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Background: Cervical cancer (CC) is a major global health issue, ranking sixth in

cancer-relatedmortality. The tumormicroenvironment (TME) plays a crucial role in

tumor growth. This study explored the cellular composition and immunological

landscape of CC using various genomic data sources.

Methods: Data from the Cancer Genome Atlas and Gene Expression Omnibus

were analyzed, including single-cell RNA sequencing, spatial transcriptome

analysis, and survival data. Gene set variation analysis (GSVA) identified pathways

in CD8+ cells, macrophages, and epithelial cells. Immunohistochemistry assessed

marker expression in CC and normal tissues. Tumor immune dysfunction and

exclusion (TIDE) scores differentiated high- and low-macrophage groups. Cell–

cell communication analyses highlighted interactions between macrophages and

epithelial cells.

Results: Macrophage markers correlated with overall survival (OS) and disease-

free survival (DFS). Epithelial cell subgroups 1 and 4, along with CD8+ T cells, were

associated with OS. TIDE scores varied between groups. Specific ligand-receptor

interactions were found between macrophages and epithelial cell subgroup 1.

Triptolide was effective in epithelial cell subgroup 1, while memantine was more

effective in macrophages.

Conclusion: Epithelial-macrophage interactions in the TME are crucial for CC

progression and treatment, offering a potential immunotherapeutic strategy.
KEYWORDS

cervical cancer (CC), tumor microenvironment (TME), macrophages, immunotherapy,
cell-cell communication
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Highlights
Fron
• Analysis integrating three cervical cancer datasets,

supplemented with IHC experiments for validation.

• Comprehensive perspective on the cervical cancer TME

provided through single-cell RNA sequencing (scRNA-seq)

and extensive transcriptomic analysis.

• Identification of potential drug targets and biomarkers for

personalized therapeutic strategies in cervical cancer.
Introduction

Cervical cancer (CC) ranks as the fourth most common female

malignancy, with an estimated 604,000 new cases and 342,000 deaths

worldwide annually (1). While vaccination and screening programs

have contributed to reducing the incidence of CC in developed

countries, it remains a significant cause of morbidity and mortality

among women in some low- and middle- income nations (2). Most

CCs are primarily caused by persistent human papillomavirus (HPV)

infection (3).

The treatment of CC depends on various factors, including the

stage of cancer, whether it has spread to other parts of the body, the size

of the tumor, the patient’s age, and overall health. According to

guidelines from the National Comprehensive Cancer Network

Center, primary treatment modalities include surgery, radiation, and

chemotherapy alone or in combination (4). Some patients with early or

locally advanced CC may achieve a certain degree of remission with a

higher survival rate through radical resection or concurrent

radiotherapy (5). However, the prognosis and treatment outcomes

for patients with refractory CC, including those with recurrent,

persistent, or metastatic CC, remain unsatisfactory (6–8).

Complex and dynamic interactions between epithelial cells and

macrophages are a hallmark of the tumor microenvironment (TME).

These interactions play a pivotal role in tumor initiation, progression,

and metastasis. Epithelial cells, which constitute the major cellular

component of tumors, actively influence macrophage function through

the secretion of cytokines and the modulation of macrophage

phenotypes. Conversely, macrophages reciprocally regulate

epithelial cell proliferation, migration, and invasion by releasing

immunomodulatory factors. This bidirectional crosstalk is critically

involved in tumor immune evasion, immune clearance, and the

development of drug resistance. Within the TME, macrophages

exhibit remarkable plasticity and can adopt diverse phenotypes.

While tumor-associated macrophages (TAMs) often promote tumor

progression, certain macrophage subsets can exert anti-tumor effects

(9). Consequently, a deeper understanding of the intricate interplay

between epithelial cells and macrophages is essential for identifying

novel therapeutic targets and advancing the development of effective

immunotherapeutic strategies.

