)

EBA IL6 anti-IL6 antibody IL6 blockade leads to an increase in disease severity (223)

EBA IL6 IL6 deficient mice IL6 deficient mice exhibit increased disease activity (223)

EBA Mannan binding lectin MLB deficient mice mice fully susceptible to disease (229)

EBA GATA-1 DdblGATA mice mice in which eosinophils are absent are fully susceptible
to disease

(115)

EBA multiple niclosamide mice fully susceptible to disease (123)

EBA thioredoxin reductase auranofin mice fully susceptible to disease (123)

EBA b1 adrenoceptor dobutamine mice fully susceptible to disease (123)

EBA multiple dipyridamole mice fully susceptible to disease (123)

EBA tubulin colchinine mice fully susceptible to disease (123)

EBA CD11b CD11b deficient mice CD11b deficient mice exhibit increased disease severity (230)

Little effectiveness

EBA PI3Kd LAS191954 small reduction of disease activity (92)

EBA/
BP/MMP

PI3Kd Parsaclisib small reduction of disease activity (101)

EBA PDE4 roflumilast roflumilast reduces disease activity in vivo (111)

EBA PDE4 rolipram rolipram shows inhibitory capabilities (111)

EBA/BP TNF TNF receptor fusion
protein etanercept

eternacept treatment leads to small reduction of
disease activity

(231)

(Continued)
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TABLE 2 Continued

Disease
mouse
model

Target Experimental intervention Result Reference

Little effectiveness

EBA/BP TNF anti-TNF antibody TNF blockade leads to more reduction of disease activity
compared to eternacept

(231)

BP FcgR FcgR deficient mice FcgR deficient mice exhibit reduced disease activity (206)

BP FcRn IgG2c-ABDEG FcRn blockade via IgG2c-ABDEG slightly reduces
disease activity

(206)

BP C5aR1 C5aR1 deficient mice C5aR1 deficient mice exhibit reduced disease activity (206)

BP C5aR1 C5aR1 deficient mice C5aR1 deficient mice exhibit slightly reduced disease activity (226)

EBA Flii altering Flii levels in mice Overexpression of Flii leads to increased disease severity
while redution has beneficial effects

(232)

EBA Flii anti-Flii antibodies (FnAbs) topical application of FnAbs leads to decreased disease
severity by ~20%

(233)

EBA PI3Kd IC87114 PI3Kd blockade via IC87114 slightly reduces disease activity (118)

EBA PI3Kd GDC-0941 PI3Kd blockade via GDC-0941 slightly reduces
disease activity

(118)

EBA C1q C1q deficient mice Only at the end of observation C1q deficient mice show
slightly reduced disease activity

(229)

Medium effectiveness

EBA IFNg anti-IFNg-antibody IFNg blockade reduces disease activity (~50% disease
reduction at peak disease and highest Ab concentration)

(234)

EBA FcgR sCD32 FcgR inhibition with sCD32 leads to reducted disease severity
but shows more inhibitory effects in vitro

(235)

BP/EBA multiple Methylpredsinolone Methylprednisolone treatment reduces disease activity
by ~50%

(236)

BP/EBA multiple SB203580 SB203580 treatment reduces disease activity by ~50% (236)

BP/EBA multiple U0126 U0126 treatment reduces disease activity by ~50% (236)

EBA Granzyme B GzmB deficient mice affected ear and body area is reduced by 55% and
45% respectively

(237)

EBA/BP Granzyme B VTI-1002 topical VTI-1002 treatment reduces disease activity by ~50%
in a local EBA and BP model

(237)

BP C5 C5 deficient mice C5 deficient mice exhibit ~50% reduced disease activity (226)

EBA C5aR2 C5aR2 deficient mice C5aR2 deficient mice exhibit reduced disease activity (238)

EBA C5aR2 C5aR2 deficient mice C5aR2 deficient mice exhibit reduced disease activity (239)

