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Chronic inflammation of the intestine is a significant risk factor in the development

of colorectal cancer. The emergence of colitis and colorectal cancer is a complex,

multifactorial process involving chronic inflammation, immune regulation, and

tumor microenvironment remodeling. Macrophages represent one of the most

prevalent cells in the colorectal cancermicroenvironment and play a pivotal role in

maintaining intestinal health and the development of colitis-associated colon

cancer (CAC). Macrophages are activated mainly in two ways and resulted in

three phenotypes: classically activated macrophages (M1), alternatively activated

macrophages (M2). Themost characteristic of these cells are the pro-inflammatory

M1 and anti-inflammatory M2 types, which play different roles at different stages of

the disease. During chronic inflammation progresses to cancer, the proportion of

M2 macrophages gradually increases. The M2 macrophages secrete cytokines

such as IL-10 and TGF-b, which promote angiogenesis andmatrix remodeling, and

create the favorable conditions for cancer cell proliferation, infiltration, and

migration. Therefore, macrophage polarization has a dual effect on the

progression of colitis to CAC. The combination of immunotherapy with

reprogrammed macrophages and anti-tumor drugs may provide an effective

means for enhancing the therapeutic effect. It may represent a promising

avenue for developing novel treatments for CAC. In this review, we focus on the

process of intestinal macrophage polarization in CAC and the role of intestinal

macrophage polarization in the progression of colitis to colon cancer, and review

the immunotherapy targets and relevant drugs targeting macrophages in CAC.
KEYWORDS

macrophage polarization, inflammatory bowel disease, colitis-associated colon cancer,
immunotherapy, tumor-associated macrophages (TAMs)
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1 Introduction

Colorectal cancer (CRC) can be defined as one of the most

common malignant tumors of the digestive tract. According to data

from the Global Cancer Observatory (GLOBOCAN) 2022, CRC

ranks the third in incidence and the second in mortality among all

malignancies worldwide (1). Chronic bowel inflammation is known

to be a major risk factor for developing to CRC. As the largest

digestive organ in the human body, the intestines have a highly

developed immune system, which are relatively tolerant and allowing

the intestines to adapt to constant exposure to foodborne pathogens.

Therefore, intestinal immunity is critical in protecting the intestinal

barrier and preventing intestinal diseases. Macrophages represent a

crucial component of the immune system in the intestine. These cells

form a dense network along the digestive tract and perform a pivotal

function in maintaining the equilibrium of the microbial population

on the intestinal mucosal surface and facilitating the continuous

renewal of intestinal epithelial cells. As the first line of leukocyte

defense, intestinal macrophages protect against pathogens that invade

the inner layers of the intestine. They maintain tissue homeostasis by

secreting bioactive substances and regulating immune responses (2).

Macrophages also participate in the pathological processes of

inflammatory bowel disease (IBD) and CRC. An increasing

number of studies have demonstrated that tumor-associated

macrophages (TAMs) disrupt the homeostasis of the intestinal

environment and are significantly associated with tumor invasion,

infiltration, and metastasis (3). In addition, the currently used animal

models for CRC study are mainly the CAC models, such as AOM/

DSS induced CAC, so it is essential to understand the role of

intestinal macrophages in the progress of colitis to CAC. In this

review, we discuss the role of intestinal macrophages in the

pathogenesis of colitis-associated colorectal cancer, focusing on the

differential effects and imbalance of M1 and M2 macrophages on the

immune pathophysiology of CAC. It also highlights the metabolites,

cytokines, and microbiota involved in inducing the polarization of

TAMs and prospects for therapeutic drugs targeting macrophages.
2 Macrophages in the intestine

2.1 Origin of intestinal macrophages

The intestine contains the most abundant reservoir of

macrophages. In humans, tissue macrophages arise from

hematopoietic and embryonic precursors. In contrast to most

tissues, intestinal macrophages are derived primarily from innate

macrophages that exist before birth and continuously replenished

by circulating monocytes in adulthood (4). These cells coexist and

collaborate in intestinal tissue (5). Human intestinal macrophages

derive CD11c+CD14hi monocytes from the bloodstream, which

undergo a series of differentiation processes upon entering the

intestine to become mature macrophages with low expression of

CD11c and CD14 and high expression of MHCII, CD206, and

CD163 (6, 7). However, it is unclear whether a small proportion of

embryonic-derived self-maintaining macrophages exist in the adult

gut. Like humans, monocytes in the intestines of mice proliferate
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during the embryonic to neonatal period. After weaning, however,

homeostatic intestinal macrophages in mice are primarily

replenished by circulating monocytes characterized by CC-

chemokine receptor 2-high (CCR2hi), lymphocyte antigen 6C-

high (LY6Chi), MHCII-, CX3C-chemokine receptor 1-low

(CX3CR1low) monocytes. When these circulating monocytes enter

the intestinal lamina propria, they acquire MHCII and lose Ly6C

expression. Following this, they upregulate F4/80, CD64, and

CX3CR1 and differentiated into mature Ly6C-MHCIIhiCX3CR1hi

macrophages (7, 8). In addition, A CX3CR1hi CD4+TIM4+

macrophage subset has been identified in submucosa and external

muscle layer in mice, which exhibits specific surface markers. These

cells are demonstrated to have the capacity for self-renewal and

independent maintenance of the local macrophage population

through monocyte recruitment (9).
2.2 The homeostasis of
intestinal macrophages

Intestinal macrophages regulate the homeostasis of the gut

environment by secreting various bioactive substances (Figure 1).

In a steady state, macrophages inherently exhibit low levels of TNF-

alpha, which plays a regulatory role in the proliferation of intestinal

epithelial cells, the maintenance of the intestinal epithelial barrier,

and the production of tissue remodeling proteins in intestinal

mesenchymal cells (10). These intestinal macrophages display a

M2-like phenotype, characterized by the production of anti-

inflammatory molecules such as IL-10 and TGF-b, reduction
expression of pro-inflammatory mediators like IL-6 and iNOS,

diminishing responsiveness to Toll-like receptor (TLR)

stimulation, and facilitation of regulatory T cell (Treg) expansion

(11). In addition, intestinal macrophages interact closely with

intestinal epithelial cells. The macrophages promote the renewal

and integrity of intestinal epithelial cells by producing factors such

as prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF)

(12). With the microbial-drove stimulation, macrophages produce

IL-1b, which promotes type 3 innate lymphoid cells (ILC3) to

release CSF2 and stimulate macrophages to secrete IL-10. Previous

studies have shown that macrophage-derived IL-10 is crucial for

maintaining and expanding antigen-specific Treg cells in the

intestinal mucosa of mice, which helps to stabilize immune

responses in the gut (13, 14). Furthermore, macrophages in the

mucosa and submucosa also form a tight bond with the endothelial

cells, thereby supporting their maintenance by producing vascular

endothelial growth factors (e.g., VEGF-C) (15).
2.3 Factors influencing intestinal
macrophages development

The function of macrophages is influenced by various factors,

including multiple intestinal cells, the microbiota, and neuro-immune

interactions that regulate intestinal cellular activity (16). Intestinal

epithelial cells are situated at the interface between intestinal

symbionts and macrophages (17). It comprises different types of
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specialized epithelial cells, such as enterocytes, Paneth cells, goblet cells,

endocytes, and microfold cells (18). In intestinal epithelial cells, the

mucus layer overlays the intestinal mucosa, the glycocalyx present on

the microvilli of absorptive epithelial cells, and the tight junctions

linking these cells collectively constitute a physical barrier. This barrier

protects the intestinal mucosa from the gut microbiota and invading

pathogens (19). In addition to isolating the gut microbiota from host

immune cells, intestinal epithelial cells are stimulated by the gut

microbiota and derived factors, such as IL-18 and chemokines,

which influence macrophage secretion and regulate the immune

response, thereby maintaining a healthy balance between the gut

microbiota and the host immune system (17).

Gut microbiota is essential for the differentiation and function of

resident macrophages. During the activation of macrophages, gut

microbiota promotes the development of CD206 expressed

macrophages in intestinal muscle layer (20). Prior research has

demonstrated that colonic macrophages in specific pathogen-free

(SPF) mouse exhibit heightened immune defense, antigen

presentation, oxidative phosphorylation, and gene translation in

comparison to germ-free (GF) sterile mice. The intestinal

microbiota comprehensively influences metabolic processes, the

epigenetic regulation of gene expression, host defense mechanisms,

and adaptive immunity (21).

