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PARylation-mediated post-
transcriptional modifications
in cancer immunity
and immunotherapy
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Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine,
Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
Poly-ADP-ribosylation (PARylation) is a post-translational modification in which

ADP-ribose is added to substrate proteins. PARylation is mediated by a

superfamily of ADP-ribosyl transferases known as PARPs and influences a wide

range of cellular functions, including genome integrity maintenance, and the

regulation of proliferation and differentiation. We and others have recently

reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role

in bone metabolism, immune system regulation, and cytokine production.

Additionally, PARylation has recently gained attention as a target for cancer

treatment. In this review, we provide an overview of PARylation, its involvement in

several signaling pathways related to cancer immunity, and the potential of

combination therapies with PARP inhibitors and immune checkpoint inhibitors.
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Introduction

Poly-ADP-ribosylation (PARylation) is a post-translational modification in which

ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of

ADP-ribosyl transferases known as PARPs and has a wide range of effects on cellular

functions, including proliferation and differentiation. Additionally, PARylation-mediated

post-transcriptional modifications have recently gained attention as targets for cancer

treatment. In this review, we provide an overview of PARylation and its involvement in

several signaling pathways related to cancer immunity. Lastly, we will discuss the

relationship between PARylation and immune checkpoint inhibitors.
ADP-ribosylation

ADP-ribosylation is a reversible post-translational modification that is required for

regulation of molecular interactions (1, 2). During ADP-ribosylation, nicotinamide adenine

dinucleotide (NAD+) is consumed as a donor and split into ADP-ribose and nicotinamide

(NAM), resulting in addition of ADP-ribose to a substrate (2, 3). The addition of a single
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ADP-ribose is referred to as mono-ADP ribosylation

(MARylation). In contrast, the reaction that adds two or more

ADP-ribose units or creates a branched structure is called poly-

ADP-ribosylation (PARylation) (4, 5). PARylation primarily affects

proteins, although previous reports have shown that it can also

modify nucleic acids (6, 7).

ADP-ribosylation is mediated by the ADP-ribosyl transferase

superfamily (ARTs), which comprises 23 families including

diphtheria toxin-like ARTs (ARTDs) and cholera toxin-like ARTs

(ARTCs). ARTDs consist of 17 members, referred to as PARPs

(PARP1-PARP16), with PARP5A and PARP5B also called tankyrase

1 (TNKS1) and tankyrase 2 (TNKS2), respectively (2, 4, 5, 8, 9).

Among the ARTD members, only PARP1, PARP2, TNKS1, and

TNKS2 exhibit PARylation activity, and they are referred to as poly-

ARTs, despite the name PARP historically being derived from poly

ADP-ribose polymerase. In contrast, the other members (PARP3,

PARP4, PARP6-12, PARP14-16) possess MARylation activity and

are referred to as mono-ARTs. PARP13 is thought to be inactive due

to a defect in its NAD+ binding residues (5, 10).

ADP-ribosylation by “writers” such as PARPs is recognized by

“reader” proteins that contain specific modules or motifs, including

macro domains, PAR binding zinc finger (PBZ) domains, WWE

domains, and the PAR-binding motif (9, 11, 12). Ubiquitin E3 ligase

ring finger protein 146 (RNF146) is a reader protein in which the

WWE domain detects PARylation by binding to the iso-ADP-

ribose moiety (13, 14). ADP-ribosylation is quickly terminated by

the removal of ADP-ribose by “eraser” proteins such as poly(ADP-

ribose) glycohydrolase (PARG), MacroD1, MacroD2, terminal

ADP-ribose protein glycohydrolase 1 (TARG1), and the ADP-

ribose hydrolase (ARH) members ARH1 and ARH3 (15–17).

PARylation regulates a wide range of molecular functions,

including transcription, RNA regulation, mitosis, telomere length

maintenance, cell-cycle regulation, cellular differentiation, DNA

damage response, protein degradation, ubiquitination,

metabolism, and innate and adaptive immunity, among many

others (3, 15, 18–25) (Table 1).
PARylation modulates DNA damage
response and transcription

DNA is constantly exposed to endogenous and exogenous

damage, requiring frequent restoration to maintain genome

integrity (87). PARP1, an abundant nuclear protein, plays a

crucial role in the early phase of DNA damage response (DDR).