EBA multiple dyclonine hydrochloride preventive topical administration of dyclonine hydrochloride
ameliorates disease severity

(240)

EBA PI3Ka alpelisib PI3Ka blockade via alpelisib reduces disease activity (118)

EBA PI3Kg AS604850 PI3Kg blockade via AS604850 reduces disease activity (118)

EBA multiple Propanolol Propanolol treated mice exhibit reduction of disease activity
when applied topically and systemically

(241)

EBA CXCR1/2 DF2156A CXCR1/2 blockade via DF2156A reduces disease activity in
passive transfer model and immunization model

(242)

EBA CXCR1/2 CXCR2-deficient mice CXCR2-deficient mice exhibit reduced disease activity similar
to pharmacological inhibition

(242)

EBA C5/LBT4 Coversin Coversin treated mice exhibit reduced disease activity (97)

(Continued)
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TABLE 2 Continued

Disease
mouse
model

Target Experimental intervention Result Reference

Medium effectiveness

EBA C5/LBT4 L-Coversin L-Coversin treated mice exhibit reduced disease activity,
although therapeutic effect of Coversin is stronger

(97)

EBA IL1R IL1R deficient mice IL1R deficient mice ehibit reduced disease activity (227)

EBA IL1b anti-IL1b antibody IL1b blockade reduces disease activity (227)

EBA IL1 anakinra (IL1ra) therapeutically applied anakinra managed to reduce disease
activity by ~30%

(227)

EBA multiple DMF DMF treated mice exhibit reduction of disease severity by 50-
60% when applied prophylactically and therapeutically

(96)

EBA factor B fB deficient mice fB deficient mice exhibit reduced disease severity by ~55% (229)

EBA CARD9 CARD9 deficient mice CARD9 deficient mice exhibit reduction of disease severity
by ~60%

(243)

EBA 5-lipoxygenase zileuton 5-LO blockade via zileuton reduces disease activity by ~50% (115)

EBA multiple amodiaquine amodiaquine treatment leads to reduced disease activity (123)

EBA dopamine receptor 2 apomorphine D2R blockade via apomorphine leads to reduced
disease activity

(123)

High effectiveness

EBA FcgRIV anti-FcgRIV antibody FcgRIV blockade blocks disease in 80% of mice (228)

EBA FcgRIV FcgRIV deficient mice FcgRIV deficient mice are disease resistant (228)

EBA g-chain of activating FcgR g-chain deficient mice g-chain deficient mice are disease resistant (228)

EBA FcgRIV anti-FcgRIV antibody FcgRIV blockade fully blocks disease development (244)

EBA SYK BAY61-3606 pharmacological SYK blockade prevents disease induction in
vitro and in vivo

(245)

EBA SYK PRT062607 PRT062607 shows similar in vitro results as BAY61-3606 (245)

EBA SYK entospletinib entospletinib reduces disease activity in vitro with
human samples

(246)

EBA SYK lanraplenib lanraplenib reduces disease activity in vitro with
human samples

(246)

EBA SYK mice with hematopoietic-specific
SYK deficiency

mice with hematopoietic-specific SYK deficiency are
disease resistant

(246, 247)

EBA Neutrophil cytosolic
factor 1

Nfc1 deficient mice Ncf1 deficient mice are disease resistant in 95% of cases (149)

EBA/BP NADPH oxidase Diphenylene iodonium Diphenylene iodonium abolishes dermal-epidermal separation
ex vivo

(149)

EBA Granulocytes anti-Gr-1 antibody anti-Gr-1 antibody treated mice are disease resistant until day
6 of treatment

(149)

EBA CD18 CD18 deficient mice CD18 deficient mice are disease resistant (149)

EBA IgG glycosylation EndoS EndoS-pretreatment of otherwise pathogenic IgG failed to
induce clinical disease

(248)

EBA C5aR1 C5aR1 deficient mice C5aR1 deficient mice exhibit delayed disease onset and
reduces disease activity