Neuro-immune communication between enteric neurons and

macrophages induces the rapid tissue protective response to external

disturbances. For instance, in response to intestinal bacterial infection,
Frontiers in Immunology 03
the exogenous sympathetic nerve innervation in the gut is swiftly

activated and the norepinephrine is released in the intestinal

muscular region. This neurotransmitter mediates signal transduction

through b2 adrenergic receptors (b2AR) in the intestine, and then

promotes the anti-inflammatory effects of macrophages and enhances

the protection effects of the intestinal tissue (22). In the normal state,

macrophages also support the enteric nervous system by providing the

TGFb family member bone morphogenetic protein 2 (BMP2) (23), the

complement component C1q (24), and the potential cytokine RELMa
(22). In turn, neurons support macrophages by providing colony-

stimulating factor 1 (CSF1) and influence their differentiation by

releasing norepinephrine.
2.4 Polarization of intestinal macrophages

The polarization of macrophages refers to the different activation

states that macrophages adopt in response to specific environmental

signals (Figure 1). Macrophages can be activated in two principal ways.

One is the classically activated macrophages (CAMjs), also known as

the pro-inflammatory (M1) macrophage phenotype, which arises in

inflammation environments dominated by TLR and interferon

signaling. Two signals in vitro could activate these macrophages:

interferon-g (IFN-g) and lipopolysaccharide (LPS) or other TLR

ligands. Promonocytes respond to TLR ligands and acquire the M1

phenotype drove by TLR4 activation and upregulation of nuclear
FIGURE 1

The origin and polarization of intestinal macrophages in homeostasis. (Created in BioRender. yujie, D (2025). https://BioRender.com/r15b808) In
homeostasis, intestinal macrophages are largely replenished by circulating CCR2hi, LY6Chi, MHCII–, and CX3CR1lowmonocytes. Submucosa and
muscularis externa in mice contain self-renewing macrophages as well. Muscularis externa macrophages affect intestinal peristalsis by secreting BMP2,
RELM-a, and C1q, and aid enteric neuron differentiation, while enteric neurons release CSF1 to sustain nearby macrophages. Mature macrophages
polarize into the pro-inflammatory M1 phenotype upon stimulation by Th1 cytokines (e.g., IFN-g) and TLR ligands such as LPS. These M1 macrophages
secrete high levels of pro-inflammatory cytokines (e.g., TNF-a, IL-1b, and IL-6), which initiate and sustain inflammatory responses to eliminate pathogens
in acute enteritis. In contrast, exposure to Th2 cytokines (e.g., IL-4 and IL-13) drives macrophage polarization into distinct M2 subtypes: M2a
macrophages primarily mediate tissue repair, immunosuppression, and allergic reactions; M2b macrophages regulate immune homeostasis; while M2c
and M2d subtypes exhibit potent immunosuppressive functions through mechanisms such as apoptotic cell clearance and cytokine-mediated T cell
inhibition. (In this figure, curved arrows indicate secretion or promotion and circular arrows represent self-renewal.).
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factor-kappa B (NF-kB). Accordingly, these cells produce high levels of
pro-inflammatory cytokines, such as TNF, IL-1b, IL-6, IL-12, IL-23,
and CCL2, to promote immune responses against bacteria, intracellular

pathogens, and tumor cells (25–27).

The second type is alternatively activated macrophages (AA-

Mjn), also known as anti-inflammatory (M2) macrophage

phenotype. This phenotype is induced by exposure to

glucocorticoids, immune complexes, LPS, and Th2 cytokines

(such as IL-4, IL-10, and IL-13). Nevertheless, the M1/M2

phenotype does not entirely correspond to the phenotypic subsets

of macrophages. Depending on the activating stimulus received, M2

macrophages are classified into four distinct subsets: M2a, M2b,

M2c, and M2d. These four subsets also differ in macrophage cell

surface markers, secretions, and functions. M2a macrophages are

activated by IL-4 and IL-13, which promote the expression of IL-10,

TGF-b, CCL17, CCL18, and CCL22. Additionally, these cells

increase phagocytic activity, facilitate wound healing and tissue

repair, and promote TH2-type cell responses (25, 27). M2b

macrophages are activated by immune complexes (IC) and

stimulation through TLR or IL-1R, leading to the activation of

various transcription factors such as NF-kB, MAPK, and interferon

regulatory factor 3, as well as the PI3K-AKT signaling pathway.

These cells secrete pro-inflammatory factors, including IL-1b, IL-6,
TNF-a, CCL1, and TNF superfamily member 14 (TNFSF14), while

also expressing and secreting significant amounts of the anti-

inflammatory cytokine IL-10 and low levels of IL-12 (28, 29).

M2b macrophages possess potent anti-inflammatory and

immunosuppressive effects, ultimately promote infection and

tumor progression. Additionally, M2c macrophages are induced

by glucocorticoids, IL-10, and TGF-b. These cells secrete high levels

of IL-10, TGF-b, CCL16, and CCL18, and are demonstrated with

strong capabilities in anti-inflammatory and fibrotic repair. They

also play a vital role in the phagocytosis of apoptotic cells (30–32).

M2d macrophages considered as TAMs, are induced through co-

stimulation by TLR ligands and A2 adenosine receptor (A2R)

agonists or IL-6. These cells release IL-10 and VEGF, and

promote angiogenesis and tumor progression (33, 34).

In preliminary studies, general macrophages are typically

marked by CD63, CD68, and F4/80. Further classification reveals

that specific markers for M1 macrophages include CD80, CD86,

and iNOS, while particular markers for M2 macrophages include

CD163, macrophage mannose receptor (MMR)/CD206, and

arginase 1 (Arg1). Furthermore, the expression of particular

markers varies among the M2 subtypes. A comparative analysis

of the human and mouse macrophage systems has revealed that the

unique surface markers of M2a macrophages in humans include

CD206, IL-IRa, and IL-IRII. However, in mice, the surface markers

of M2a macrophages include Found in inflammatory zone (FIZZ1),

YM1/2, and Arg-1 (35). The specific surface markers for M2b

macrophages include IL-10R, IL-12R, IL6R, and CD86.

Additionally, M2c macrophages exhibit distinct surface marker

profiles in human and mouse systems. In humans, M2c

macrophage cell surface markers encompass MMR/CD206, TLR-

1, and TLR-8. However, in mice, the sole surface marker of M2c

macrophages is Argin-1 (36).As for M2d macrophages, their
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specific markers still need to be thoroughly studied. However,

several studies have demonstrated that VEGF, IL-12, and TNF-a

characterize the surface markers of M2d at relatively low levels,

while IL-10 is present at high levels (37).

Notably, regulatory macrophages (RMj) represent a distinct

macrophage subset defined by their unique phenotypic and functional

characteristics. Unlike classicalM1 orM2 polarization, RMj are typically

induced by combinatorial stimuli, including TLR ligands (e.g., LPS),

high-density immune complexes, and immunomodulatory molecules

such as adenosine and prostaglandins. Functionally, RMj exhibit potent

immunosuppressive activitymediated through two primarymechanisms

(1): secretion of anti-inflammatory cytokines (e.g., IL-10, TGF-b) that
dampen effector T cell responses, and (2) upregulation of co-inhibitory

molecules (e.g., PD-L1) to directly suppress T cell activation (38). While

RMj share partial overlap with M2 macrophages in tissue repair

functions, their specialized role in immune tolerance, such as

promoting Treg expansion and mitigating inflammatory damage,

distinguishes them from both pro-inflammatory M1 and pro-repair

M2 subsets (39). However, whether RMj constitute a standalone

subtype equivalent to the M1/M2 dichotomy remains debated, largely

due to heterogeneity in activation markers (e.g., CD163 vs. CD206

expression) (25) and context-dependent plasticity. Standardized criteria

integrating transcriptomic, epigenetic, and functional profiling are

required to resolve this classification ambiguity (40).

Macrophage polarization is a dynamic process. There is no

absolute distinction between the M1 and M2 phenotypes, and these

cells coexist and may even transdifferentiate under specific conditions.

In a healthy organism, these various states maintain immune

homeostasis. In summary, different macrophage subpopulations play

irreplaceable roles in the body. Different forms of activation of

macrophages promote or inhibit the development of inflammation,

which directly affects the development of inflammation-induced

tumors (such as CAC). Therefore, the key to therapies targeting

macrophages is to alter their phenotypes without affecting their

fundamental physiological functions.
3 Macrophage polarization influences
the occurrence and progression of
colitis-associated colorectal cancer

3.1 The roles of M1 and M2 macrophages
in intestinal inflammation

Macrophages are critical gatekeepers of intestinal immune

homeostasis, and inflammatory bowel disease (IBD) is a direct

result of the immune disorder (Figure 2). IBD includes ulcerative

colitis and Crohn’s disease, both of which are closely linked to

immune dysfunction (41). Patients with active IBD and mice

models of colitis induced by DSS exhibit increased inflammatory

macrophages in the intestinal mucosa (42). These macrophages

originate from classical monocytes and secrete large amounts of

pro-inflammatory cytokines and chemokines, which facilitate the

recruitment and sustenance of pathogenic effector T-cell responses.