When single-strand breaks (SSBs) are detected by PARP1 or

PARP2, PARylation occurs on PARP1 (self-PARylation) or DDR-

associated proteins (25, 46). PAR recruits the scaffold protein

XRCC1 and its partner proteins, facilitating the repair of SSBs

(46). Both PARylation on PARP1 and histones induces chromatin

decompaction, thereby promoting transcription (26, 27). In

response to double-strand breaks (DSBs), homologous

recombination (HR) and non-homologous end-joining (NHEJ)

are the primary mechanisms for repair. During HR, activated
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PARP1 recruits the MRE11-RAD50-NBS1 complex to the sites of

damage (25). PARP1 inhibits the classical pathway of NHEJ by

binding to DSBs in direct competition with Ku70/80 proteins and

promotes alternative NHEJ (Alt-EJ) by recruiting MRN and CtIP

(25, 48). Since the accumulation of DNA damage contributes to the

pathophysiology of tumorigenesis, neurodegeneration, and

premature aging, DDR is a critical mechanism for preventing

these diseases (47).

Nuclear stress, such as heat shock, activates PARP1, leading to the

PARylation of poly(A) polymerase (PAP). This modification prevents

PAP from binding to target mRNA and inhibits subsequent 3’mRNA

processing, resulting in decreased mRNA synthesis (35).

Additionally, splicing is regulated by PARP1-mediated PARylation

of heterogeneous nuclear ribonucleoproteins (hnRNPs) hrp38 and

squid in Drosophila (32).
Role of PARylation in mitosis and
telomere length maintenance

In cell division, mitotic spindle formation is a crucial

mechanism for the segregation of chromosomes into two

daughter cells (88). Spindle orientation is determined by Gai-
LGN-NuMA complex, which regulates the extent of microtubule-

pulling forces (89). It has been reported that NuMA localizes

tankyrase1 to spindle poles and that tankyrase1 PARylates NuMA

at the onset of mitosis (39, 40). Miki, another protein associated

with mitosis, has also been shown to undergo PARylation by

tankyrase1 during late G2 and prophase. This modification

translocates Miki to mitotic centrosomes from the Golgi

apparatus, anchoring CG-NAP, which serves as a scaffold for

the g-tubulin ring complex. Tankyrase1 knockdown impairs

spindle formation and causes mitotic defects in prometaphase,

such as preanaphase arrest, chromosome scattering, and

pseudometaphase, highlighting the importance of PARylation in

normal cell division (39–41).

Telomeres, nucleoprotein structures located at the ends of

chromosomes, play a key role in maintaining genome integrity (90,

91). Chromosome duplication presents intrinsic challenges, including

the inability of DNA polymerases to fully replicate the ends of

chromosomes and the misrecognition of chromosome ends as DSBs,

leading to improper repair. Telomeres address these issues and prevent

genome instability by protecting chromosome ends (90, 91).

Telomeres are associated with a six-subunit protein complex

called Shelterin, which consists of TRF1, TRF2, Rap1, TIN2, TPP1,

and POT1 (92). TRF1 negatively regulates telomerase activity by

limiting its accessibility for DNA (93, 94). Tankyrase-mediated

PARylation of TRF1 inhibits the binding between TRF1 and DNA,

allowing telomerase to extend telomeres (44, 95). TIN2 forms a

ternary complex with TRF1 and tankyrase, repressing PARylation

on TRF1 (96). Since telomeres harbor PARP1 activation sites,

PARP1 is considered a potential inhibitor of telomere activity

(92). TRF2 and TIN2 have been reported to protect telomeres

from PARP1 independently (97).
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PARylation regulates the ubiquitin-
proteasome system

The ubiquitin-proteasome system (UPS) is a pivotal mechanism

that controls the stability of intracellular proteins, modulating processes

such as the cell cycle, apoptosis, transcription, and protein quality

control (98, 99). Three classes of enzymes, ubiquitin-activating

enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin

ligases (E3), facilitate the addition of ubiquitin chains to substrate

proteins, which are subsequently recognized and degraded by the

proteasome into peptide chains (99). Since numerous proteins,

including oncoproteins and tumor suppressor proteins, are regulated

by the UPS, abnormal ubiquitination has been reported to contribute to

the development of various cancers (98, 100).