(116)

EBA C5aR1/2 A8D71–73 C5aR1/2 blockade via A8D71–73 reduces disease activity (116)

EBA factor B anti-fB antibody fB blockade leads to reduced disease activity by ~90% in fully
treated mice and ~60% in mice treated from day 5

(116)

(Continued)
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TABLE 2 Continued

Disease
mouse
model

Target Experimental intervention Result Reference

High effectiveness

EBA C5 anti-C5 antibody C5 blockade reduces disease activity (116)

EBA Hsp90 17-DMAG Hsp90 blockade via 17-DMAG reduces disease activity by
~90% in prophylactic and therapeutic treatment

(249)

EBA Hsp90 TCBL-145 Hsp90 blockade via TCBL-145 reduces disease activity by
~90% in prophylactic and therapeutic treatment

(249)

EBA IL6 recombinat IL6 mice injected with recombinant IL6 are almost protected
from disease

(223)

EBA IL1 anakinra (IL1ra) anakinra reduces disease severity by ~75% (223)

EBA multiple Calcitriol systemic calcitriol treatment leads to reduction of disease
activity in several models as well as in vitro

(250)

EBA PLCg2 PLCg2 deficient mice PLCg2 deficient mice are disease resistant (251)

EBA/BP RORa RORa deficient mice RORa deficient mice are disease resistant (95)

EBA/BP RORa RORa heterozygous mice RORa heterozygous mice show reduced disease severity (95)

EBA/BP RORa SR3335 pharmacological RORa blockade reduced disease severity in
vivo and in vitro

(95)

EBA GM-CSF GM-CSF deficient mice GM-CSF deficient mice exhibit strong reduction of
disease activity

(252)

EBA GM-CSF anti-GM-CSF antibody anti-GM-CSF antibody treated mice exhibit a reduction of
disease activity similar to genetic intervention

(252)

EBA C5aR C5aR deficient mice C5aR deficient mice exhibit reduced disease activity by ~90% (114)

BP IL17A IL17A deficient mice IL17A deficient mice are disease resistant (253)

BP IL17A anti-IL17A antibody anti-IL17A antibody treated mice exhibit reduced
disease activity

(253)

BP MMP9 MMP9 deficient mice MMP9 deficient mice are disease resistant (224)

BP Plg Plg deficient mice Plg deficient are were disease resistant (224)

EBA Src kinases Src kinases deficient mice Src kinases deficient mice are disease resistant (254)

EBA FcRn FcRn deficient mice disease onset delay and strong reduction of disease activity,
however higher Ab doses override protective effect

(255)

BP FcRn FcRn deficient mice FcRn deficient mice are disease resistant (222)

BP FcRn high-dose human IgG high-dose human IgG treated mice exhibit reduced
disease activity

(222)

BP Gelatinase B Gelatinase B deficient mice Gelatinase B deficient mice are disease resistant (256)

BP FceR FceR deficient mice FceR deficient mice are disease resistant (226)

BP FcgRIV FcgRIV deficient mice Fcgr4 deficient mice exhibit reduced disease activity by 75% (226)

EBA PI3Kb TGX-221 PI3Kb blockade via TGX-211 almost abolished disease
activity in systemic treatment and reduces disease activity in
topical treatment

(118)

EBA PI3Kb PI3Kb deficient mice PI3Kb-deficient mice exhibit reduced disease activity, while
bKO bone marrow chimeras are even more protected

(117)

EBA 5-lipoxygenase 5-LO deficient mice 5-LO deficient mice are disease resistant (115)

EBA BLT1 BLT1 deficient mice BLT1 deficient mice are disease resistant (115)

(Continued)
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antibody transfer-induced PD or have therapeutic effects in the

immunization-induced models. There is a clear political commitment

in the European Union to accelerate phasing out of animal testing

(121), and the FDA modernization act “authorizes the use of certain

alternatives to animal testing, including cell-based assays and computer

models, to obtain an exemption from the Food and Drug

Administration to investigate the safety and effectiveness of a drug”

