
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Brigitte Vannier,
University of Poitiers, France

REVIEWED BY

Niels Hansen,
University Medical Center Göttingen,
Germany
Yuting Zhang,
The Scripps Research Institute, United States

*CORRESPONDENCE

Ayumi Yoshizaki

ayuyoshi@me.com

RECEIVED 01 December 2024
ACCEPTED 07 April 2025

PUBLISHED 08 May 2025

CITATION

Matsuda KM, Umeda-Kameyama Y, Iwadoh K,
Miyawaki M, Yakabe M, Ishii M, Ogawa S,
Akishita M, Sato S and Yoshizaki A (2025)
Artificial intelligence and omics-based
autoantibody profiling in dementia.
Front. Immunol. 16:1537659.
doi: 10.3389/fimmu.2025.1537659

COPYRIGHT

© 2025 Matsuda, Umeda-Kameyama, Iwadoh,
Miyawaki, Yakabe, Ishii, Ogawa, Akishita, Sato
and Yoshizaki. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 May 2025

DOI 10.3389/fimmu.2025.1537659
Artificial intelligence and
omics-based autoantibody
profiling in dementia
Kazuki M. Matsuda 1, Yumi Umeda-Kameyama2,
Kazuhiro Iwadoh1, Masashi Miyawaki2, Mitsutaka Yakabe2,
Masaki Ishii2, Sumito Ogawa2, Masahiro Akishita2,3,
Shinichi Sato1 and Ayumi Yoshizaki 1*
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Introduction: Dementia is a neurodegenerative syndrome marked by the

accumulation of disease-specific proteins and immune dysregulation,

including autoimmune mechanisms involving autoantibodies. Current

diagnostic methods are often invasive, time-consuming, or costly.

Methods: This study explores the use of proteome-wide autoantibody screening

(PWAbS) for noninvasive dementia diagnosis by analyzing serum samples from

Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and age-matched

cognitively normal individuals (CNIs). Serum samples from 35 subjects were

analyzed utilizing our original wet protein arrays displaying more than 13,000

human proteins.

Results: PWAbS revealed elevated gross autoantibody levels in AD and DLB

patients compared to CNIs. A total of 229 autoantibodies were differentially

elevated in AD and/or DLB, effectively distinguishing between patient groups.

Machine learning models showed high accuracy in classifying AD, DLB, and CNIs.

Gene ontology analysis highlighted autoantibodies targeting neuroactive

ligands/receptors in AD and lipid metabolism proteins in DLB. Notably,

autoantibodies targeting neuropeptide B (NPB) and adhesion G protein-

coupled receptor F5 (ADGRF5) showed significant correlations with clinical

traits including Mini Mental State Examination scores.

Discussion: The study demonstrates the potential of PWAbS and artificial

intelligence integration as a noninvasive diagnostic tool for dementia, uncovering

biomarkers that could enhance understanding of disease mechanisms. Limitations

include demographic differences, small sample size, and lack of external validation.

Future research should involve longitudinal observation in larger, diverse cohorts and

functional studies to clarify autoantibodies' roles in dementia pathogenesis and their

diagnostic and therapeutic potential.
KEYWORDS

autoantibody, artificial intelligence, machine learning, dementia, Alzheimer’s disease,
Lewy body dementia
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Introduction

Dementia is a complex neurodegenerative syndrome affecting

millions worldwide. Early diagnosis is crucial for timely intervention,

yet many current diagnostic methods are either invasive, time-

consuming, or expensive. For instance, psychological assessments

require significant time and concern to patients themselves,

cerebrospinal fluid examination is invasive, and amyloid positron

emission tomography (PET) is costly. Consequently, there is a

pressing need for a simpler, noninvasive, and cost-effective

diagnostic method for dementia (1–3).

Pathologically, dementia is marked by the aggregation of

disease-specific proteins in the brain (4). While the pathogenic

role of abnormal protein deposition in dementia is well-established,

the precise mechanisms behind the initiation and progression of

neurodegeneration remain unclear. Meanwhile, emerging evidence

has highlighted the role of immune dysregulation in dementia’s

pathogenesis. Genome-wide association studies have identified

common genetic variations in immune system processes that are

associated with neurodegenerative diseases such as Alzheimer’s

disease (AD), frontotemporal dementia (FTD), and Parkinson’s

disease dementia (5–7).

Autoimmune mechanisms are gaining recognition as a key factor

in the pathophysiology of dementia (8–10). Autoantibodies—self-

reactive antibodies produced by B cells—play a role in immune

tolerance and homeostasis (11). However, due to various genetic

and environmental factors, the ability to distinguish “self” from

“non-self” deteriorates, leading autoantibodies to trigger and sustain

inflammatory processes that cause tissue damage (12, 13).