PI31 is an evolutionarily conserved protein that was initially

identified as a suppressor of proteasome (101); however, subsequent
Frontiers in Immunology 03
studies have also suggested that PI31 activates the 20S core protease

(102, 103). PI31 undergoes tankyrase-mediated PARylation, which

decreases its affinity for 20S proteasome a-subunits, thereby

reducing the inhibitory effect of PI31 (60). This modification

enhances the binding and sequestration of dp27 and dS5b from

19S regulatory particles, promoting 26S proteasome assembly (60).

In summary, tankyrase modulates proteasome activity through

PARylation of PI31.

The well-known role of tankyrase is PARylation-mediated

proteasomal degradation. Tankyrase PARylates substrates such as

AXIN, PTEN, TRF1, RNF146, 3BP2, BLZF1, and CASC3 (104,

105). The E3-ubiquitin ligase RNF146 recognizes these PARylation

modifications and ubiquitinates the substrate proteins, leading to

their proteasomal degradation (104, 105). The significance of

PARylation-mediated proteasomal degradation in several

signaling pathways will be discussed in later sections.
TABLE 1 Physiological functions of PARylation-mediated modification of proteins.

Classification
of function

PARP protein Associated functions

Transcription PARP1 Chromatin remodeling (26–28)
Regulation of transcription through directly binding to various promoters (29)
Promotion of transcription through activation of the transcription of DNA methyltransferase 1
(DNMT1) (30)

RNA regulation PARP1 Splicing regulation through interaction with heterogeneous nuclear-ribonucleoproteins (hnRNPs), including
A1, A2/B1, C1/C2, G, H, K, M, E1 (31), hrp38 (32), splicing factors, including splicing factor/splicing factor
2 (ASF/SF2) (33), SF3B1, SF3A1 and SF3B2 (34)
Inhibition of polyadenylation via PARylation of poly (A) polymerase in response to heat shock (35)

Translation PARP1 Regulation of translation of E-cadherin through PARylation of hnRNPs (36–38)

Mitosis Tankyrase1
Tankyrase2

Regulation of mitotic spindle via PARylation on NuMA (39, 40)
Regulation of formation and function of centrosome through PARylation of Miki (41) and CPAP (42)

Telomere length maintenance PARP1 Regulation of telomerase enzymes and alternative lengthening of telomeres (ALT) (43)
Restoration of double strand breaks (DSBs) of telomeres through alternative end-joining (Alt-EJ) (43)

Tankyrase1
Tankyrase2

Telomere elongation via PARylation on TRF1 (44)
Regulation of telomere segregation during mitosis through degradation of cohesin (45)

DNA damage response PARP1
PARP2

Single strand break (SSB) repair through base excision repair (BER) and nucleotide excision
repair (NER) (46, 47)
DSB repair through homologous recombination (HR), nonhomologous end-joining (NEHJ),
and alt-EJ (25, 47, 48)

Cellular differentiation
and development

PARP1
PARP2

Regulation of T cell differentiation (49–53), B cell development (54), and dendritic cell maturation (55)

Proteasomal degradation and
signal transduction

Tankyrase1 Regulation of Wnt/b-catenin pathway (56), Hippo pathway (57), PI3K/Akt pathway (58) and LKB1/MAPK
pathway (59)
Modulation of proteasome activity via PARylation of PI31 (60)

Innate immunity PARP1 Activation of the NK-kB pathway (61–64)
Release of the high-mobility group box 1 (HMGB1) from the nucleus to cytoplasm in
macrophages (65–67)
Activation of cGAS-cGAMP-STING and subsequent type I IFN release (68)
Regulation of neutrophil recruitment (69)

Metabolism PARP1
PARP2

Regulation of NAD+ metabolism (70), mitochondrial activity (71, 72), glucose metabolism (73–77), and
lipid metabolism (23, 71, 78–83)

Tankyrase1
Tankyrase2

Regulation of glucose metabolism via GLUT4 translocation and insulin release (84–86)
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PARylation as a modulator of
innate immunity

It has been reported that PARP inhibitors (PARPis) reduced the

transcription and release of lipopolysaccharide (LPS)-induced

inflammation mediators, including TNF-a, IL-1, IL-6, and nitrite

(NO2
-), in murine bone marrow-derived macrophages (106).