(https://www.congress.gov/bill/117th-congress/senate-bill/5002). To

address this and to strictly implement the 3R principle (refine,

reduce, replace) (122), we trust that routine and innovative new

human-based in vitro or ex vivomodels allowing testing of potential

compounds will - to a certain extend - lead to prediction of

efficacious therapeutics. These will not only replicate the outcome

of in vivo experiments and thus significantly reduce the need for

animal experimentation (Figure 2), but also provide assays in which

human-targeting drug can be evaluated. This principle has recently

partially been implemented in a large-scale screening endeavor to

repurpose drugs for modulation of innate and acquired immune

responses (123). In this paragraph, we thus will discuss alternative

strategies to replace rodent-utilizing, preclinical model systems to

align with the 3R principles (124). The below proposed in vitro, ex

vivo and ex vivo systems align with the current understanding of PD

pathogenesis outlined in Figure 1.
PD autoantigen-specific T cells

Anti-CD3/CD28-induced T cell activation

Most investigations used non-antigen-specific T cell

stimulations using anti-CD3 and anti-CD28 antibodies (123).

Results from these investigations can potentially predict the

impact on autoreactive T cells. However, as pan-T cell targeting

treatments are expected to be associated with considerable adverse

events (125), this, relative basic method may be used to screen larger

libraries to select compounds for further in vitro testing.
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Detection of antigen-specific T cells

Flow cytometry can be used to detect antigen-specific T cells in

PD (126, 127). One can envision combining this with specific assays

targeting these antigen-specific T cells (128). Yet, these assays need

to be established for BP.
Antigen-reactive T cell enrichment

The ARTE technology allows investigating antigen-specific T cell

responses and has recently been used to in-depth characterize

autoantigen-specific CD4 T cells in several autoimmune diseases,

including BP (126). Whilst ARTE primarily aims to decipher the

phenotype of antigen specific T cells from human samples, it could

also be used to characterize these cells following an experimental

intervention in vitro. The latter, to be developed, assays would be a

potential asset to predict the efficacy of these intervention in pre-

clinical model systems.
PD autoantigen-specific B cells

IL-21 and anti-CD40-induced B
cell activation

B cells can be stimulated in vitro by IL-21 and anti-CD40.

This unspecific B cell stimulation has been used to identify B cell

inhibitory compounds in a drug screening attempt. Here

1,200 compounds were screened for their potential B cell

inhibitory activity. Screening and in vitro validation identified five

drugs that were subsequently tested in pre-clinical PD mouse

models. Three of the five compounds were indeed able to

impair the induction of immunization-induced EBA (123). This

highlights that this assay is indeed able to identify B cell

modulatory compounds that are effective in vivo. These
TABLE 2 Continued

Disease
mouse
model

Target Experimental intervention Result Reference

High effectiveness

EBA Ly6G anti-Ly6G antibody Ly6G blockade and resulting neutrophil depletion leads to a
strongly reduced disease activity until day 10

(115)

EBA tubulin docetaxel tubulin blockade via docetaxel reduces disease activity during
prophylactic treatment

(123)

EBA ribonucleotide reductase gemcitabine RNR blockade via gamcitabine reduces disease activity during
prophylactic treatment

(123)

EBA succinate dehydrogenase pyrvinium pamoate SDH blockade via pyrvinium pamoate reduces disease activity
during prophylactic treatment and halted disease progression
in therapeutic treatment

(123)

EBA Selective estrogen receptor
modulator (SERM)

tamoxifen SERM blockade via taximofen reduces disease activity (123)
BP, Bullous pemphigoid; MMP, Mucous membrane pemphigoid; EBA, Epidermolysis bullosa acquisita.
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compounds are likely to non-specifically suppress B cell activation,

which could lead to potential adverse events, thereby limiting their

clinical applicability.
Detection of antigen-specific B cells

Similar considerations, as outlined above for T cells, apply.