Autoantibodies have been detected in both blood and cerebrospinal

fluid of patients with various forms of dementia, including

autoimmune dementia and neurodegenerative dementias such as

AD, FTD, vascular dementia (VD), and dementia with Lewy bodies

(DLB) (14–18). Autoimmune dementia is characterized by progressive

cognitive decline with an early onset, atypical clinical presentation,

rapid progression, the presence of neural antibodies, cerebrospinal

fluid inflammation, brain changes in MRI atypical for

neurodegenerative diseases, and a good response to immunotherapy

(19). Various neural autoantibodies have been frequently identified in

individuals with progressive cognitive decline, targeting cell surface

proteins such as the N-methyl-D-aspartate receptor, gamma-

aminobutyric acid B receptor, alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor, leucine-rich glioma inactivated

protein 1, dipeptidyl-peptidase protein-like 6, vesicular glutamate

transporter 2 (20), potassium voltage-gated channel subfamily A

member 2 (21), and transcobalamin receptor (22–24). The

accumulation of these clinical insights has led to the development of

the disease concept termed “neural autoantibodies-associated

dementia (25, 26).” However, there is an overlap in the neural

autoantibody profiles between autoimmune dementia and

neurodegenerative dementias like FTD and DLB, necessitating

further research to clarify disease specificity (22).

AD, one of the most well-known forms of dementia, is

characterized by the accumulation of amyloid plaques and

neurofibrillary tangles in the brain (27). Autoantibodies targeting
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amyloid-b (Ab), tau, neurotransmitters, and microglia have been

reported in AD patients (28, 29). Specifically, autoantibodies against

Ab are decreased in AD patients (30, 31), suggesting a protective

role against Ab toxicity (32, 33), in line with clinical efficacy of

lecanemab, a humanized monoclonal antibody targeting Ab soluble

protofibrils (34). Additionally, increased levels of autoantibodies

against glutamate (35), oxidized low-density lipoproteins (36), glial

markers such as GFAP and S100B (37), and receptors for advanced

glycosylation end products have been observed in AD patients’

serum or cerebrospinal fluid (38). DLB is another progressive

neurodegenerative disorder characterized by the presence of Lewy

bodies—abnormal aggregates of the protein alpha-synuclein—in

the brain (39). Autoantibodies against alpha-synuclein, Ab, myelin

oligodendrocyte glycoprotein, myelin basic protein, S100B, and

Rho-GTPase-activating protein 26 have been identified in some

DLB patients (40–42). Autoantibodies have been detected even in

patients with mild cognitive impairment (MCI), indicating a

potential role in disease progression (43–45). Despite the

discovery of autoantibodies related to various forms of dementia

pathology, further research is needed to assess their potential as

diagnostic or prognostic biomarkers and their utility in developing

effective immunotherapies for dementia (32).

One promising approach is the use of protein microarrays for

autoantibody profiling, which could help identify novel

autoantibodies for diagnosing and monitoring MCI and dementia

(44, 45). In this pilot study, we utilized a proteome-wide autoantibody

screening (PWAbS) technique employing wet protein arrays (WPAs)

displaying more than 13,000 human proteins (46, 47). This method

has previously been used to develop multiplex measurements for

disease-related autoantibodies (48, 49), identify clinically relevant

novel autoantibodies (50–53), and investigate epitope spreading

during disease progression (54). We have successfully applied this

technique to a variety of inflammatory disorders, including systemic

sclerosis (52), and identified autoantibodies to membranous antigens

like G protein-coupled receptors (GPCRs) using machine learning

approaches (53). In this study, we applied PWAbS to serum samples

from patients with AD or DLB and age-matched cognitively normal

individuals (CNIs) to elucidate the autoantibody landscape in

dementia. Our goal was to identify clusters of autoantibodies that

may contribute to the pathophysiology of dementia, by integration of

artificial intelligence (AI) and omics-based approach. This research

aims to uncover novel biomarkers and enhance our understanding of

dementia’s pathogenesis.
Materials and methods

Participants

We enrolled 26 dementia participants who were admitted to the

Department of Geriatric Medicine, The University of Tokyo Hospital,

Tokyo, Japan, for evaluation of cognitive impairment. All participants

were diagnosed by experienced geriatricians using DSM-IV criteria

for AD (n=18), and Revised 2017 Clinical Diagnostic Criteria for

DLB by McKeith et al. (n=8) (39). Nine participants were NCIs who
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1537659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Matsuda et al. 10.3389/fimmu.2025.1537659
admitted to the Department of Geriatric Medicine, The University of

Tokyo Hospital, for other reasons, except acute illness and

autoimmune disease. Patients with malignant disorders were

excluded. We made precise diagnoses using psychological tests,

information from family, laboratory data, brain structural imaging

(X-ray computed tomography or nuclear magnetic resonance

imaging). We also performed N-isopropyl-p-iodoamphetamine

brain perfusion single-photon emission computed tomography

(SPECT), metaiodobenzylguanidine scintigraphy, ioflupane

dopamine transporter SPECT, amyloid PET, and cerebrospinal

fluid (CSF) examination in a subset of participants to confirm

biological diagnoses. Clinical metrics included number of

comorbidities, Charlson’s Comorbidity Index, Comprehensive

Geriatric Assessment-short version (CGA7), Mini Mental State

Examination (MMSE), Hasegawa’s Dementia Scale-Revised

(HDSR), Barthel Index, Lowton’s Instrumental Activities of Daily

Living (IADL) scores, Geriatric Depression Scale 15 (GDS15), and

Vitality Index. All procedures were approved by the Ethical Review

Board at The University of Tokyo Hospital and The University of

Tokyo (approval number 2797). The clinical study guidelines of the

University of Tokyo, which conform to the Declaration of Helsinki,

were strictly adhered to CNIs, dementia patients and their families.