Additionally, macrophages derived from PARP1-deficient mice

showed defective nuclear factor kappa B (NK-kB) activation and

decreased production of TNF-a and IFN-g in response to LPS (61).

These PARP1-deficient mice were protected from death due to septic

shock, highlighting the importance of PARP1 as an inflammatory

mediator (61). In a zymosan-induced peritonitis model, a previous

study showed that inhibition of poly (ADP-ribosyl) synthetase (PARS)

suppressed neutrophil recruitment to sites of inflammation through

postcapillary venules, providing protection against organ injury (69).

PARP1 forms a complex with the subunits of NF-kB (p50 and p65

(RelA)), a key regulator of transcription involved in immune response

and inflammation (107). The interaction between PARP1 and p65 was

shown to be essential for NF-kB-dependent transcription of the iNOS

and P-selectin promoters in B and T cells (107). In the inflammatory

state induced by LPS, extracellular signal-regulated kinases 1/2 (ERK1/

2) directly activate PARP1 through phosphorylation at serine 372 or

threonine 373 (62), inducing PARylation-mediated activation of p65

and subsequent transcriptions of proinflammatory genes (63). The

non-receptor tyrosine kinase c-Abl also activates PARP1 via

phosphorylation at tyrosine 829, resulting in PARylation of p65 (64).

Notably, extracellular PAR is recognized by Toll-like receptor 2 (TLR2)

or TLR4 on macrophages, triggering cytokine release in humans and

mice, suggesting that PAR may function as a damage-associated

molecular pattern (DAMP) (108).
Tankyrase regulates bone metabolism
and the immune system via
PARylation-mediated proteasomal
degradation of 3BP2

SH3 domain-binding protein-2 (3BP2) was initially identified as a

protein binding to the Src homology 3 (SH3) domain of Abl (109,

110). Subsequent studies revealed that 3BP2 functions as an adaptor

protein, forming a signaling complex with SYK (111), SRC (112, 113),

and VAV (114), thereby regulating intracellular signaling pathways.

Gain-of-function missense mutations in the SH3BP2 gene have been

identified as the cause of cherubism, which is an autosomal dominant

disorder characterized by facial swelling owing to severe craniofacial

bone destruction and subsequent fibrous tissue masses (115, 116).

Cherubism model mice with a mutation in the Sh3bp2 gene exhibit

hyperactivity of macrophages and osteoclasts, leading to systemic

inflammation and bone loss (116, 117).

Prof. Robert Rottapel’s lab at the University of Toronto, Canada

has provided mechanistic insights by demonstrating that the gain-

of-function mutations protect 3BP2 from tankyrase-mediated

PARylation and proteasomal degradation (118, 119) (Figure 1).
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The missense mutation uncouples 3BP2 from the proteasomal

degradation, leading to its accumulation in cells and

hyperactivation of its substrates SYK, SRC, and VAV.

Consequently, the loss of tankyrase-mediated degradation of

3BP2 underlies the pathophysiology of cherubism (118).

Furthermore, they and we have discovered that 3BP2-induced

activation of ABL and SRC is required for both RUNX2-mediated

osteoblastogenesis and NFATc1-mediated osteoclastogenesis,

respectively (112, 120). We have shown that conditional knockout

of Rnf146 leads to stabilization of AXIN in osteoblasts and osteoclasts,

resulting in phenotypes resembling osteoporosis and cleidocranial

dysplasia (CCD), respectively (121, 122). Tankyrase regulates the

TLR signaling pathways via PARylation-mediated degradation of

3BP2, and dysregulation of 3BP2 leads to autoinflammatory

phenotypes, including severe inflammatory bowel disease (123,

124). 3BP2 is also required for proliferation and activation of T

cells (125) and B cells (126) as well as for optimal neutrophil

chemoattractant responses and host defense (127). Altogether,

PARylation-mediated degradation of 3BP2 is a crucial mechanism

for regulation of bone metabolism and the immune system

(128–131).
Wnt/b-catenin signaling pathway

Wnt/b-catenin signaling is involved in embryonic development

and cell homeostasis (132–134). The Wnt signaling pathway is

primarily divided into three pathways: the canonical, b-catenin-
dependent pathway and the non-canonical Wnt/Ca2+ (calcium) and

Wnt/PCP (planar cell polarity) pathways (135). AXIN negatively

regulates the canonical pathway by acting as a scaffold protein that

forms the destruction complex (DC), which includes the tumor

suppressor protein APC and the two serine-threonine kinases

CK1a/d and GSK3a/b (134).