Immunophenotyping of PD patients’ B cell populations has

been described (129), and these methods may be modified to

detect changes upon treatment. In addition, ELISpot may be

used to determine B cell functions following an in vitro

manipulation (130).
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Neonatal Fc receptor

Maintaining high levels of
IgG autoantibodies

One of the main functions of the neonatal Fc receptor (FcRn) is to

maintain high levels of circulating IgG concentrations in the blood.

This is achieved by protecting IgG from lysosomal degradation after

uptake by endothelial cells (131, 132). Inhibition of the FcRn lowers

circulating IgG concentrations, including those of IgG autoantibodies,

and this has been demonstrated to be effective in autoantibody-

mediated diseases (133). Assays to determine the impact of

compounds targeting the FcRn have been developed (134), but so
FIGURE 2

In vitro and ex vivo model systems of pemphigoid diseases. On the left side the pathogenesis of autoantibody-mediated tissue pathology in
pemphigoid diseases is indicated. This is initiated by migration of polymorphonuclear leukocytes (PMN) into the skin. On the right side, assays
mimicking these aspects of pemphigoid disease pathogenesis are indicated. These assays are described in detail in the text.
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far, have not been used in PD research. These cellular recycling assays

would be, however, valuable to determine if compounds to be tested in

pre-clinical PD model systems have an impact on IgG turnover.
PD autoantibody binding to
target cells

Mediator release from keratinocytes

The current understanding of pemphigoid disease pathogenesis

considers keratinocytes to be key effector cells in mediating

autoantibody-induced tissue pathology (135). This understanding is

based on the discovery of IL-6 and IL-8 release from keratinocytes

incubated with anti-BP180 antibodies (136). The principle of this

assay is still in use today. However, systematic investigations on the

impact of drugs on autoantibody-induced mediator release and their

subsequent effects in keratinocyte model systems is so far lacking.
Internalization of autoantigens

Another direct impact of PD autoantibodies on keratinocytes is

the internalization of autoantigens (137). This weakening of the

adhesion of hemidesmosomes to the lamina densa, followed by the

inflammatory events triggered by autoantibody binding could be

the reason for the ultrastructural site of the split formation. Like

with many of the in vitro model systems in PD, a systematic

approach aiming to correlate in vitro observations to efficacy in

pre-clinical models is lacking.
Complement-fixation and activation
through tissue-bound
immune complexes

Initially developed as a diagnostic assay for PG (138), modifications

of the complement (C)-fixation assay can be used to model

complement activation in PD. For this, cryosections of human skin

are incubated with PD antibodies. After washing, a complement source

is added. Endpoints include determination of C3 deposits at the

dermal-epidermal junction and evaluation of complement cleavage

products in the supernatant (110, 139). So far, no insight on the

prediction of outcomes regarding in vivo model systems has been

obtained. However, compounds positively evaluated in the

complement fixation assay showed efficacy in phase 1 clinical trials

including BP patients (140), or other pre-clinical disease models (141).
Immune complex-induced
neutrophil activation

Neutrophil spreading on fixed IC

Spreading is one of the first events after binding of

neutrophils to IC. The assay duplicating this key event has been
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adopted for PD in 2010 (142). This assay has been used in several

publications relating to PD. Yet, the prognostic value of this test for

predicting efficacy in pre-clinical model systems has not been

systematically evaluated.
IC-induced changes in neutrophil surface
molecule expression