They were provided with detailed information about the study, and

all provided written informed consent to participate.
Autoantibody measurement

WPAs were arranged as previously described (48). First, proteins

were synthesized in vitro utilizing a wheat germ cell-free system from

13,455 clones of the HuPEX (46). Second, synthesized proteins were

plotted onto glass plates (Matsunami Glass, Osaka, Japan) in an array

format by the affinity between the GST-tag added to the N-terminus

of each protein and glutathione modified on the plates. The WPAs

were treated with human serum diluted by 3:1000 in the reaction

buffer containing 1x Synthetic block (Invitrogen), phosphate-buffered

saline (PBS), and 0.1% Tween 20. Next, the WPAs were washed, and

goat anti-Human IgG (H+L) Alexa Flour 647 conjugate (Thermo

Fisher Scientific, San Jose, CA, USA) diluted 1000-fold was added to

the WPAs and reacted for 1 hour at room temperature. Finally, the

WPAs were washed, air-dried, and fluorescent images were acquired

using a fluorescence imager (Typhoon FLA 9500, Cytiva,

Marlborough, MA, USA). Fluorescence images were analyzed to

quantify serum levels of autoantibodies targeting each antigen,

following the formula shown below:

Autoantibody   level  ½AU� =  
Fautoantigen −   Fnegative   control

Fpositive   control −   Fnegative   control
� 100
Fron
AU: arbitrary unit

F autoantigen: fluorescent intensity of autoantigen spot

F negative control: fluorescent intensity of negative control spot

F positive control: fluorescent intensity of positive control spot
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Machine learning

We applied supervised machine learning techniques using

Python (v3.10.12) with libraries from Scikit-learn and the PyTorch

framework to construct classifiers for the diagnosis of dementia

based on the autoantibody measurement data. The performance of

the classifiers was evaluated with 5-fold cross validation using the

“KFold” method from Scikit-learn with “shuffle=True”, using the

metrics of area under the receiver operating characteristics curve

(ROC-AUC), area under the precision-recall curve, accuracy,

precision, recall, and F1-score, with the higher score indicating the

better classification performance. Machine learning models from

Scikit-learn included simple linear regression, Lasso regression,

Ridge regression, logistic regression, support vector machine

(SVM), random forest, XGBoost, LightGBM, CatBoost, decision

trees, gradient boosting machines and naïve Bayes to conduct

binary classification. Hyperparameters of the models were tuned

using Optuna (Preferred Networks, Inc., Tokyo, Japan) to ensure

optimal performance.
Feature importance scores and feature
selection

Linear models such as simple linear regression, Lasso, Ridge,

logistic regression, and linear SVM determine feature importance

based on the absolute values of their coefficients. In contrast, tree-

based models, including decision trees, random forests, XGBoost,

LightGBM, CatBoost, and gradient boosting machines, measure

feature importance through metrics such as impurity reduction or

gain achieved at each split or by counting how frequently a feature is

used for splitting. We identified the top 10 features from models

that achieved ROC-AUC exceeding 0.96 in the binary classification

task (AD vs. the others), evaluated the overlap among these models,

and selected autoantibodies consistently highlighted by more than

two algorithms for further analyses.
Deep neural network

We developed a deep neural network using PyTorch to classify

three types of dementia based on autoantibody-derived features. The

detailed architecture and training procedures are described below:

Network Architecture:
• Input Layer: Receives input features derived from

autoantibody profiles.

• Hidden Layers: The network includes two fully connected

hidden layers. The first hidden layer consists of 8 neurons,

and the second hidden layer comprises 4 neurons. Each

hidden layer employs the Rectified Linear Unit (ReLU)

activation function to introduce non-linearity.

• Output Layer: The final layer contains neurons equal to the

number of dementia classes. A softmax activation function
frontiersin.org
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Fron
is applied during evaluation to convert logits into

probability scores for each class.
Training Details:
• Loss Function: CrossEntropyLoss was selected as it

effectively handles multi-class classification by combining

log-softmax activation with negative log-likelihood loss.

• Optimizer: The Adam optimizer was used with a learning

rate set at 0.001, leveraging its adaptive learning rate to

facilitate efficient convergence.

• Number of Epochs: Training was conducted for 150 epochs,

balancing adequate model learning and avoiding overfitting.

• Mini-Batch Size: A mini-batch size of 16 was employed,

with training data shuffled at each epoch to ensure diverse

mini-batches and improve generalization.
Evaluation Methodology:
• The performance of the model was evaluated using 3-fold

cross-validation, generated using the “KFold” method from

Scikit-learn with” shuffle=True”.

• During each fold of the cross-validation process, the

model’s performance was continuously monitored

through training and validation loss curves. Final

evaluations on the independent test sets were performed

using confusion matrices, detailed classification reports,

ROC curves, and Precision-Recall curves to provide a

comprehensive performance analysis.
Statistical analysis

Fisher’s exact test was performed to compare categorical

variables. Mann-Whitney U test was performed to compare

continuous variables. Spearman correlation test was used for

correlation analysis. P values of < 0.05 were considered

statistically significant. Data analyses were conducted using R

(v4.2.1) and Stata/IC 15 (StataCorp LLC, TX, USA).
Protein functional enrichment analysis