Cytokines such as GM-CSF and IFN-g then serve to further
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augment the M1 phenotype of macrophages, which release even

more pro-inflammatory cytokines, including IL-1b, IL-6, IL-2,
TGF-b, and TNF. Consequently, this process activates fibroblasts,

which in turn induce the production of monocyte chemotactic

factors, thereby establishing a positive feedback loop (19, 43). The

IL-22 produced by effector T cells drive pro-inflammatory

responses in intestinal epithelial cells, which include the release of

neutrophil and monocyte chemoattractant molecules, further

enhance the recruitment of highly pro-inflammatory cells (44,

45). In multiple mouse models of colitis, inhibition of IL-12/IL-23

p40, IL-23 p19, or IL-23 receptor function significantly suppresses

intestinal inflammation by reducing the activation of IL-23 target

cells (such as T helper cells 17, innate lymphoid cells 3, neutrophils

and natural killer cells) and pro-inflammatory cytokines (46). This

indicates that the regulation of macrophages, which produce pro-

inflammatory cytokines, is linked to disease susceptibility.

Therapies targeting the blockade of pro-inflammatory factors,

such as TNF-a inhibitors, have shown promising efficacy in

alleviating and treating IBD.

M2 macrophages secrete the anti-inflammatory cytokines IL-10

and low levels of IL-12, and counteract the effects of M1

macrophages (47). They inhibit antigen presentation and serve as

potent inhibitors of pro-inflammatory cytokines, chemokines, and
Frontiers in Immunology 05
inflammasomes, thereby promoting intestinal homeostasis

restoration and healing (48). Studies have also found that IL-10

signaling in macrophages contributes to the induction of CD206+

regulatory macrophages and therapeutic response to anti-TNF (49).

Recent studies have found that Pediococcus pentosaceus (P.

pentosaceus) polarize intestinal macrophages toward the anti-

inflammatory M2 phenotype. This shift results in a decreased

production of IL-1b, and lead to reduce the levels of reactive

oxygen species (ROS), decrease the activation of NF-kB, and
lessen apoptosis of intestinal epithelial cells. These effects

contribute to the repair of intestinal barriers in juvenile mice with

colitis and help in the modulation of the gut microbiota (50).
3.2 The roles of M1 and M2 macrophages
in colitis-associated colorectal cancer

Macrophage polarization influences the CAC progression

(Figure 2). CAC refers to colorectal cancer caused by chronic

inflammatory diseases, such as IBD (51). M1-TAMs produce

substantial quantities of pro-inflammatory cytokines, such as IL-1b,
interferon-beta (IFN-b), and IL-23. These cytokines enhance the

expression of natural killer (NK) cell-associated proteins, and activate
FIGURE 2

The differentiation and function of macrophages in intestinal homeostasis, inflammation, and colitis associated colon cancer. (Created in BioRender.
yujie, (D) (2025) https://BioRender.com/n37y529) (A) In homeostasis, classical monocytes migrate from the bloodstream into the lamina propria, where
they differentiate into mature macrophages. These mature macrophages and resident macrophages predominantly secrete low levels of IL-10 and TGF-
b to maintain epithelial barrier integrity and immune quiescence. Regulatory T cells (Tregs), dependent on these anti-inflammatory signals, further
suppress excessive immune activation to preserve tissue equilibrium. In contrast, IL-6 production, TLR signaling, and iNOS activity remain minimally
active under steady-state conditions, becoming robustly upregulated only upon pathogen encounter or tissue injury. (B) During intestinal inflammation,
mature macrophages predominantly differentiate into the M1 phenotype, secreting pro-inflammatory cytokines and exacerbating epithelial damage.
Concurrently, some macrophages differentiate into the M2 phenotype, producing IL-10 and IL-12 to eliminate inflammation and promote wound
healing. (C) During CAC, M1 TAMs produce a substantial number of pro-inflammatory cytokines, which intensify the inflammatory response of the TME,
stimulate the activation of cytotoxic T cells, and augment the capacity of the immune system to eradicate tumors. However, the anti-inflammatory
cytokines secreted by M2 TAMs influence tumor progression by inhibiting apoptosis, facilitating invasion, enhancing angiogenesis, and inducing EMT.
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NK cells cytotoxic response against target cells. This activation

stimulates NK cells to secrete IFN-g, which further augments the

polarization of M1-type macrophages and promotes the secretion of

cytokines that induce apoptosis in tumor cells (52). Moreover, M1

macrophages secrete various cytokines that enhance T-cell activation,

cytokine production, proliferation, and differentiation. They also

increase the infiltration of neutrophils at the tumor site and

contribute to the targeted elimination of tumors by pro-

inflammatory neutrophils (53–55). M1 macrophages promote the

immune response and inhibit tumor progression through multiple

pathways. Kshipra Singh et al. found that the removal of ornithine

decarboxylase (ODC) limits the activation of M1 macrophages, while

the number of M1 macrophages is restored without affecting M2

macrophages. In the AOM-DSS model, the number and burden of

tumors are reduced in Odcmye mice, the mucosal innate immune

response is enhanced, and the development of colon tumors is

suppressed (56).

In contrast to M1 macrophages, M2 macrophages display anti-

inflammatory and pro-tumor functions with more intricate underlying

mechanisms. Sun Mi Hong et al. have demonstrated that during the

development of CRC, NAMPT is involved in the polarization of M2

macrophages by stabilizing HIF-1a. The elevated levels of HIF-1a
facilitate the phosphorylation of STAT3, thereby activating oncogenic

signaling pathways that contribute to the progression of CRC (57). In

the tumor microenvironment, the M2-TAMs release many other

cytokines to encourage tumor invasion, including M‐CSF, MMPs,

and EGF. Interestingly, the secretion of M‐CSF could cause TAMs to

maintain the M2‐like phenotype, thus forming a circulation that

promotes tumor development continuously (58). M2-TAMs secrete

IL-10, TGF-b, and PGE2, and promote tumor angiogenesis and tissue

remodeling. They also reduce the production of cytotoxic substances

such as nitric oxide (NO) and inducible iNOS, thereby inhibiting the

activity of tumor-killing cells and weakening the cytotoxic effects of M1

macrophages on tumor cells (59). Additionally, M2-TAMs primarily

exert their effects on transformed intestinal epithelial cells, promoting

proliferation, inhibiting apoptosis, facilitating invasion, stimulating

angiogenesis, inducing epithelial-to-mesenchymal transition (EMT),

and enhancing metastasis (60). Accordingly, M2-TAMs can also

enhance resistance to CACtherapies. Wei C et al. demonstrated that

CCL22 secreted by M2-TAMs in the CRCtumor microenvironment

counteracts the antitumor effects of 5-FU by activating the PI3K/AKT

pathway (61). The upregulation of PD-1 and PD-L1 by M2-TAMs is a

direct consequence of immunosuppression. This could eliminate

therapeutic antibodies used for immune checkpoint blockade, and

significantly reduce the effect of PD-1-targeted therapies in CAC (62).
3.3 The role of macrophage polarization
on the progression from colitis to
colon cancer

Macrophages primarily influence the progression of IBD to CRC

through the secretion of cytokines (63). CAC is often considered a

specific subtype of cancer induced by inflammation. Unlike typical

colorectal cancer, CAC typically follows a distinct progression
Frontiers in Immunology 06
characterized by the sequence of “inflamed mucosa - dysplasia -

cancer.” (64). Several retrospective studies and meta-analyses have

indicated that extensive inflammatory responses in IBD are an

independent risk factor for the development of CAC (65).

IBD is characterized by a chronic inflammatory state marked by

the disruption of intestinal barrier function, defects in Paneth cells,

and alterations in the host microbiota. These shifts can result in an

imbalance within the intestinal ecosystem, leading to the formation

of a locally inflammatory environment. Prolonged exposure to the

intricate environment created by the interplay of various secreted

factors and matrix remodeling enzymes that are aberrantly

expressed can expedite the progression of colorectal cancer and

induce a systemic response that influences the outcome of the

disease (66).

M1 macrophages secrete pro-inflammatory cytokines such as

IL-1b, IL-6, IL-11, IL-13, IL-23, IL-33, and TNF-a, which trigger

inflammatory responses in the gut and contribute to the persistence

of inflammation or inadequate resolution in IBD. However, the risk

of CRC increases by approximately 2 to 3 times in individuals

whose intestines are in a state of chronic inflammation (67). Among

these cytokines, TNF-a and IL-1b are particularly significant, as

they play a crucial role in transmitting inflammatory signals that

lead to or promote the development of CRC. TNF-a is mainly

produced by M1 macrophages, and its expression is upregulated in

an inflammatory environment, and it play a central role in the

pathogenesis of IBD. In addition, TNF-a could activate several

signaling pathways, including the NF-kB and MAPK pathways,

thereby activating c-Jun N-terminal kinase (JNK) and activator

protein 1 (AP-1) (68). The sustained activity of NF-kB and AP-1

promotes the progression of colitis to CRC. As mentioned earlier,

IL-1b exerts pro-inflammatory effects by recruiting phagocytes and

enhancing Th17 differentiation. Moreover, IL-1b binds to IL-1R1

on the surface of intestinal epithelial cells and activates pro-

inflammatory pathways mediated like MAPK/AP-1 or NF-kB that

promote cell proliferation and survival, angiogenesis, invasion, and

metastasis, ultimately leading to the development of CRC (69).