Changes in expression of adhesion molecules is another

hallmark of IC-induced neutrophil activation, indicating altered

migratory capabilities (e.g., CD18, CD62L) or degranulation (e.g.,

CD66) (143). Regarding PD, flow cytometry has been used to

address IC-induced changes in neutrophils (111). Due to the

relatively limited number of publications utilizing this method,

the predictive value of altered surface molecule expression on IC-

activated neutrophils regarding effects in pre-clinical PD model

systems remains to be elucidated.
IC-induced mediator release
from neutrophils

Mediator release is another hallmark of neutrophil activation

(143). In PD, lipid mediators, cytokines and complement are key

soluble mediators (18). So far, the cellular source of these mediators

remains to be determined. Given the central role of soluble

mediators in neutrophil activity regulation and resolving

inflammation as well as the relative straight-forward and highly

up-scalable methods for determining these soluble mediators (143–

145), analysis of these for prediction of treatment outcomes holds a

high potential.
IC-induced ROS release from neutrophils

The “ROS-release assay” is widely used to investigate IC-

induced neutrophil activation in PD (146). In this assay, immune

complexes are generated in 96-well plates which are incubated with

freshly isolated human or (more rarely) mouse neutrophils. These,

in an Fc-gamma, or Fc-alpha-receptor mediated fashion, become

activated (147, 148) and release ROS, which are detected by

chemiluminescence. The “ROS-release assay” has been the basis

to identify drug candidates to inhibit IC-induced neutrophil

activation in a repurposing study. This in vitro screening

identified six from a total of 1,200 compounds. All six were

then evaluated for their safety and efficacy in the antibody

transfer-induced EBA mouse model, where 3 of 6 compounds

impaired induction of experimental EBA (123). Overall, this

indicates that the “ROS-release assay” can be used to drastically

reduce the requirement for animal experimentation. However, half

of the compounds identified by the “ROS-release assay” as potential

new treatment options of PD, failed validation in pre-clinical

animal models.
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IC-induced, neutrophil-mediated dermal-
epidermal separation ex vivo
(cryosection assay)

The cryosection assay duplicates the subepidermal blistering

observed in PD. Here, cryosections of normal human (and rarely

mouse) skin are incubated with PD autoantibodies. After washing,

neutrophils from healthy donors are added. Again, these are

activated by binding of Fc-gamma, or Fc-alpha-receptor to the

tissue-bound IC. Ultimately, this leads to neutrophil spreading (see

above), ROS- and protease-release, which mediate the

dermal-epidermal separation (149, 150). The cryosection assay is

not applicable to high throughput and is thus mainly used to

validate findings from the ROS-release assay. With regard to

implementation of the 3R principles, the cryosection assay may

be used following the ROS-release assay to further limit the number

of compounds to be used in vivo.
3D human skin models

A recent paper described a 3D human skin equivalent that was

incubated with BP180-affinity-purified IgG from BP patients. This

polyclonal anti-BP180 induced BP180 internalization and led to

subepidermal split formation (151). Of note, addition of an FcRn

inhibitor reduced IgG deposition along the basement membrane of

the keratinocytes, indicating that this assay may also be used to test

for FcRn function. We believe that this model holds the potential to

investigate autoantibody-induced tissue damage in pemphigoid

diseases in great depth. Modifications, for example, addition of

leukocytes would allow to investigate the interplay between

keratinocytes, autoantibodies and leukocytes in vitro. Use of skin

biopsies from healthy donors or pemphigoid disease patients would

allow to additionally investigate the impact of resident immune cells

within the skin. Especially these ex vivo models could significantly

reduce the need for animal testing when investigating

autoantibody-induced tissue damage.
Other PD-related neutrophil functions

Neutrophil migration towards IL-8 or C5a

IL-8 (and its’ mouse homologues) and C5a are central in PD

pathogenesis (36, 114, 116). In PD, IL-8- or C5a-induced neutrophil

migration has been used in several studies (95, 96). In some, but not

all of the studies, the migratory ability of neutrophils in vitro

correlated well with those observed in pre-clinical model systems.

Thus, the use of these assays to reduce or replace animal

experimentation needs to be elucidated.