Gene Ontology Analysis using web-based tools targeted the list

of the entry clones coding the differentially highlighted autoantigens

was performed for gene-list enrichment analysis, gene-disease

association analysis, and transcriptional regulatory network

analysis with Metascape (55).
Sequence identity analysis

To assess cross-reactivity among proteins that express similar

antigen epitopes and are highly correlated, we checked the
tiers in Immunology 04
correlation of the differentially expressed autoantibodies. The

corresponding proteins of the highly correlated autoantibodies

(Spearman’s r > 0.5) were then aligned with the highly correlated

proteins using the Uniprot alignment tool.
Data visualization

Box plots, scatter plots, hierarchical clustering, and correlation

matrix were visualized by using R (v4.2.1). Box plots were defined as

follows: the middle line corresponds to the median; the lower and

upper hinges correspond to the first and third quartiles; the upper

whisker extends from the hinge to the largest value no further than

1.5 times the interquartile range (IQR) from the hinge; and the

lower whisker extends from the hinge to the smallest value at most

1.5 times the IQR of the hinge.
Results

Demographic and clinical characteristics

Serum samples from 35 subjects, including 18 patients with AD,

8 patients with DLB, and 9 CNIs were served for PWAbS utilizing

WPAs. The baseline demographics across the three groups were

similar, except that the proportion of females was highest in the AD

group and lowest among CNIs (Supplementary Table 1). The

proportion of females in the AD, DLB, and CNI groups were

82.4%, 62.5%, and 33.3%. The Hasegawa’s Dementia Scale-

Revised (HDSR) scores for the each group were 19.9 ± 5.6, 22.1 ±

5.6, and 27.9 ± 2.0, respectively, while the MMSE scores were 20.2 ±

3.9, 21.1 ± 6.6, and 28.9 ± 1.4.
Sum of autoantibody levels

Wedefined the sum of autoantibody levels (SAL) as the total serum

concentration of all autoantibodies measured in our PWAbS. Although

not statistically significant, SAL was higher in patients with AD and

DLB compared to CNIs (Figure 1A). This trend persisted across all age

groups (Supplementary Figure 1A) and was relatively higher in females

than in males (Supplementary Figure 1B).
Identification of differentially elevated
autoantibodies

Next, we focused on identifying autoantibodies with serum

levels significantly elevated in AD (Figure 1B) and/or DLB

(Figure 1C) compared to CNIs. This analysis revealed 188

autoantibodies elevated in AD and 77 in DLB, with 36

overlapping between the two conditions (Figure 1D), totaling 229

distinct items (Figure 1E). Using these autoantibodies, we

performed principal component analysis (PCA), which effectively

differentiated AD patients, DLB patients, and CNIs (Figure 1F),
frontiersin.org
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FIGURE 1

Autoantibodies differentially elevated in dementia. (A) The SAL in AD, DLB, and CNI. (B) Volcano plot that shows autoantibodies differentially elevated
in AD compared to NCI. The vertical dash line indicates P = 0.05. The horizontal dash line indicates fold change = ± 2. (C) Volcano plot that shows
autoantibodies differentially elevated in DLB compared to NCIs. The vertical dash line indicates P = 0.05. The horizontal dash line indicates fold
change = ± 2. (D) Venn diagram that illustrates the inclusion relationship between autoantibodies differentially elevated in AD and/or DLB. (E) Heat
map that shows the serum levels of 229 autoantibodies differentially elevated in AD and/or DLB. (F) PCA of 229 autoantibodies differentially elevated
in AD and/or DLB. In the scatter plot, individual subjects as points. (G) PCA plots colored by sex, age, HDSR, and MMSE.
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regardless of sex, age, or cognitive impairment severity as measured

by HDSR and MMSE (Figure 1G).
AI-based 2-class classification

To identify which of the 229 autoantibodies were most strongly

associated with disease status, we employed 14 different machine

learning frameworks. Logistic regression with normalization or

standardization, along with SVM under similar conditions, achieved

ROC-AUC exceeding 0.96, indicating near-perfect accuracy in

distinguishing AD patients from others (Table 1). We identified the

top 10 features from these four models (Figure 2A), assessed their

overlap (Figure 2B), and analyzed the serum levels of 12 autoantibodies

highlighted in more than two frameworks (Figure 2C).

Next, we examined the relationship between these 12

autoantibodies and clinical traits (Figure 2D). This analysis

revealed a significant correlation of serum levels of autoantibodies

targeting proteins encoded by TGFB1I1 and KIAA2013 with HDSR

scores. However, a database search, utilizing the Human Protein
Frontiers in Immunology 06
Atlas (56), indicated that these two genes are not specifically

expressed in the central nervous system (data not shown).

Although serum levels of anti-TGFB1I1 antibodies were

significantly associated with sex, trends in the distribution of

these autoantibodies among three groups were generally similar

between both sex (Supplementary Figure 2A). To evaluate cross-

reactivity, we performed a correlation analysis on these 12

autoantibodies. Those with moderate to high correlations

(Spearman’s r > 0.5) underwent sequence alignment and identity

analysis. The correlation matrix (Supplementary Figure 2B)

revealed five correlated autoantibodies, and sequence analysis

showed that all proteins shared less than 25% identity

(Supplementary Figure 2C). Additionally, we investigated the

prevalence of these highlighted autoantibodies across a broader

spectrum of human disorders using the aUToAntiBody

Comprehensive Database (UT-ABCD) (52). Most of these

autoantibodies were found to be non-specifically elevated in

various pathological conditions (Supplementary Figure 2D).
AI-based 3-class classification