In chronic colitis, the M2 macrophages play a role in alleviating

short-term inflammation via their anti-inflammatory properties.

However, in the long term, immunosuppression induced by these

cells could contribute to sustained inflammatory responses and

accelerate cancer development. The proportion of M2 macrophages

in human colon cancer tissue is significantly higher than in healthy

or inflamed tissue. The characteristic markers of these macrophages

(such as CD206 and Arg1) are highly expressed in cancer tissue,

further corroborating the pivotal role of M2 macrophages in

transforming inflammation into cancer (70). Additionally, the

AOM/DSS-induced CAC mouse model showed a notable increase

in the number and proportion of M2 macrophages during the

disease progressed from inflammatory to cancer. This change is

associated with the immunosuppression and angiogenesis

promoted by M2 macrophages, which support the survival and

expansion of cancer cells by releasing anti-inflammatory factors

such as IL-10 and TGF-b and pro-tumor factors. Furthermore, the

pro-tumor factors secreted by M2 macrophages (such as VEGF and

IL-6) promote cancer cell proliferation while assisting cancer cells in
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invading and metastasizing by remodeling the extracellular matrix

(such as by secreting MMP-9) (71). M2 macrophages also interact

with myeloid-derived suppressor cells (MDSCs) to promote the

accumulation of M2 macrophages through the secretion of

exosomes, thereby further accelerating the process of carcinogenesis

(72). In addition, Peritoneal macrophages serve as critical mediators

of CRC peritoneal metastasis, orchestrating tumor progression

through multifaceted mechanisms. Specifically, their pro-metastatic

capacity is driven by the enrichment of the SPP1+macrophage subset,

which enhances tumor cell invasiveness and remodels the ECM

through secretion of osteopontin (SPP1) and CXCL12, thereby

activating pathways such as the SPP1-CD44/PTGER4 signaling axis

(73). Concurrently, these macrophages upregulate the HIF-1a
pathway to augment tumor cell glycolytic metabolism, enabling

survival within the hypoxic peritoneal niche. These macrophages

exhibit a pronounced M2 polarization bias and overexpress immune

checkpoint molecules and facilitate immune evasion. Furthermore,

peritoneal macrophages engage in a synergistic crosstalk with cancer-

associated fibroblasts (CAFs): CAFs secrete CXCL12 and TGF-b to

reinforce macrophage M2 polarization, while macrophages

reciprocally enhance CAF-mediated ECM remodeling through IL-

1b secretion, collectively fostering a pro-metastatic stromal niche (57,

74, 75). Notably, the CXCL12-M2 macrophage axis further amplifies

tumor cell resistance to chemotherapeutic agents such as cisplatin,

underscoring their role in therapeutic recalcitrance.

In addition, two key genes(COX-2 and NF-kB), which are

involved in the inflammatory process, have established a

mechanistic link between inflammation and cancer and accelerated

the progression of IBD to CAC (76). COX-2 is significantly

overexpressed in colorectal tumors, and COX-2-derived PGE2

signaling, which is the downstream of PPARd pathway, mediates

the crosstalk between tumor epithelial cells and macrophages and

promotes chronic inflammation and the development of

inflammation-related colorectal cancer (77). PGE2, the primary

downstream mediator of COX-2, is mainly secreted by intestinal

macrophages. It promotes cell proliferation and angiogenesis, inhibits

apoptosis, enhances invasiveness, and regulates immunosuppression

(78). Furthermore, the transcription factor NF-kB is activated by

various carcinogens and growth factors, including microbial flora and

pro-oxidants, during inflammatory stimuli. It plays a central role in

inflammation and is primarily expressed in cancer. NF-kB appears to

be implicated in the recruitment of TAMs (79). In turn, the cytokines

produced by activated macrophages could further activate NF-kB and

increase the expression of various inflammatory and tumor-

promoting cytokines (such as IL-6, IL-1a, and TNF-a) and genes

such as BCL-2 and BCL-XL. These molecular interactions provide an

opportunity for tumor development (80). In addition to inflammation,

several other mechanisms contribute to the development of CAC,

including ROS (81), inflammasomes (82), and specific types of cell

death, such as pyroptosis and necrosis (83), These mechanisms also

play an active role in the progression of CAC.

In summary, macrophages provide new perspectives on

controlling the evolution of CRC. Regulating macrophage

polarization and inhibiting cytokine secretion could delay the

progression from colitis to CRC, and lead to a better prognosis

for in the both diseases.
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4 Factors influencing intestinal
macrophage polarization

4.1 Metabolic pathways and metabolites

Current studies suggest that multiple metabolic pathways and

their metabolites play a significant role in modulating the

polarization of TAMs (84). The glycolytic pathway appears to

influence the cytokine production processes in M1 and M2

macrophages, with a mechanism closely linked to mitochondrial

oxidative phosphorylation. Adding glycolysis inhibitors, such as 2-

deoxy-D-glucose or dichloroacetate, during LPS-stimulated M2

differentiation results in significantly reduced IL-10 levels in M2

macrophages compared to the absence of these inhibitors.

Conversely, IL-6 production is markedly elevated (85). The

glycolytic metabolite lactate, produced by the tumor cells,

stabilizes HIF-1a, which in turn induces VEGF expression and

promotes M2-like polarization of TAMs (86). M2 macrophages

have a greater dependence on ATP produced via the tricarboxylic

acid (TCA) cycle. Unlike M1 macrophages, which could

compensate for TCA cycle inhibition through alternative

metabolic pathways, M2 macrophages depend more on TCA

cycle-derived energy. SMYD3, a lysine methyltransferase from the

SMYD family, could activate the TCA cycle, and promote ROS

generation and upregulate genes associated with the mitochondrial

respiratory chain complex. This activity facilitates the repolarization

of M1 macrophages toward the M2 phenotype (87). Studies have

found that an increase in the number of functional mitochondria

enhances the ability of M2 macrophages to undergo remodeling

(88). In the TCA cycle, a-ketoglutarate and succinate play pivotal

roles in macrophage polarization. a-Ketoglutarate is a critical

metabolite that induces macrophage polarization toward the M2

phenotype, whereas succinate enhances aerobic glycolysis and ROS

production, and drive macrophage polarization toward the M1

phenotype (89). This suggests that the balance between a-
ketoglutarate and succinate is crucial for stabilizing macrophage

polarization states. A disruption in their ratio could drive

macrophages to shift toward either the M1 or M2 phenotype.

Notably, fatty acid oxidation (FAO) also serves as a significant

energy source for the polarization of macrophages toward the M2

phenotype. Upregulation of the FAO rate-limiting enzyme,

carnitine palmitoyl transferase 1a (Cpt1a), enhances fatty acid

metabolism in macrophages and promotes M2 polarization,

thereby accelerating the progression of CAC (90).
4.2 Cytokines

TAMs are macrophages in the TME. In CAC, signals in the TME,

such as cytokines, chemokines, growth factors, and matrix

metalloproteinases, influence the metabolic reprogramming of

macrophages, and cause TAMs polarization and exhibit different

phenotypes and functions (91). The polarized macrophages mainly

affect tumor survival, metastasis, and prognosis. TNF, IL-6, IL-8, and

TGF are secreted by macrophages. The function of these cytokines is

dynamic and multifaceted in the context of the immune
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microenvironment of inflammatory bowel disease and colorectal cancer.

This is due to the close relationship between the functional conversion of

these cytokines and the dynamic changes in cell interactions and

signaling networks in the microenvironment (Table 1).

TNF-a-mediated pro-inflammatory pathways play a key role in

promoting cancer development (92). TNF is a homotrimer that

binds to two different receptors on the cell surface: TNF receptor 1

(TNFR1, also known as the p55 receptor) and TNF receptor 2

(TNFR2, also known as the p75 receptor) (93). Both in the DSS-

induced colitis model and AOM/DSS-induced CAC model, TNFR2

is highly expressed in the intestinal epithelium, and promoting the

activation of NF-kB and other signaling pathways and facilitating

cell survival. This also leads to the upregulation of myosin light

chain kinase, releasing pro-tumor cytokines and disrupting tight

junctions (94). During acute or chronic colitis, TNF-a is primarily

secreted by activated macrophages, T cells, and epithelial cells, with

its elevated expression predominantly associated with M1-polarized

macrophages (95). In the early phases of intestinal inflammation,

M1 macrophages contribute to pathogen clearance and necrotic cell

removal, thereby facilitating localized inflammatory responses and

immune cell recruitment. However, prolonged exposure to TNF-a
can intensify local inflammation and tissue injury by activating

downstream signaling pathways such as NF-kB and MAPK, which

amplify the inflammatory cascade (96). Correspondingly, in the

context of CAC, TNF-a exerts a significant influence within the

tumor microenvironment. Initially, TNF-a contributes to anti-

tumor immunity. However, chronic inflammation and sustained

TNF-a signaling lead to DNA damage and genetic mutations. At

the same time, TNF-a regulates macrophage polarization toward

the M2 phenotype and promotes tumor progression and metastasis

by activating complex cytokine networks (97). This dual role of

TNF-a underscores its complex regulatory functions across

different pathological conditions and provides a foundation for

targeted therapies aimed at modulating TNF-a signaling (98).
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IL-6 is an essential mediator of inflammation and immunity (99).