Dysregulation of the Wnt/b-catenin pathway is associated with

various types of cancer, including colorectal cancer (136),

hepatocellular carcinoma (137), cholangiocarcinoma (138), lung

cancer (139), hematological malignancies (140), and melanoma

(141). As a result, the Wnt/b-catenin pathway has emerged as a

potential target for cancer therapy (134, 142, 143), although such

therapies are not yet in practical use.

Huang et al. reported that the tankyrase inhibitor XAV939

stabilizes AXIN and inhibits the Wnt/b-catenin pathway. They

revealed that AXIN binds to tankyrase in the tankyrase-binding

domain (TBD) and undergoes PARylation and ubiquitination (56).

In addition to inducing proteolysis, tankyrase promotes

accumulation of AXIN in the stimulatory signalosome and

enhances the interaction between AXIN and the Wnt co-receptor

LRP6 in response to Wnt stimulation (144). Tankyrase can also

promote Wnt/b-catenin signaling in a manner independent of its

PARP catalytic activity. Crystal structure analysis of tankyrase

revealed that tankyrase polymerizes on its sterile alpha motif

(SAM) domains, which are required for both tankyrase-dependent

Wnt signaling and intact PARylation activity (145–147). Several in

vitro studies have shown that XAV939 inhibits the Wnt/b-catenin
signaling pathway and suppresses the proliferation of various types of
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cancer (56, 148–150). Additionally, multiple reports suggest that

upregulation of the Wnt/b-catenin pathway contributes to

resistance to a PARPi (151, 152), and combined therapies targeting

both PARP and the Wnt/b-catenin pathway have demonstrated a

synergistic effect (151–153).
PI3K-AKT signaling pathway

The phosphatidylinositol 3-kinase (PI3K)-AKT signaling

pathway promotes cell survival, growth, differentiation,

proliferation and glucose homeostasis in response to various

stimuli (154). When membrane receptors, including receptor

tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs),

receive extracellular signals, class I PI3K catalyzes the

phosphorylation of phosphatidylinositol-bisphosphate (PIP2) to

generate phosphatidylinositol-3,4,5-triphosphate (PIP3), which

activates AKT and various types of AKT-dependent downstream
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signaling. Conversely, PTEN negatively regulates this pathway by

dephosphorylating PIP3, converting it back to PIP2 (155).

Upregulation of PI3K and downregulation of PTEN are recognized

as tumorigenic (156, 157). In fact, a meta-analysis of cancer genome

sequencing studies revealed that PIK3CA (which encodes one of the

class1 PIK3 isoforms) and PTEN were the second and third most

frequently mutated genes in human cancers (158).

PTEN has been reported to be regulated by PARylation-

mediated degradation (Figure 2). Double knockdown of tankyrase

1/2 stabilized PTEN and downregulated AKT signaling, leading to

the suppression of colon carcinoma proliferation (58). Additionally,

investigation of human colon carcinoma samples revealed that

tankyrase was upregulated and negatively correlated with PTEN

expression (58). PARP1 also indirectly inhibits PTEN expression

through PARylation-mediated degradation of its master regulator,

Snail. Inhibition of PARP1 prevents doxorubicin-induced PTEN

suppression, suggesting that combined therapy with a PARP1

inhibitor and cytotoxic drugs could be a promising treatment
FIGURE 2

Schematic model of the association between PARylation-mediated protein degradation and tumorigenesis.
FIGURE 1

Schematic model of PARylation-mediated protein degradation. Tankyrase promotes poly-ADP-ribosylation (PARylation) of 3BP2, which creates a
recognition site for RNF146, leading to ubiquitylation and subsequent proteasomal degradation of 3BP2.
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strategy (159, 160). Moreover, a recent study showed that AKT

activation induces nuclear localization of glutamyl-prolyl-tRNA

synthetase (EPRS1), which binds to PARP1 and activates

PARylation, thereby contributing to breast cancer cell survival

(161). Some preclinical studies have shown that PI3K inhibition

enhances sensitivity to PARPis by suppressing HR repair (162, 163).