We also explored multi-class classification among AD, DLB,

and CNI by training deep neural networks with two hidden layers

using the 229-dimensional autoantibody profiles. The optimal

number of epochs was determined based on the accuracy and loss

trajectories (Figure 3A). The validation loss became consistently

lower than the training loss, clearly indicating the absence of

overfitting. This approach resulted in high accuracy, with ROC-

AUC values reaching up to 0.95 (Figure 3B), as well as high

precision and recall (Figure 3C).
Gene ontology analysis

We aimed to identify autoantibodies with potential pathogenic

roles in dementia by conducting gene ontology analysis on the gene

lists encoding the 229 autoantigens targeted by differentially

elevated autoantibodies in AD and/or DLB (Figure 4). The

analysis highlighted the “neuroactive ligand-receptor interaction”

pathway in autoantibodies elevated specifically in AD. We also

focused on “regulation of lipid metabolic process” highlighted only

in DLB, considering recent advances in understanding the role of

lipid metabolism in the pathogenesis of DLB, including associations

with specific lipid species (57), or genetic polymorphisms (58–60),

as well as ultrastructural findings derived directly from Lewy

bodies (61).
Autoantibodies to neuroactive ligand-
receptor interaction-associated proteins

There were exactly 12 autoantibodies associated with

neuroactive ligand-receptor interaction, and their serum levels are

illustrated in Figure 5A.We examined the relationship between these
TABLE 1 Performance of machine learning frameworks for the 2-class
classification task.

AUC Accuracy Precision Recall f1-
score

Linear
Regression

0.791 0.740 0.917 0.589 0.631

Lasso
Regression

0.798 0.649 0.778 0.400 0.468

Ridge
Regression

0.813 0.737 0.905 0.589 0.673

Logistic
Regression
normalized

0.967 0.765 0.905 0.644 0.729

Logistic
Regression
standardized

0.978 0.737 0.905 0.589 0.673

SVM
normalized

0.978 0.707 0.905 0.522 0.614

SVM
standardized

0.969 0.707 0.905 0.522 0.614

Random
Forest

0.893 0.768 0.849 0.722 0.726

XGBoost 0.741 0.646 0.778 0.467 0.556

LightGBM 0.500 0.470 0.152 0.333 0.208

CatBoost 0.837 0.679 0.944 0.400 0.484

Decision
Tree

0.667 0.677 0.681 0.700 0.683

Gradient
Boosting
Machine

0.628 0.591 0.611 0.467 0.522

Naive Bayes 0.766 0.737 0.686 0.944 0.791
AUC, area under receiver-operator characteristics curve.
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FIGURE 2

Autoantibodies highlighted in 2-class classification tasks by AI. (A) Autoantibodies that were mostly highlighted according to feature importance by
Logistic regression and SVM with standardization or normalization. (B) UpSet plot shows the inclusion relationship of autoantibodies highlighted by
the four machine learning frameworks. (C) Box plots describe the serum levels of autoantibodies highlighted by more than two frameworks in AD,
DLB, and CNI. (D) Heatmap illustrates correlation between autoantibodies highlighted in machine learning analysis and demographic and clinical
characteristics of dementia. The presence of depression and cognitive impairment was initially screened using the Comprehensive Geriatric
Assessment 7 (CGA7), which includes the three-item recall test (‘sakura, cat, train’) and the question ‘Do you feel helpless?’. Cognitive impairment
was subsequently assessed in more detail using the Hasegawa Dementia Scale-Revised (HDS-R) and the Mini-Mental State Examination (MMSE).
Depression severity was further evaluated with the 15-item Geriatric Depression Scale (GDS-15). *P < 0.05, **P < 0.01, ***P < 0.001. P values were
calculated by Spearman’s correlation test.
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12 autoantibodies and clinical traits (Figure 5B), revealing a

significant association of the serum levels of autoantibodies

targeting neuropeptide B, a protein encoded by NPB, with female

sex, presence of back pain, and MMSE scores. However, the trend of

elevated serum levels of anti-NPB antibody in dementia was

observed in both sex (Supplementary Figure 3A). There was no

obvious cross-reactivity among the autoantibodies (Supplementary

Figures 3B, C) and showed no disease specificity (Supplementary

Figure 3D). To further investigate the potential of anti-NPB antibody

to play a role in the pathogenesis of AD, we examined the correlation

between serum levels of the autoantibody and all the subscales of

MMSE (Supplementary Figure 4). As a result, there was statistically

significant correlation in memory-related items (“Registration” and

“Recall”). In line with this, a database search indicated that NPB is

expressed in the CNS (Supplementary Figure 5A), including the
Frontiers in Immunology 08
hippocampus (Supplementary Figure 5B). The highest expression

was reported in oligodendrocytes (Supplementary Figure 5C).
Autoantibodies to lipid metabolism-
associated proteins