It binds to the membrane-bound IL-6 receptor (IL-6R) on target cells

and transduces signals through the heterodimer complex formed with

glycoprotein 130 (gp130). In inflammatory environment, Gp130 is a

shared receptor chain of the IL-6 family and an effective inducer of

STAT3 activation, which drives macrophage polarization toward an

M1 phenotype (100). These M1 macrophages secrete pro-

inflammatory cytokines, such as IL-1b and TNF-a, that are essential
for pathogen clearance and the elimination of damaged cells during the

initial phases of the inflammatory response. Nevertheless, prolonged or

recurrent inflammation may result in an overactive M1 response,

thereby exacerbating tissue damage and perpetuating chronic

inflammatory conditions (99). However, in CAC, IL-6 assumes a

tumor-promoting role. In this setting, persistent IL-6 signaling leads

to continual activation of STAT3, which not only supports cancer cell

proliferation and survival but also reconditions the immune

microenvironment (101). This reprogramming favors a shift in

macrophage polarization toward the M2 phenotype, characterized by

the production of anti-inflammatory cytokines and growth factors such

as IL-10 and TGF-b. These factors suppress effective antitumor

immunity and facilitate tumor invasion and metastasis (102). Thus,

while IL-6 contributes to host defense in colitis by enhancing an M1-

mediated pro-inflammatory response, its sustained expression in a

chronic inflammatory milieu can promote macrophage

reprogramming toward an M2 phenotype, ultimately altering the

local immune landscape to support tumor progression.

TGF-b, primarily produced by macrophages, is a pivotal regulator

of tissue wound healing and carcinogenesis. In intestinal inflammation,

TGF-b exerts immunosuppressive effects by attenuating pro-

inflammatory functions of M1-polarized macrophages, such as ROS

and NO production. Simultaneously, it promotes macrophage

polarization toward an M2 phenotype characterized by anti-

inflammatory mediator secretion, including IL-10 and TGF-b itself.

The resulting M2-skewed microenvironment suppresses CD8+ T cell
TABLE 1 Comparison of the dual role of cytokines in inflammatory bowel disease and colorectal cancer.

Cytokine Inflammatory Bowel Disease Colorectal Cancer

TNF-a Pro-inflammatory:
- Activates M1 macrophages (95)
- Enhances neutrophil infiltration and intestinal barrier disruption

Dual Role:
- Early phase: Suppresses tumor growth
- Late phase: Activates M2 macrophages (97), promotes EMT and
vascular leakage (pro-metastatic)

IL-6 Pro-inflammatory:
- Activates M1 macrophages (99)
- Induces hepatocyte production of C-reactive protein (CRP), enhancing
acute-phase response (177)

Pro-tumorigenic:
- Activates M2 macrophages, promotes tumor cell proliferation and
immune evasion
- Induces angiogenesis (VEGF) and pre-metastatic niche
formation (102)

TGF-b Anti-inflammatory:
- Activates M2 polarization and IL-10 secretion to resolve inflammation
(103)
- Enhances mucosal repair

Pro-tumorigenic:
- Activates M2 macrophages, drives EMT and ECM remodeling (pro-
invasive)
- Expands Tregs to suppress anti-tumor immunity
- Drives angiogenesis (VEGF/FGF2) (107)

IL-8 Pro-inflammatory:
- Activates M1 macrophages
- Recruits neutrophils, releasing ROS to exacerbate inflammation (114)

Pro-tumorigenic:
- Activates M2 macrophages
- Drives angiogenesis (VEGF/FGF2)
-Modulates metabolism, enhance chemotherapy and immune
checkpoint inhibitors (113)
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cytotoxicity and dampens excessive inflammatory responses, thereby

maintaining immune homeostasis and tissue integrity (103).

Mechanistically, TGF-b coordinates crosstalk between T cells and

macrophages to regulate localized inflammation and mitigate tissue

damage. However, chronic or hyperactivated TGF-b signaling may

paradoxically induce immune evasion by suppressing effector immune

responses, exacerbating persistent inflammation and accelerating

chronic intestinal pathology. In CAC, TGF-b exhibits heightened

functional complexity. On the one hand, TGF-b drives M2

macrophage polarization to facilitate tumor immune evasion and

suppress antitumor immunity (104). Through both canonical

SMAD-dependent signaling and non-canonical pathways (e.g., ERK

and PI3K/AKT), TGF-b enhances tumor cell invasiveness and recruits

M2 macrophages to remodel the ECM, establishing a pre-metastatic

niche (74, 105, 106). Additionally, M2 macrophages secrete pro-

angiogenic factors such as VEGF and FGF2, promoting tumor

vascularization and metastatic dissemination (107). Thus, the dual

roles of TGF-b in colitis and colorectal cancer underscore the need for

stage-specific therapeutic strategies to achieve precise

clinical intervention.

IL-8 plays a pivotal role in macrophage polarization, primarily

through regulating chemokine secretion and intercellular signaling.

IL-8 is primarily secreted by intestinal epithelial cells, macrophages,

and neutrophils in enteritis (108). It acts by binding to CXCR1/

CXCR2 receptors, thereby recruiting neutrophils and monocytes to

the sites of inflammation (109, 110). During the early stages of acute

enteritis, IL-8-mediated neutrophil infiltration aids in pathogen

clearance. However, prolonged high expression of IL-8 leads to

macrophage polarization toward the M1 phenotype and inhibits

the anti-inflammatory function of M2 macrophages. Additionally,

IL-8 enhances the pro-inflammatory functions of M1 macrophages,

such as the secretion of IL-1b and TNF-a, through the activation of

the NF-kB pathway. This creates a positive feedback loop that further

exacerbates intestinal inflammatory injury (111). In CRC, IL-8 is

secreted by TAMs and cancer cells and promotes tumor angiogenesis

and pre-metastatic microenvironment formation by inducing the

expression of VEGF and FGF2. In addition, IL-8 interacted with

CXCR2+ myeloid-derived suppressor cells (MDSCs) to enhance their

immunosuppressive function and promote tumor immune escape.

Not only that, IL-8 enhances the resistance of tumor cells and

macrophages to chemotherapy and immune checkpoint inhibitors

by modulating their metabolism (e.g. glycolysis and fatty acid

oxidation). For example, IL-8 can impair the efficacy of anti-PD-1

therapy by upregulating PD-L1 expression (112, 113). This

bidirectional influence may be associated with the differentiation

and functional heterogeneity of TAMs (114).
4.3 Signaling pathway

The main signaling pathways that influence the reprogramming

of TAMs include the NF-kB signaling pathway and Janus kinase

(JAK)/STAT signaling pathway.

NF-kB regulates a variety of physiological processes, including

immune and inflammatory responses. Transcription facilitated by this
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pathway represents a principal regulatory factor affecting the

expression of multiple cytokines in the TEM (115, 116). It is

postulated that aberrant activation of NF-kB may play a role in the

progression of CAC. NF-kB positively influences the processes of M2

polarization and tumor progression (117). The aberrant activation of

NF-kB is considered a contributing factor in the progression of CRC.