In a phase I trial evaluating the efficacy of the PARPi olaparib

combined with the AKT inhibitor capivasertib for advanced solid

tumors, the combination therapy was well tolerated (164).

Regarding efficacy, 44.6% of patients (25 out of 56 patients) had

clinical benefits, including complete remission (CR), partial

remission (PR), or stable disease (SD) lasting more than 4

months (164).
Hippo pathway

The Hippo pathway is a highly conserved growth control system

that regulates cell, tissue or organ growth. This system can be activated

by a broad range of extracellular stimuli, including changes in tight

junctions and adherence junctions, energy stress, heat shock, osmotic

stress, glycogen accumulation and mechanical forces. Downstream,

Yes-associated protein (YAP) and its paralog, transcriptional co-

activator PDZ-binding motif (TAZ), are phosphorylated and retained

in the cytoplasm, leading to repression of the pro-growth

transcriptional activity (165). Dysregulation of the Hippo pathway is

thought to promote tumorigenesis, although it is not a direct trigger for

cancer development (166–168).

Motin family proteins (Motins), including Angiomotin

(AMOT), Angiomotin like 1 (AMOTL1) and Angiomotin like 2

(AMOTL2), are known to negatively regulate YAP by retaining it in

the cytosol (169–172). Wang et al. reported that tankyrase interacts

with all of the Motin family proteins (AMOT, AMOTL1, and

AMOTL2) and PARylates them, leading to RNF146-mediated

ubiquitination and subsequent proteasomal degradation

(Figure 2) (57). Besides, RNF166 has been found to recognize

tankyrase-mediated PARylation on Motins (AMOT and

AMOTL2). RNF166 interacted with AMOT more strongly than

did RNF146, leading to K48-linked polyubiquitination and

degradation of AMOT. Overexpression of RNF166 resulted in

elevated YAP activity and colorectal cancer progression (173).

Several in vivo studies have shown that tankyrase inhibitors

stabilize Motins, thereby suppressing the oncogenic function or

drug resistance mediated by YAP (57, 174, 175). In contrast,

tankyrase has been shown to maintain the Crumbs complex,

which regulates tight junctions and resistance to epithelial-to-

mesenchymal transitions (EMT), by modulating the expression of

Motins. That study suggested that tankyrase inhibition could induce

cancer progression (176).
LKB1/AMPK pathway

LKB1 was originally identified as a tumor suppressor gene

located on human chromosome 19p13 and it is responsible for

Peutz-Jeghers syndrome, an autosomal dominant inherited
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disorder characterized by hamartomatous polyps and

mucocutaneous pigmentation (177, 178) and also an increased

risk for various malignancies including gastrointestinal,

gynecological, colorectal, pancreatic, and lung cancers (179–181).

LKB1 encodes serine/threonine kinase LKB1, which forms a

complex with STRADa and MO25 and phosphorylates AMP-

activated protein kinase (AMPK) (182). LKB1 suppresses

tumorigenesis through activation of AMPK (Figure 2),

maintenance of cell polarity, and regulation of the cell cycle

(183). Approximately 30% of human non-small cell lung cancers

and 20% of cervical cancers harbor mutations in LKB1 (184–186).

It was reported that tankyrases repress LKB1 activity through

PARylation at Glu130/138 and promote K63-linked ubiquitination

by RNF146, thereby blocking the formation of the LKB1/STRAD/

MO25 complex (59). Additionally, both in vitro and in vivo studies

showed that inhibition of tankyrase repressed tumorigenesis by

activating LKB1 and AMPK (59), providing further evidence for the

potential of tankyrase inhibitors as anti-cancer drugs.

In a study on LKB1-mutant lung cancer, Long et al. found that

LKB1 mutation caused deficiencies in the DNA damage repair

process and hyperactivation of PARP1, leading to the PARylation of

STAT1 (187). This modification inactivated STAT1 and resulted in

downregulation of the interferon-gamma (IFNg) response.