Finally, we focused on all the autoantibodies targeting lipid

metabolism-associated proteins, whose serum levels are illustrated

in Figure 5C. We examined the relationship between these 12

autoantibodies and clinical traits (Figure 5D). This analysis

revealed a significant association of the serum levels of

autoantibodies targeting Adhesion G Protein-Coupled Receptor

F5 (ADGRF5) encoded by ADGRF5 with presence of back pain,

lower Comprehensive Geriatric Assessment 7 (CGA7) scores, and
FIGURE 3

Performance of deep neural network for 3-class classification by AI. (A) Learning curves of the deep neural network model in 3-fold cross validation.
(B) ROC curves of the deep neural network model in 3-fold cross validation. Class 1: CNI, class 2: AD, class 3: DLB. (C) Precision-recall curves of the
deep neural network model in 3-fold cross validation. Class 1: CNI, class 2: AD, class 3: DLB.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1537659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Matsuda et al. 10.3389/fimmu.2025.1537659
lower MMSE scores, especially in “Registration” and “Repetition”

subscales (Supplementary Figure 6). There was no big difference

between both sex (Supplementary Figure 7A), cross-reactivity, nor

disease specificity. (Supplementary Figures 7B–D). A database

search indicated that the expression of ADGRF5 is ubiquitous

across various human tissues (Supplementary Figure 8A),

including the CNS (Supplementary Figure 8B), predominantly in

microglial cells (Supplementary Figure 8C).
Age and sex-adjusted simple linear
regression analysis

Finally, we conducted linear regression analyses to explore

potential correlations between MMSE scores, its subscales, and

serum anti-NPB and anti-ADGRP5 Ab levels (Supplementary

Table 2). The univariate analysis identified statistically significant

correlations between MMSE scores, sex, and serum anti-NPB Ab

levels, whereas no significant association was found with anti-

ADGRP5 Ab levels. However, upon performing multivariate

regression analyses adjusting for age, sex, and antibody levels,

neither anti-NPB nor anti-ADGRP5 Ab levels remained significantly

correlated with MMSE total scores. Notably, multivariate analyses did

confirm significant associations between serum anti-ADGRP5 Ab

levels and the MMSE subscales “Orientation_Space” and “Recall.
Discussion

In this study, we utilized our proprietary PWAbS technique to

analyze serum samples from patients with AD, DLB, and CNIs. Our
Frontiers in Immunology 09
results showed an increase in the overall levels of autoantibodies in

AD and DLB patients compared to CNIs (Figure 1A). We identified

229 autoantibodies that were differentially elevated in AD and/or

DLB (Figure 1D), effectively distinguishing between AD, DLB, and

CNI groups (Figure 1F). Machine learning applied to these 229

autoantibodies demonstrated high accuracy in differentiating AD

patients from others (Table 1), and even achieved success in multi-

class classification (Figure 3). Gene ontology analysis highlighted

autoantibodies targeting neuroactive ligands and receptors in AD,

including anti-NPB antibody, as well as lipid metabolism-associated

proteins in DLB, such as anti-ADGRF5 antibody (Figure 4). Both of

anti-NPB and anti-ADGRF5 autoantibodies showed significant

correlation with total MMSE scores (Figures 5B, D) and memory-

related subscale scores (Supplementary Figures 4, 6). Considering

the expression of NPB and ADGRF5 in the central nervous system

(Supplementary Figures 5, 8), these findings suggest that

autoantibodies targeting NPB or ADGRF5 may contribute to the

pathogenesis of dementia. Our results underscore the potential of

our systems-based approach in developing novel diagnostic tools

and propose a new research strategy to explore the autoimmune

aspects of dementia.

A key highlight of our analysis is the ability of AI integrated

with our multiplex autoantibody measurement to achieve near-

perfect accuracy in classifying AD versus other groups (Table 1) and

even in multi-class classification tasks (AD, DLB, and CNI;

Figure 3). This concept has already been demonstrated in other

autoimmune and malignant disorders (52, 53), and is partially

available commercially as the Autoantibody Array Assay (A-Cube)

(49). Given that blood tests are less invasive than other procedures

like cerebrospinal fluid collection and radiological imaging studies

and can be conducted without causing undue concern to the patient
FIGURE 4

Autoantibodies to neuroactive ligand-receptor interaction-associated proteins. Gene ontology analysis encompassing the genes coding proteins
targeted by autoantibodies differentially elevated in AD and/or DLB.
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FIGURE 5

Correlation between autoantibodies highlighted in gene ontology analysis and clinical traits of dementia. (A) Box plots describe the serum levels of
autoantibodies to neuroactive ligand-receptor interaction-associated proteins. (B) Heatmap illustrates correlation between autoantibodies to
neuroactive ligand-receptor interaction-associated proteins and demographic and clinical characteristics of dementia. (C) Box plots describe the
serum levels of autoantibodies to regulation of lipid metabolic process-associated proteins. (D) Heatmap illustrates correlation between
autoantibodies to regulation of lipid metabolic process-associated proteins and demographic and clinical characteristics of dementia. The presence
of depression and cognitive impairment was initially screened using the Comprehensive Geriatric Assessment 7 (CGA7), which includes the three-
item recall test (‘sakura, cat, train’) and the question ‘Do you feel helpless?’. Cognitive impairment was subsequently assessed in more detail using
the Hasegawa Dementia Scale-Revised (HDS-R) and the Mini-Mental State Examination (MMSE). Depression severity was further evaluated with the
15-item Geriatric Depression Scale (GDS-15). *P < 0.05, **P < 0.01, ***P < 0.001. P values were calculated by Spearman’s correlation test.
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about suspected cognitive impairment, multiplex measurement of

serum autoantibodies using WPAs and AI-based interpretation

represents a promising strategy for diagnosing dementia and

its subtypes.