Evidence suggests that it plays a positive role in M2 macrophage

polarization and tumor progression (117). In the mouse AOM\DSS

model, Michael Karin and colleagues have reported two signaling

pathways that lead to the activation of NF-kB. The first is the classical
pathway, activated by TNF-a, IL-1, LPS, CD40 ligand (CD40L), and to
a lesser extent, by light-sensitive molecules a/b (LT a/b) and Blys/

BAFF. This pathway is mediated through the IKK (IkB kinase)

complex, which consists of three subunits: the catalytic subunits

IKK-a and IKK-b, and the regulatory subunit IKK-g. The second is

the alternative pathway, which can be activated by LT a/b, CD40L, and
Blys/BAFF but not by TNF-a, IL-1, and LPS. Activation of this

pathway depends on the IKK-a homodimer, which induces the

processing of p100 and the nuclear translocation of the RelB-p52

dimer. These two pathways are essential for activating innate immunity

and inflammation and inhibiting apoptosis or the development of

secondary lymphoid organs, B cell maturation, and adaptive humoral

immunity (118). In the AOM/DSS-induced murine CAC model,

Th17-related cytokines, including IL-17A, IL-21, IL-22, TNF-a, and
IL-6, are produced by tumor-infiltrating lymphocytes (TIL), which

could activate the STAT3/NF-kB pathway, thereby promoting CAC

cell proliferation and accelerating tumor progression (92). Moreover,

the level of NF-kB activity also influences the balance of Treg

differentiation, thereby modulating immune tolerance and

inflammatory responses (119). In the tumor microenvironment,

fibroblasts, particularly CAFs, are frequently subject to sustained NF-

kB activation. Consequently, activated NF-kB drives these fibroblasts

to secrete a range of cytokines and chemokines, such as IL-6, IL-8, and

MMPs. These factors not only remodel the ECM, thereby creating

conditions conducive to tumor cell invasion and metastasis, but also

attract and activate various immune cells, including T cells (120).

Furthermore, through the NF-kB-mediated cytokine network,

fibroblasts engage in complex signaling interactions with both tumor

cells and immune cells, ultimately regulating local inflammation and

promoting immune evasion.

STAT3, situated at the convergence of multiple signaling pathways,

is indispensable for the survival of intestinal epithelial cells and the

preservation of mucosal integrity. It functions as a transcriptional

mediator of oncogenic signaling and plays a pivotal role in the

polarization of macrophages (121). Upon activation, STAT3 induces

the transcription of Bclns and Mclnsc two key antiscriptionE proteins

that support macrophage viabilityeionE.DATA ot in environments

characterized by chronic inflammation or tumorigenesis, where

preventing apoptosis is crucial for sustained cell survival. A

considerable body of research has demonstrated that the JAK/STAT3

axis contributes to the preferential polarization of macrophages toward

an M2-like phenotype across diverse pathological settings. In this

context, SOCS proteins, especially SOCS3, operate as critical

downstream modulators by exerting negative feedback on the

pathway. By inhibiting JAK kinases, SOCS3 serves to prevent
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uncontrolled STAT3 activation, thereby preserving immune

equilibrium and restraining excessive M2 polarization (122). Clinical

studies have revealed that CRC patients with positive expression of

JAK1 and STAT3 proteins exhibit significantly reduced survival rates

compared to those with negative expression of these proteins.

Moreover, this positive expression is linked to increased tumor

infiltration and metastasis (123). In the AOM/DSS-induced CAC

mouse model, it has been observed that phosphorylation and

activation of STAT3 directly affect cell cycle regulators, promoting

intestinal epithelial cell survival and leading to excessive proliferation.

Furthermore, activated STAT3 could enhance NF-kB activity. In the

AOM/DSS-induced CAC mouse model, IL-13 produced by NKT cells

induces the polarization of some macrophages to the M2 phenotype.

This leads to the production of a large amounts of IL-6 by TAMs,

thereby promoting cancer progression (124). In both acute and chronic

enteritis, STAT3 activation is associated with an increase in T cell

proliferation and activation—most notably among Th17 cells—thus

amplifying the inflammatory response (125). While such activation is

beneficial for combating infections and repairing tissue damage, its

dysregulation may result in excessive inflammation, potentially leading

to intestinal injury or chronic inflammatory conditions. Conversely,

STAT3 also plays a role in immune tolerance by influencing the

differentiation of regulatory T cells, thereby averting autoimmunity in

the gut.
4.4 Microbiota

In addition to the factors mentioned above, the role of gut

microbiota in colorectal tumors has received increasing attention

from researchers in recent years (126). The gut microbiota is a vital

regulator of the inflammatory potential of intestinal macrophages.

Studies have found that after 15 consecutive colonizations of

Escherichia coli 541, M2 macrophages secrete IL-10, providing

protection against intestinal damage, alleviating intestinal

inflammation, and limiting the progression of CAC (127). Specific

microbial species, such as those representing a dysbiotic gut microbiota

(Atopobium vaginae, Selenomonas sputigena, and Faecalibacterium

prausnitzii), could recruit B cells and macrophages to activate

immune responses specific to CAC. This promotes the M2b

polarization induced by the fecal microbiota and enhances the pro-

tumor activity of TAMs in vivo (128). It can be observed that

enhancing the colonization of certain microbial communities or

inhibiting specific microbiota could serve as a strategy for immune

therapy in CAC.
5 Immunotherapy targeting
macrophages in CAC

In summary, tumor-associated macrophages play a role in

coordinating angiogenesis, extracellular matrix remodeling, tumor

cell proliferation, metastasis, and immune suppression. The

cytokines secreted by polarized macrophages influence the

activation of critical molecules in classic cancer pathways,
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suppress innate and adaptive immune responses, and play a

crucial role in the antitumor activity of chemotherapy,

radiotherapy, and monoclonal antibodies (mAb) (129). M2-like

TAMs are involved in various immune-suppressive processes in

inflammatory bowel cancer and contribute to resistance in immune

checkpoint therapies and CAR-T cell treatments. Macrophage-

centered therapeutic strategies have garnered increasing attention.

Targeting macrophages can help rebalance the tumor

microenvironment from a pro-tumor immune landscape to an

anti-tumor immune environment and synergize with T-cell-

enhancing drugs (such as checkpoint inhibitors) to combat cancer

(130).Therapeutic approaches include blocking the sustained pro-

tumor effects of M2 macrophages and harnessing the anti-tumor

potential of M1 macrophages. Targeting TAMs for cancer therapy

has two main directions (131) (132): preventing macrophage

recruitment and regulating TAM polarization (Table 2).
5.1 Preventing macrophage recruitment
in TME

The focus of immunotherapy strategies targeting macrophage

recruitment in CAC is primarily on the blocking of key chemokine

and chemokine receptor pathways, such as CCL2/CCR2, CSF1/

CSF1R, and CXCL12/CXCR4. These strategies have been shown to

improve the tumor microenvironment and inhibit tumor

progression by reducing macrophage recruitment.

5.1.1 CSF1/CSF1R
CSF1 and its receptor play a central role in the differentiation

and survival of the mononuclear phagocyte system and TAMs

(133). TAMs stimulated by CSF1 secrete additional CSF1 through

paracrine signaling between macrophages and tumor cells, and

enhance the invasive properties of tumor cells (134). Because

macrophages have a great dependence on CSF1R signaling,

CSF1R has become a critical target for selectively depleting

macrophages. The CSF1/CSF1R axis is essential for the survival

and differentiation of M2-TAMs in CRC. Consequently, targeting

CSF1R presents a promising therapeutic approach to reduce M2-

TAMs presence and enhance antitumor immunity (135). Recent

studies have found that targeting CSF1R could also directly inhibit

CRC development and metastasis through the miR-34a/CSF1R

pathway while overcoming resistance to 5-FU treatment (136). In

order to achieve optimal efficacy, the concurrent administration of

immune checkpoint inhibitors (e.g. PD-1/PD-L1 or CTLA-4

antibodies) can disrupt the state of immune tolerance within the

tumor immune microenvironment. This enhances the synergy

between T cells and macrophages, as well as promoting ‘immune

remodeling ’ of the tumor immune microenvironment.

Consequently, the tumor becomes more susceptible to attack by

the immune system. Furthermore, the combination of CSF1R

inhibitors and anti-VEGF therapy not only assists in the

reduction of immunosuppressive TAM recruitment, but also

enhances the efficacy of immunotherapy by promoting the

infiltration of immune cells.
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TABLE 2 Treatment strategy for reprogramming TAMs in CAC.

Mechanism Combined
therapy

References

d

e

Blocks the CSF-1
signaling pathway;
Reduces the number
of TAMs; promotes
the polarization of

TAMs to M2

Pexidartinib
+Durvalumab

(178, 179) (135).

Promotes the
infiltration of

macrophages and the
differentiation of

M2-TAMs

RS504393/
RS102895
+anti-PD-1

(138, 139)

Inhibits the CXCL12/
CXCR4 signaling axis;

reduces the
accumulation of M2-
TAM; suppresses
tumor growth,

invasion,
and metastasis.

LY2510924
+anti-PD-1

(143)

Inhibits histamine-
mediated

immunosuppression;
reduces M2
macrophages;
enhances;

immune responses

Cimetidine
+5-fluorouracil

(151) (180).

Inhibits angiogenesis;
Inhibits the

accumulation of M2
cells in the TME

Bevacizumab +
0xaliplatin

+ Fluoropyrimidine

(147, 181)

Inhibits the pro-
inflammatory effects of
TNF-a; aggravates

tumor-
associated

inflammation

Etanercept
+anti-CTLA-4
+anti-PD-1

(182) (183).

Inhibits tumor-related
inflammation; reduces

the tendency to
polarize toward M2
and the cancer risk.

– (184).