Furthermore, the PARP1 inhibitor olaparib restored STAT1

phosphorylation and the IFNg response.
BRCA1/2 mutation and
PARP inhibitors

Breast cancer has the highest prevalence and mortality rate

among malignancies in women worldwide (188). It is classified

immunohistochemically based on positivity of estrogen receptor

(ER), progesterone receptor (PR), and HER2 (189). The absence of

these markers defines triple-negative breast cancer (TNBC), an

aggressive subtype (189, 190). Approximately 5% of breast cancer

patients have germline pathogenic variants in cancer disposition

genes, with BRCA1 and BRCA2 being the major ones (191, 192).

Germline mutations in BRCA1/2 are also prevalent in ovarian,

prostate and pancreatic cancers (193, 194).

In the DDR, BRCA1 and BRCA2 are crucial proteins for

homologous recombination repair (HR), a process by which DNA is

synthesized using a homologous DNA molecule as a template.

Germline mutations in BRCA1/2 lead to accumulation of DNA

damage and subsequent tumorigenesis. Tumor cells with BRCA1/2

mutation rely on alternative repair pathways, such as PARP1-mediated

repairing (Figure 2). Therefore, PARPis exhibit anti-cancer effects

through a mechanism known as synthetic lethality (25, 48).

In 2014, the U.S. Food and Drug Administration (FDA) and

European Medicines Agency (EMA) approved the first PARPi,

olaparib, as maintenance therapy for platinum-sensitive advanced

ovarian cancer with germline mutations in BRCA1/2. Currently,

four different PARPis (olaparib, talazoparib, rucaparib, and

niraparib) are available for treatment of ovarian, breast,

pancreatic, and prostate cancers (195–199).
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Bromodomain-containing protein 7 (BRD7) is a tumor

suppressor protein that regulates cell cycle progression and

transcriptional regulation (200). It has been reported that PARP1

regulates BRD7 expression through PARylation-mediated

ubiquitination, enhancing the survival of cancer cells. PARP1

inhibition not only suppresses cell proliferation but also sensitizes

cancer cells to DNA-damaging chemotherapy, suggesting the

potent ia l for combined therapies us ing PARPis and

chemotherapeutic drugs (201).
Immune checkpoint inhibitors

T cell responses to antigen recognition by the T cell receptor

(TCR) are regulated by a balance between co-stimulatory and

inhibitory signals, also known as immune checkpoints (202).

Well-studied immune checkpoints include programmed death-1

or its ligand (PD-1/PD-L1) as well as cytotoxic T-lymphocyte-

associated antigen 4 (CTLA4). Immune checkpoint inhibitors

(ICIs) enhance immune responses against malignancies by

blocking these pathways (202).

PD-1 is expressed on activated CD4+ or CD8+ T cells, monocytes,

natural killer T cells, B cells, and dendritic cells (203). PD-1 ligation

dampens TCR signaling, cytokine release, and cell viability, while co-

stimulation with CD28 can reverse these effects (203). PD-L1 is

expressed by various cell types, including immune cells and tumor

cells, in response to IFN-g produced by activated T cells (204). Many

human cancers, including breast, urothelial, ovarian, and pancreatic

cancers, express tumor-associated PD-L1 (204). Binding of PD-L1 to

PD-1 induces effector T cell exhaustion and immune evasion by tumor

cells, leading to malignancy progression (203–205). Another immune

checkpoint, CTLA4, is expressed on T cells and is essential for the

function of regulatory T cells (206). CTLA4 and CD28 are homologous

glycoproteins of the immunoglobulin superfamily (207) and share

identical ligands, CD80 and CD86 (202). CTLA4 has a higher affinity

than that of CD28 for these ligands, resulting in the inhibition of T cell

activation (202). Since cancer cells exploit these checkpoints to evade

host immune surveillance, ICIs act by blocking these pathways and

activating the anti-tumor immunity of T cells (208). The U.S. FDA has

approved three categories of ICIs: anti-CTLA4 inhibitor (ipilimumab),

anti-PD-1 inhibitors (nivolumab, pembrolizumab, and cemiplimab),

and anti-PD-L1 inhibitors (atezolizumab, durvalumab, and avelumab).