In our study, we implemented a comprehensive strategy to

mitigate the risk of overfitting that arises from the combination of a

small sample size and a high-dimensional feature space. Specifically,

we employed a robust k-fold cross-validation framework, ensuring

that every subject contributed to both training and evaluation

phases, thereby stabilizing performance estimates. Moreover, the

use of regularized models such as Lasso and Ridge regression

inherently facilitated feature selection by shrinking the coefficients

of less informative autoantibodies, effectively reducing

dimensionality. Furthermore, decision tree-based models such as

Random Forest, XGBoost, LightGBM, CatBoost, and Gradient

Boosting Machine inherently possess the capability to perform

dimensionality reduction, which can help prevent overfitting. Due

to their robustness to data redundancy, they are less likely to

capture noise, and their convergence is faster owing to inductive

bias. Hyperparameter optimization using Optuna further balanced

model complexity and performance, while evaluation of feature

importance across multiple models revealed a significant overlap in

key autoantibody biomarkers, underscoring the robustness of our

findings. Notably, the deep neural network demonstrated stable loss

function curves during training and validation, indicating little

signs of overfitting and reinforcing the reliability of our

methodological approach.

The NPB gene encodes neuropeptide B, a short biologically active

peptide that acts as an agonist for GPCRs known as neuropeptide B/

W receptors 1 (NPBWR1) and 2 (NPBWR2) (62). Neuropeptide B is

believed to play roles in regulating feeding, the neuroendocrine

system, memory, learning, and the pain pathway (63). Research by

Nagata-Kuroiwa R et al. on NPBWR1 knockout mice revealed

increased autonomic and neuroendocrine responses to physical

stress and abnormalities in contextual fear conditioning, suggesting

a role for NPBWR1 in stress vulnerability and fear memory (64).

Histological and electrophysiological studies indicate that NPBWR1

acts as an inhibitory regulator on a subpopulation of GABAergic

neurons in the lateral division of the central nucleus of the amygdala,

terminating stress responses. Additionally, Watanabe N et al.

demonstrated that a single nucleotide polymorphism in NPBWR1,

associated with impaired molecular function, affected valence

evaluation and dominance ratings in response to seeing angry faces

in humans, suggesting NPBWR1’s involvement in social interaction

(65). These insights highlight the potential role of autoantibodies

affecting the NPB-NPBWR1 signaling system in social behavior,

suggesting its potential contribution to the clinical manifestations

of AD, particularly its behavioral and psychological symptoms.

Our study also revealed a strong association between serum

anti-NPB antibody levels and the presence of back pain, likely due

to the role of NPB-NPBWR1 signaling in pain transmission. NPB

knockout mice exhibit different responses to pain; they show

hyperalgesia to acute inflammatory pain but not to thermal or

chemical pain (66). Intrathecal administration of NPB reduced

mechanical allodynia via activation of NPBWR1 receptors
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without affecting thermal hyperalgesia (67). These effects were not

inhibited by naloxone, an opioid receptor antagonist, indicating the

involvement of a non-opioid analgesic pathway, possibly related to

myelin-forming Schwann cells, which express low levels of

NPBWR1 under physiological conditions but much higher levels

in patients with inflammatory neuropathies. Thus, anti-NPB

antibodies may play a role in modulating nociceptive transmission.

ADGRF5, a member of the adhesion GPCR (aGPCR) family,

which is the second largest GPCR subfamily, has recently garnered

attention for its biological functions, disease relevance, and

potential as a drug target (68). Predominantly expressed in the

lung and kidney, ADGRF5 may play a crucial role in regulating

surfactant protein synthesis acid-base balance in these organs (69–

71). DiBlasi et al. identified a single nucleotide polymorphism in the

ADGRF5 gene linked to an increased risk of suicide (72), suggesting

its psychiatric role. Additionally, Kaur et al. found that plasma levels

of ADGRF5 are associated with the APOE genotype (73), a known

risk factor for DLB and AD (59, 60). Elevated levels of anti-

ADGRF5 antibodies correlated with global geriatric function

scores assessed by CGA7 (Figure 5D), and the fact that ADGRF5

expression is not exclusive to the CNS (Supplementary Figure 8),

may reflect systemic aspects of DLB affecting multiple organs (74).

It is important to note that not all patients had anti-NPB nor

anti-ADGRF5 antibodies, and their serum levels in AD were not

specific to the condition (Supplementary Figures 3D, 7D). This

suggests that while the presence of these autoantibodies may not

explain the entire pathogenesis of dementia, they could influence

disease manifestation and progression as bystanders. Further

investigation is needed to clarify the role of anti-NPB and anti-

ADGRF5 antibodies in the pathophysiology, including functional

assays to assess the effects of these antibodies on neurons or glial

cells, passive immune challenge in AD animal models by

administering anti-NPB or anti-ADGRF5 antibodies, and active

immunization of animals with NPB or ADGRF5 antigens.

Our study has several strengths. First, by including multiple

types of dementia (AD and DLB), as well as CNIs, we were able to

identify autoantibodies that are differentially elevated in each

condition and develop machine learning methodologies for

distinguishing different types of dementia in a relatively non-

invasive way. Second, the use of a wheat-germ in vitro protein

synthesis system and the manipulation technique forWPAs allowed

for high-throughput expression of a wide range of human proteins,

including soluble proteins, on a single platform (46, 47, 75). This

enabled our autoantibody measurement to cover an almost

proteome-wide range of antigens, allowing the application of

omics-based bioinformatics approaches to interpret the data.