Inhibits inflammation
by blocking the IL-6

(185) (186).
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Category Target drug CAC mouse model CAC patients Clinical status

Targeting
recruitment

CSF-1/CSF-1R Pexidartinib Significantly reduces
tumor burden and the
number of M2 cells

Patients with high
CSF1R expression

have a
poorer prognosis.

Durvalumab combine
with Pexidartinib fo
treating CAC in phas

I studies.

CCL2\
CCR2

RS504393
RS102895

Significantly reduced
infiltration of TAMs

in tumors

Reduced infiltration of
immunosuppressive

cells in the
primary tumor

–

CXCL12
/CXCR4

LY2510924 Inhibits recruitment of
TAMs and reduces
M2 phenotype

Mitigates
tumor metastasis

phase I

Regulating
TAM polarization

Inhibits
M2 Polarize

H2-R Cimetidine Reducing tumor
growth by modulating

the
immune environment

Potential benefit
to patients

–

VEGF Bevacizumab It inhibits angiogenesis
and reduces

tumor growth.

Combination with
chemotherapy

improves survival in
some patients.

Phase III

TNF Etanercept Tumor-associated
inflammation
is reduced

Improved survival
rates in some patients

Phase III

IL-1b Canakinumab Tumor-associated
inflammation and
tumor burden were
significantly reduced

Its potential for
preventing CAC is
being investigated.

Phase III

IL-6 Tocilizumab It effectively
suppresses

Shows benefits in
some CRC patients

Phase Ib
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5.1.2 CCL2/CCR2
CCL2 is highly expressed in many tumors. By binding to its

receptor CCR2, CCL2 mainly promotes the recruitment of

monocytes and pro-macrophages to the tumor microenvironment.

In addition, local conditions induce their differentiation into TAMs

(137). These TAMs typically have an M2 phenotype and secrete

immunosuppressive factors that promote tumor growth,

angiogenesis and matrix remodeling. In a series of studies utilizing

mouse models of colorectal cancer, the employment of CCR2

antagonists (e.g., RS504393, RS102895) or the suppression of the

CCL2/CCR2 axis has been demonstrated to result in a substantial

reduction in the infiltration of TAMs within tumors (138, 139). CCR2

antagonists have been demonstrated to possess limited inhibitory

effects on tumor growth in isolation. However, when employed in

conjunction with other therapeutic modalities, such as ICB and

chemotherapeutic agents, they have been observed to enhance the

tumor microenvironment and stimulate an anti-tumor immune

response. A number of studies have reported that the incorporation

of CCR2 antagonists into combination PD-1/PD-L1 antibody

therapy has resulted in increased T cell infiltration, decreased

immunosuppressive cells, and a significantly superior overall

therapeutic effect in comparison to monotherapy (140).

5.1.3 CXCL12/CXCR4
The CXCL12/CXCR4 signaling axis is integral to both the

recruitment and polarization of macrophages in the TME. By

driving the accumulation of TAMs and promoting an M2

phenotype, this pathway plays a key role in facilitating tumor

growth, invasion, and metastasis (141). Recent studies have shown

that the expression level of CXCR4 in primary tumors correlates

with the response of patients with metastatic colorectal cancer

(mCRC) to first-line chemotherapy (142). Clinical trials indicate

that the CXCR4 inhibitor LY2510924 targets the CXCL12-CXCR4

axis, exhibits a favorable safety profile, and is well tolerated in

patients with colorectal cancer, pancreatic cancer, and other solid

tumors (143). In addition, inhibiting CXCL12 has been found to

reduce the infiltration of immunosuppressive cells, such as Treg

cells and M2 macrophages, thereby enhancing the efficacy of PD-

1/PD-L1 inhibitors (144). However, to date, no preclinical or

clinical studies have reported the use of CXCR4 monoclonal

antibodies in cancer treatment. Moreover, targeting CXCR4

alone is insufficient to counteract the pro-metastatic effects

mediated by CXCL12. In contrast, combining a CXCL12

antagonist with immune checkpoint inhibitors has been shown

to achieve better therapeutic outcomes.
5.2 Regulating TAM polarization

In CAC, the tumor microenvironment frequently manifests an

immunosuppressive state, wherein macrophages predominantly

exhibit M2 phenotype, thus facilitating tumor proliferation and

metastasis. Consequently, the induction of the differentiation and

reprogramming of macrophages to the M1 phenotype has emerged

as a pivotal strategy to enhance anti-tumor immunity. The targeting

of macrophages in therapy for CAC has been demonstrated to
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enhance the tumor microenvironment and augment the anti-tumor

immune response by reducing the formation of immunosuppressive

M2 TAMs and promoting the conversion of macrophages to the M1

phenotype, which has anti-tumor activity. Therefore, we categorized

this critical strategy for enhancing anti-tumor immunity into two key

approaches: the inhibition of M2 macrophage polarization and the

promotion of M1 Macrophage Polarization

5.2.1 Inhibition of M2 macrophage polarization
5.2.1.1 VEGF

VEGF, a member of the growth factor family, plays a crucial role

in angiogenesis and creates a favorable environment for tumor

growth and metastasis (145). In clinical models, the angiopoietin-2

(Ang-2)/VEGF bispecific antibody exhibits significant antitumor

activity and reprograms TAMs from the M2 protumor phenotype

to the M1 antitumor phenotype (146). Min AKT et al. found that

compared to the normal mucosa of CAC patients, there is a

significant increase in the population of M2-TAMs and the

expression of VEGFR2 in tumors. Cytokine-induced M2

macrophages in vitro produce TGF-b1 through the VEGF/VEGFR2

signaling pathway. This suggests that anti-VEGFR2 treatment could

control the immune suppressive function of M2-TAMs in CAC,

thereby enhancing the efficacy of immunotherapy (147).

5.2.1.2 Histamine

Both CAC and CRC exhibit marked elevation of histamine

within the tumor microenvironment, a feature linked to

macrophage-driven immunosuppression (148). Histamine

modulates immune responses by engaging macrophage receptors

HRH1 and HRH2. After this engagement, there is activation of

distinct pathways, and upregulation of M2 markers such as Arg1,

IL-10, and CD206. In concert with IL-4/IL-13 signaling, this drives

epigenetic remodeling at M2-associated loci, further reinforcing the

M2 phenotype (149, 150). The consequent upregulation of VISTA

(V-domain Ig suppressor of T cell activation) on histamine-primed

M2-TAMs directly impairs T cell effector functions through

suppression of TCR signaling pathways (e.g., Lck-ZAP70

phosphorylation) and expansion of Tregs, thereby fostering

tumor progression and conferring resistance to immune

checkpoint inhibitors. Critically, preclinical models demonstrate

that pharmacological blockade of histamine signaling via HRH1/

HRH2 antagonists (e.g., loratadine or famotidine) reprograms M2-

TAM activation states and rescues antitumor T cell activity,

ultimately resensitizing tumors to immunotherapy by disrupting

the histamine-VISTA immunosuppressive axis (151).

5.2.1.3 TNF-a
TNF is indispensable for the reprogramming of TAMs. In

inflammatory bowel disease, TNF-a has been shown to block the

expression of M2-related genes in macrophages and polarize them

away from the immunosuppressive M2 phenotype. Studies have

demonstrated that a reduction in TNF or a loss of type I TNF receptor

signaling leads to increased M2 mRNA expression (152). TNF-a
monoclonal antibodies (e.g. Infliximab and Adalimumab) have been
Frontiers in Immunology 13
extensively utilized in clinical practice to reduce inflammatory responses.

In the treatment of intestinal cancer, some studies have concentrated on

the combination of TNF inhibitors and immune checkpoint inhibitors

(e.g. PD-1/PD-L1 antibodies), given the pro-M2 effect of TNF-a in the

tumormicroenvironment. This strategy aims to inhibit tumor-promoting

inflammation, activate anti-tumor immunity, improve T cell function and

remodel the tumor immune microenvironment.

5.2.1.4 PSGL-1

P-selectin glycoprotein ligand-1 (PSGL-1) is widely expressed

on hematopoietic-derived cells and serves as a ligand for all selectins

(P-, L-, and E-selectins) (153). PSGL-1 binds to chemokines and

activates integrins, acting as a negative regulator of T cell function,

and is expressed at high levels in TAMs (154). In tumor cells,

platelets bind to PSGL-1 expressed on TAMs via P-selectin

(CD62P), activating the JNK/STAT1 pathway and the C5a/C5aR1

axis. This results in the differentiation of TAMs into M2 cells, which

promote tumor progression, induce immune tolerance and increase

tolerance to immunotherapeutic drugs (154). Studies have found

that inhibiting the C5a/C5aR1 axis or PSGL-1 significantly reduces

the growth of CAC (155). PSGL-1 is involved in reprogramming

TAMs and regulating T-cell biology, suggesting that it could serve

as a potential drug target for cancer therapy (154).