In summary, a systematic evaluation of the above-described in

vitro models is warranted to determine whether one, or more likely

a combination of several in vitro systems, can effectively predict in

vivo effects of molecules or drugs. This approach is expected to

significantly reduce the need for animal experimentation. Thus, a
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systematic investigation to address the predictive value of PD in

vitro assays for compound efficacy in pre-clinical models is

urgently needed.
Use of real-world-data

Advances in the availability and analysis of real-world data

(RWD) have expanded the possibilities and applicability to

generate evidence and thereby allowing regulatory agencies, such as

the FDA, to base decisions on RWD. Thus, the FDA is putting more

emphasis on RWD to enhance therapeutic drug development and

strengthen regulatory oversight throughout the medical product

lifecycle (152). The data quantity and quality of some RWD

databases allows to predict disease onset and allows to stimulate

clinical trials (153). In the context of PD, a recent study compared the

risk of death and relapse in BP patients treated either with topical or

systemic corticosteroids. Here, risk of death was increased in patients

with BP exposed to any dose of systemic corticosteroids versus BP

patients treated with topical clobetasol propionate (22). This study

can in principle be adopted to any other drug. As a limitation,

however, insights into efficacy are limited because disease severity

scores are not available and drug dosages are not recorded.
Drug repurposing

Drugs approved for other indications may be repurposed for PD.

An excellent example for this within the field of pemphigus and

pemphigoid is the use and licensing of rituximab in pemphigus. The

CD-20 antibody rituximab was initially licensed for the treatment of

patients with relapsed or refractory B cell non-Hodgkin’s lymphoma in

1997 (154). Due to the drug’s MOA, specifically B cell depletion, it was

given to a 30-year-old woman with refractory pemphigus vulgaris,

resulting in partial remission (155). Following two randomized

controlled clinical trials, rituximab in combination with prednisolone

is now the standard of care in pemphigus (156, 157). For PD, controlled

clinical trials of the safety and efficacy of rituximab are so far lacking.

However, data from retrospective analyses indicate a moderate effect of

rituximab in PD (158–160).

In PD, three drugs, in addition to DMF which is discussed

above, licensed for other indications seem to be effective: The anti-

IL4Ra antibody dupilumab, the anti-IgE antibody omalizumab and

Janus kinase (JAK) inhibitors (JAKi). Of these, dupilumab holds the

largest promise. In 2017, dupilumab was licensed for atopic

dermatitis (161, 162). Based on the Th2-phenotype of T cells in

BP (163), and the intense pruritus in BP, dupilumab was

successfully used off-label in several BP patients by different

medical practitioners (164, 165). Recently, a multicenter,

ambispective cohort study investigated the safety and efficacy of

dupilumab in 103 BP patients. Overall, dupilumab was safe and

effective: Adverse events were observed in 13 of 103 patients and

were mostly mild. Complete remission was achieved in 53.4% of BP

patients within 4 weeks and 95.7% by week 52 (166). A recent press

release from Sanofi on their randomized, phase 2/3, double-blind,
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placebo-controlled study evaluating dupilumab in BP reported that

the study met all primary endpoints. Specifically at week 36 of the

study, 20% of BP patients in the treatment arm experienced

sustained disease remission, compared to 4% in the control arm

(167). Similar findings were made in a large retrospective cohort

study from China (168). Based on these considerations, approval for

dupilumab in BP is expected within the next 1-2 years. Of note, a

rapid and sustained response to the IL-13 targeting antibody

tralokinumab has been reported in one patient with BP (169),

that replicated in a larger case-series (170). At this point, this data

does not allow to draw any final conclusions. However, the precise

contribution of IL-4 and IL-13 to PD pathogenesis remains to be

fully elucidated.