Third, integration of AI and omics-based approach allowed us to

conduct an unbiased and holistic investigation, resulting in

novel discoveries.

A major limitation of our study is the demographic differences

among the human subjects, particularly in terms of sex

(Supplementary Table 1). Moreover, the sample size was modest,

lacked external validation, and was cross-sectional. The absence of

significant correlations in the multivariate regression analyses may

reflect insufficient statistical power due to the small sample size of
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our study (Supplementary Table 2). Additionally, demographic

factors, particularly sex, may introduce confounding effects,

complicating the interpretation of serum Ab levels as independent

predictors of cognitive impairment. Additionally, biological

diagnosis of AD, as opposed to symptomatic diagnosis, was not

confirmed in all recruited cases using biomarkers reflecting disease-

specific biological processes, such as amyloid PET and CSF

examinations, an approach increasingly emphasized in recent

advances in AD diagnosis (76, 77). Future studies should target

larger, more demographically balanced patient groups with a

wider range of dementia types, such as VD and FTD, confirmed

by precise biological diagnosis. Recruiting longitudinal specimens

and data from elderly individuals before and after the onset of

MCI in prospective population-based cohorts would be a valuable

challenge to explore the causal relationship between autoantibodies

and dementia pathogenesis.
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SUPPLEMENTARY FIGURE 1

Sum of autoantibody levels by age and sex. (A) Box plots show SAL by age

groups. (B) Box plots show SAL by sex.

SUPPLEMENTARY FIGURE 2

Additional information for autoantibodies highlighted in 2-class
classification tasks by AI. (A) Box plots describe the serum levels of

autoantibodies highlighted in 2-class classification tasks by sex. (B) A
correlation matrix of the autoantibodies highlighted in 2-class

classification tasks using Spearman’s correlation. Only statistically

significant pairs (P < 0.05) are shown. (C) Identity matrix, generated from
aligning the corresponding protein sequences of the highly correlated

autoantibodies (Spearman’s r > 0.5). (D) Box plots describe the serum
levels of autoantibodies highlighted in 2-class classification tasks in

COVID-19, atopic dermatitis, anti-neutrophil cytoplasmic antibody-
associated vasculitis, systemic lupus erythematosus, systemic sclerosis,

and healthy controls. The data derives from the UT-ABCD.
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SUPPLEMENTARY FIGURE 3

Additional information for autoantibodies to neuroactive ligand-receptor

interaction-associated proteins. (A) Box plots describe the serum levels of

autoantibodies to neuroactive ligand-receptor interaction-associated
proteins by sex. (B) A correlation matrix of the autoantibodies to

neuroactive ligand-receptor interaction-associated proteins using
Spearman’s correlation. Only statistically significant pairs (P < 0.05) are

shown. (C) Identity matrix, generated from aligning the corresponding
protein sequences of the highly correlated autoantibodies (Spearman’s r >

0.5). (D) Box plots describe the serum levels of autoantibodies to neuroactive

ligand-receptor interaction-associated proteins in COVID-19, atopic
dermatitis, anti-neutrophil cytoplasmic antibody-associated vasculitis,

systemic lupus erythematosus, systemic sclerosis, and healthy controls. The
data derives from the UT-ABCD.

SUPPLEMENTARY FIGURE 4

Correlation between serum levels of anti-NPB antibodies and

MMSE subscales.

SUPPLEMENTARY FIGURE 5

Expression of the NPB gene in human tissues and single cells. (A) Expression
of NPB in multiple human tissues measured by bulk RNA-sequencing from
the Human Protein Atlas. (B) Expression of NPB in the CNS from the Human

Protein Atlas. (C) Expression of NPB in the CNS evaluated by single-cell RNA-

sequencing from the Human Protein Atlas.
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SUPPLEMENTARY FIGURE 6

Correlation between serum levels of anti-ADGRF5 antibodies and

MMSE subscales.

SUPPLEMENTARY FIGURE 7

Additional information for autoantibodies to regulation of lipid metabolic
process-associated proteins. (A) Box plots describe the serum levels of

autoantibodies to regulation of lipid metabolic process-associated proteins
by sex. (B) A correlation matrix of the autoantibodies to regulation of lipid

metabolic process-associated proteins using Spearman’s correlation. Only

statistically significant pairs (P < 0.05) are shown. (C) Identity matrix,
generated from aligning the corresponding protein sequences of the

highly correlated autoantibodies (Spearman’s r > 0.5). (D) Box plots
describe the serum levels of autoantibodies to regulation of lipid

metabolic process-associated proteins in COVID-19, atopic dermatitis,
anti-neutrophil cytoplasmic antibody-associated vasculitis, systemic lupus

erythematosus, systemic sclerosis, and healthy controls. The data derives

from the UT-ABCD.

SUPPLEMENTARY FIGURE 8

Expression of the ADGRF5 gene in human tissues and single cells. (A)
Expression of ADGRF5 in multiple human tissues measured by bulk RNA-
sequencing from the Human Protein Atlas. (B) Expression of ADGRF5 in the

CNS from the Human Protein Atlas. (C) Expression of ADGRF5 in the CNS

evaluated by single-cell RNA-sequencing from the Human Protein Atlas.
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