5.2.1.5 MicroRNA

MicroRNAs are endogenous small non-coding RNAs, typically

18 to 25 nucleotides long, that regulate gene expression by

modulating gene transcription and translation (156). MicroRNAs

play a critical role in macrophage activation, polarization, tissue

infiltration, and the resolution of inflammation (157). By

modulating signaling pathways such as NF-kB and STAT3,

specific miRNAs can influence the balance between pro-

inflammatory M1 and anti-inflammatory M2 macrophage

phenotypes, thereby affecting both the inflammatory response and

anti-tumor immunity (158). Studies have found that IL-16b drives

the secretion of G-MDSC-derived exosomal miR-193-5p, promotes

the differentiation of M-MDSCs into M2 macrophages and

facilitates the progression of CAC through the STAT3 signaling

pathway (72). This suggests that combining drugs that inhibit

STAT3 signaling with those that block miR-193-5p secretion

could provide an effective therapeutic strategy for CRC. Baer C

et al. found that a deficiency of the microRNA processing enzyme

DICER in TAMs promotes M1-type polarization, and reduces the

immunosuppressive capabilities of TAM. This shift enhances the

recruitment of activated cytotoxic T lymphocytes (CTLs) to the

tumor, enabling complete tumor eradication when combined with

PD-1 checkpoint blockade (159).

5.2.1.6 IL-6

IL-6 exerts a profound influence on macrophage polarization

and function through activation of the STAT3 signaling pathway.

Within the TME, IL-6 predominantly drives macrophages toward

an M2 phenotype, a state that is intimately linked to

immunosuppression and the facilitation of tumor growth and
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metastasis (160). Experimental studies reveal that mice with

disrupted IL-6/gp130/STAT3 signaling develop more severe

colitis, along with marked epithelial damage and ulceration upon

AOM/DSS exposure, compared with wild-type counterparts.

Interestingly, these mice exhibit a reduced tumor burden—

characterized by smaller and less frequent tumors (161). That

may be partly attributed to a diminished presence of tumor-

promoting M2 macrophages and an altered inflammatory milieu

within the TME, ultimately impeding tumor progression. Blocking

IL-6 could enhance ICB-induced antitumor therapy, such as by

improving the efficacy of anti-CTLA-4 treatment in preclinical

models, reducing autoimmune responses, increasing CD4+ and

CD8+ effector T cells, and decreasing MDSCs and macrophages

in the TME. The combination of IL-6 blockade and ICB allows for

the decoupling of autoimmunity from antitumor immunity, and

offer a novel approach for immunotherapy in CAC and the

management of treatment-related complications (162).

5.2.1.7 IL-1b
IL-1b is a potent activator of the NF-kB signaling pathway and

plays a crucial role in modulating the TME. It regulates macrophage

phenotype switching through both paracrine and autocrine

mechanisms. IL-1b has been shown to promote macrophage

polarization toward the pro-tumor M2 phenotype, while

simultaneously inhibiting the anti-tumor activity of the M1

phenotype (27, 163). Elevated IL-1b levels and expression within

the TME are associated with resistance to various anticancer

therapies, including cytotoxic agents and immunotherapies,

ultimately leading to reduced survival rates (164). By inhibiting

IL-1b signaling, these inhibitors mitigate the immune suppressive

environment that typically promotes M2 macrophage polarization,

which is associated with tumor progression and immune evasion

(165). Targeting IL-1b in immunotherapy is an area of active

research. For instance, IL-1b monoclonal antibodies, such as

canakinumab, have been evaluated in clinical trials for their

efficacy in multiple cancers (166). However, the therapeutic effect

of IL-1b inhibitors alone appears limited and may require

combination with other immunotherapeutic approaches to

enhance their anti-tumor activity. Notably, combining IL-1b
inhibition with PD-1 blockade has shown a synergistic effect in a

non-small cell lung cancer (NSCLC) mouse model, significantly

suppressing tumor progression (167). These findings suggest that

IL-1b-targeted immunotherapy, particularly when used in

combination with other immune therapies, could provide a

promising strategy to improve the efficacy of cancer treatments.

5.2.2 Promotion to M1 macrophage polarization
5.2.2.1 HDAC

Histone deacetylase (HDAC) regulates cell proliferation and

survival. Notably, Class IIa HDACs modulate immune functions by

influencing immune responses, chemokine expression, and the

production of complement pathway components (168).

Specifically, HDAC4 attenuates the expression of M1 macrophage

markers, via modulation of the NF-kF signaling pathway, while

concurrently promoting STAT6tingtly,E M2 polarization (169).
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Recent studies have demonstrated that the Class IIa HDAC

inhibitor TMP195 can modulate macrophage dynamics by

reducing the overall macrophage population through polarization

reprogramming, thereby increasing the proportion of pro-

inflammatory M1 macrophages and the secretion of inflammatory

cytokines (170). In murine models, the combination of TMP195

with anti-PD-1 therapy significantly reduced tumor burden in both

carcinomatous adenomas and subcutaneous tumors, while

concurrently enhancing the efficacy of PD-1 blockade (171, 172).

These findings suggest that a combinatorial immunotherapeutic

strategy integrating HDAC inhibition with immune checkpoint

blockade may offer a promising approach for the treatment of

carcinomatous adenomas.

5.2.2.2 TLRs

TLR is a crucial pathogen recognition receptor that is expressed

by immune system cells. Activation of TLR3 inhibits the co-

stimulatory inhibitory receptor Tim-3, enhances antigen uptake

and T cell capacity, and inhibits the polarization of M2a and M2c

subtypes; then the number of M1 macrophages have significantly

elevated and inhibit tumor growth (173). Similarly, TLR9 plays a

pivotal role in regulating macrophage function, particularly in the

context of inflammatory and immune responses. It has been

demonstrated that TLR9 regulates the production of pro-

inflammatory cytokines (such as IL-1b, TNF-a, and IL-10) in

macrophages (174). The activation could result in various

pathological conditions, including the aggregation of macrophages

and excessive cytokine production caused by chronic stress. These

changes illustrate the involvement of TLR9 in amplifying the

inflammatory response through macrophages (175). In addition,

combining anti-CTLA-4, anti-PD-1, or anti-PD-L1 therapies with

TLR9 agonists may enhance treatment efficacy (176)
6 Prospect

Macrophages are essential to intestinal immunity, performing

diverse functions crucial for maintaining gut homeostasis. Research

on the polarization of TAMs has provided more precise insights

into the role of macrophages in the development of CAC. The

molecular mechanisms by which TAMs reprogramming promotes

the progression of IBD to CAC remain unclear. It is also worth

exploring how M2 macrophages shift from an anti-inflammatory

role in IBD to a pro-tumorigenic role in CAC. Most studies report

that the presence of infiltrative TAMs may be positively correlated

with the pathological grading of CAC patients. Therefore, our

review focuses on how TAMs polarization influences the

progression of CAC by modulating ECM remodeling, tumor

metabolism, angiogenesis, and the tumor microenvironment.

In summary, substantial evidence indicates that M2-type TAMs

programming is associated with poor prognosis in CAC.

Antagonizing M2 phenotype programming at the molecular level

can reprogram more TAMs to the M1 phenotype, which

counteracts immune resistance and enhances anticancer drug

efficacy. The progress of mechanism research and targeting drugs
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is highly anticipated, as it could lead to identifying new therapeutic

targets for CAC. While some targets (e.g., VEGF, CSF-1R, IL-6) have

demonstrated preliminary efficacy in preclinical studies and early-

phase clinical trials, several major challenges must be addressed to

advance their therapeutic potential. First, the inherent complexity

and heterogeneity of the tumor microenvironment frequently drive

therapeutic resistance through mechanisms such as compensatory

signaling pathway activation and local immunosuppressive

adaptations. Second, monotherapy approaches carry risks of

systemic toxicity due to off-target effects on homeostatic processes

mediated by VEGF and CSF-1R in normal tissues, potentially

compromising treatment safety. Furthermore, effective clinical

implementation may require a synergistic combination with

complementary targeted therapies or immunomodulatory agents,

necessitating optimization of dosing schedules and therapeutic

sequences to maximize efficacy while minimizing overlapping

toxicities. Notably, the multilayered challenges of pathway

crosstalk, unintended immunosuppression, tumor heterogeneity,

and adaptive resistance mechanisms collectively hinder successful

clinical translation. The next generation of CAC therapies will hinge

on dismantling the tumor-promoting macrophage niche through

mechanism-guided combinations, underpinned by robust biomarker

platforms and smart delivery technologies. By addressing resistance

drivers while preserving immune competence, such strategies may

transform the CAC treatment paradigm from broad suppression to

microenvironment-specific reprogramming. Collaborative efforts

across immunology, bioengineering, and computational biology

will be critical to navigate this complexity and deliver clinically

impactful solutions.
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