The anti-IgE antibody omalizumab was first licensed in 2003 for

the treatment of asthma (171). Subsequently, it was also licensed for

other type 2 inflammatory diseases including chronic spontaneous

urticaria, chronic rhinosinusitis with nasal polyps and most recently

also for food allergies (172–174). There is a body of evidence

pointing towards a potential contribution of IgE in PD, especially

BP: Elevated levels of total IgE are observed in BP. In some patients,

antigen-specific IgE can be detected. Last but not least, in an

antibody-transfer model, antigen-specific IgE antibodies elicited

experimental BP when transferred into mice (175, 176). In 2009,

a BP patient was successfully treated with off-label use of

omalizumab (177). These results were confirmed in several case

reports. More recently, a multicenter retrospective study conducted

by the French Study Group on Autoimmune Bullous Diseases

investigated the effectiveness and safety of omalizumab in BP

patients. The study included 100 BP patients. Omalizumab led to

complete remission in close to 80% of the patients and displayed a

favorable safety profile. Of note, complete remission was more

frequently observed in patients with an increased serum baseline

level of antigen-specific IgE autoantibodies targeting BP180 (178).

Taken together, omalizumab is another promising candidate for the

treatment of BP. This may also be applicable to other pemphigoid

diseases, e.g., MMP (179), but data on IgE and/or omalizumab is

rather scant for PD other than BP.

More recently, JAKi have been licensed for several non-

communicable inflammatory diseases, including their topical

administration in atopic dermatitis and vitiligo (180, 181). Given the

boxed warning of JAKi concerning their cardiovascular risk profile

(182), topical application in PD, especially BP, would be the preferred

application route. The recent case reports on the off-label use of JAKi in

PD is mostly based on their increased expression at the site of

inflammation (183–185). So far, six patients with BP (186–190), four

patients with MMP (191, 192), and one patient with LPP (193) have

been reported to have responded to off-label JAKi treatment. More data

on the efficacy, and most notably on the safety of JAKi in PD are

warranted. However, based on the evidence available so far, topical

JAKi may be useful in BP, whilst their systemic application may best be

applicable for treatment refractory MMP or EBA.

Please note that most of these studies originated from Europe or

the US, and that ethnicity is seldom indicated. As we have recently

demonstrated, consideration of racial disparities in autoimmune

skin blistering diseases is, however, quite important (194).
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Treatment perspectives

Biologics: dupilumab and omalizumab

As seen in other dermatological disorders (161, 162), biologics,

specifically dupilumab and omalizumab, are most likely to change

the treatment landscape of PD significantly. Although current

available treatments, i.e. dupilumab and omalizumab, seem to be

less efficient compared the gold standard corticosteroid treatment,

their main advantage is the far more favorable adverse event profile.

Thus, corticosteroids will be potentially used to induce rapid

remission, whilst remission is maintained by long-term treatment

with either dupilumab or omalizumab.
Methotrexate

Methotrexate (MTX) has long been used as an adjuvant

treatment for BP (195). A randomized trial from the French

Study Group on Autoimmune Bullous Diseases compared the

efficacy and safety of topical corticosteroid therapy with or

without low dose MTX, where the topical corticosteroid

treatment was stopped after 4-6 weeks in the MTX arm, and was

continued in the control arm for nine months. A total of 300

patients were screened, but only a small fraction of BP patients was

recruited due to MTX-related exclusion criteria. The remission rates

were 75% in the MTX arm and 57% in the topical corticosteroid

arm, which reached statistical significance. The number of severe

adverse events and mortality rate was similar between the groups

(196). Taken together, this indicates that MTX is a good alternative

to continued (topical) corticosteroid treatment, that is, however,

only applicable to 10-15% of BP patients.
How to facilitate translation

In conclusion, the number of potential targets and molecules

identified (Table 2) significantly exceeds the compounds that have

been evaluated to date and hold promise for future PD treatment. In

addition, those emerging PD treatments are so far exclusively

limited to BP management. For all other PD, the pipeline for new

treatments is practically non-existent. Arguably, some of the

compounds effective in BP can potentially be repurposed for

other PD. In the authors’ opinion, overcoming this challenge

requires a joint effort from industry and academia, supported by

robust model systems, including also in vitro and ex vivo human

models, meticulous clinical observations, and a shared commitment

to improving patient well-being through translational research.
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