Therapies with these ICIs are used for a wide range of malignancies

including melanoma, breast cancer, non-small lung cancer, renal cell

carcinoma, urothelial carcinoma, gastric cancer, colorectal cancer, and

many others (209–211).
PARP inhibitors/tankyrase inhibitors
and immune checkpoint inhibitors
show a synergistic effect

Despite the durable response rate of an ICI, many patients

experience primary or acquired resistance (212), highlighting the

need for new strategies, such as multidrug therapies. Several
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preclinical studies have suggested a synergistic effect between

DDR inhibition and ICIs. PARP inhibition leads to the

upregulation of PD-L1 and suppression of anticancer immunity,

while PD-L1 blockade re-sensitizes PARPi-treated cancer cells to T

cell cytotoxicity (213, 214). Mechanistically, inhibitors of DDR

components, such as PARP or checkpoint kinase 1 (CHK1),

increase cytosolic damaged DNA and activate the STING/TBK1/

IRF3 innate immune pathway. This activation results in the

upregulation of PD-L1, IFN-b, IFN-g, and CCL5, which drives

CD8+ T cell infiltration into tumors (215–217). Additionally, a

PARPi has been reported to enhance PD-L1 expression by

preventing PARP1-mediated dephosphorylation on STAT3 (218).

Tankyrase inhibition may also enhance the efficacy of ICIs.

Spranger et al. classified metastatic human cutaneous melanoma

samples into two groups based on T cell signatures: non-T-cell

inflamed group and T-cell-inflamed group (219). Gene expression

analysis revealed that the non-T-cell-inflamed group exhibited

upregulation of Wnt/b-catenin signaling compared to that in the

T-cell-inflamed group (219). This evidence suggests that activated

Wnt/b-catenin signaling may inhibit antitumor T cell response. As

mentioned above, tankyrase can activate Wnt/b-catenin signaling

through PARylation-mediated degradation of AXIN, indicating

that tankyrase inhibition could serve as a potential therapy to

enhance the anticancer effect of T cells in combination with ICIs.

In mouse models, tankyrase inhibitors (G007-LK and OM-153)

have been shown to suppress Wnt/b-catenin signaling, leading to

activation of T cell-mediated antitumor responses induced by PD-1

inhibition and suppression of melanoma growth (220, 221).
Clinical trials on combined therapies

There has been an increasing number of clinical trials to

evaluate the efficacy of combination therapies involving PARPis

and ICIs. In breast cancer, the results of combination therapy have

been inconsistent (222–224). A previous consensus paper

recommended adjuvant treatment combining pembrolizumab

with a PARP inhibitor for a limited population in patients with

TNBC harboring BRCA1/2 mutations (197). A randomized phase

Ib/II trial was carried out to compere two combination therapies for

pancreatic cancers: niraparib with nivolumab and niraparib with

ipilimumab (225). The rate of progression-free survival (PFS) at 6

months was higher in the latter group (20.6% vs 59.6%), although

adverse events were more frequently observed in the latter group

(225). Combination therapies for pancreatic cancer are currently

being examined in multiple studies (226). Although PARPis are also

crucial drugs for ovarian cancer, prolonged usage often leads to the

development of PARPi resistance (227). The use of ICIs is an

attractive strategy for overcoming the problem of PARPi resistance.

A phase I/II study in which the combination of niraparib and

pembrolizumab was evaluated showed promising tolerability and

antitumor activity (228). The efficacy and safety of combination

therapies involving PARPi and ICIs are currently being investigated

in several ongoing studies (227). In contrast, combination therapies

appear to be less effective in prostate cancer. In a phase Ib/II trial,

patients with metastatic castration-resistant prostate cancer were
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treated with pembrolizumab plus olaparib (229). The median

radiographic PFS (rPFS) and overall survival (OS) rates were 4.5

months and 14 months, respectively (229). In a subsequent phase

III trial, this combination was compared to abiraterone or

enzalutamide in patients pretreated with androgen receptor

signaling inhibitors and docetaxel (230). That study was

discontinued for futility due to a lack of improvement in rPFS

and OS in the interim analysis, despite a higher objective response

rate (17% vs. 0%) (230). The development of this combination

therapy has been halted, and there are no ongoing phase III trials for

prostate cancer (231).
Conclusion

We have discussed the associations between PARylation and

several signaling pathways involved in cancer generation and

progression. Since PARylation regulates a wide range of cellular

functions, it represents an attractive target for cancer therapy.

Further research is needed to develop appropriate treatment

strategies, including combination therapies.
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