The remarkable efficacy of immunotherapy in CC highlights the

significance of immunotherapy interventions targeting angiogenesis in

the tumor microenvironment (TME) (10, 11). Therefore,

pembrolizumab combined with chemotherapy (with or without

bevacizumab) has become the first-line treatment choice for the
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programmed cell death ligand 1 positive patients with metastatic,

persistent, and recurrent CC (7). However, some targeted therapies

may be non-responsive due to immune infiltration of tumor cells (10).

Therefore, elucidating the role of TME in the pathogenesis and targeted

therapy of CC is imperative.

In CC, persistent infection with high-risk human papillomavirus

(HPV) is widely recognized as the primary driver of carcinogenesis.

However, emerging evidence suggests that cellular mutations within

the TME, particularly in epithelial cells and immune cells such as

macrophages, play a critical role in tumor progression and therapeutic

response (12). For instance, phenotypic alterations and genetic

mutations in macrophages can reshape the TME, thereby influencing

tumor immune evasion and survival. Similarly, genetic mutations in

epithelial cells have been implicated in regulating their proliferative

capacity, invasive potential, and sensitivity to immunotherapeutic

interventions (13). These studies demonstrate that mutations not

only dictate the biological behavior of tumor cells but also modulate

macrophage function within the TME, ultimately impacting patient

outcomes. These collective findings underscore the significance of

investigating epithelial and macrophage mutations in CC, as such

insights could provide a mechanistic understanding of tumor evolution

and inform the development of novel therapeutic strategies.

In this study, we explored the functions, subpopulations, mutations,

and characteristics related to patient survival and treatment of epithelial

cells and macrophages within tumors, using multiple analytical

methods and datasets to evaluate the cell types and their interactions

within the TME. Moreover, we compared the expressions of various

genes in single-cell data and analyzed their differential expression.

Additionally, we identified the functional differences revealing specific

biological characteristics of the various cell types. We conducted

subpopulation analysis to classify the epithelial cells into distinct

categories to understand their diversity and functional differentiation.

Correlation analysis with patient survival revealed associations between

epithelial cell subsets and macrophages, impacting patient prognosis.

The immunotherapy analysis for high- and low-risk groups provided

valuable insights into the application prospect and its efficacy in

different risk groups. Mutations in epithelial cells and macrophages

were examined to comprehend their role in tumors, offering clues for

further study of tumor development. By analyzing spatial transcriptome

data, intercellular communication patterns, and drug sensitivity

between epithelial cells and macrophages, we revealed their

interactions and responses to therapy, thus guiding future research

endeavors and therapeutic strategies.
Methods

Dataset

We used The TCGA-CESC dataset was downloaded using the

TCGAbiolinks package (14) from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) and analyzed as the test set. After

excluding samples without clinical information, sequencing data

from 304 CC samples with prognostic OS clinical information were

obtained. The sequencing data for CC (CESC) were normalized to
frontiersin.org

https://portal.gdc.cancer.gov/
https://doi.org/10.3389/fimmu.2025.1537785
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1537785
fragments per kilobase pair million format. Corresponding clinical data

were obtained from the UCSC (University of California, Santa Cruz)

Xena database (http://genome.ucsc.edu) (15). Additionally, the CC-

related dataset GSE44001 (16) was acquired from the Gene Expression

Omnibus (GEO) database using the R package GEO query (17). These

samples were from Homo sapiens, and the chip platform was

GPL14951, containing 300 CC samples with clinical information

regarding prognosis and DFS. Furthermore, the CC single-cell dataset

GSE168652 (18) and CC cell space transcriptome dataset GSE208654

(19) were downloaded. The GSE168652 samples were from Homo

sapiens, with the chip platform being GPL24676, consisting of one CC

sample and one healthy sample. The GSE208654 dataset comprised

normal tissues, precancerous lesions, and CC tissue samples (18) (17)

(16), (15) (15) (Li et al., 2021)(Li et al., 2021)(Li et al., 2021)(Li et al.,

2021)(Li et al., 2021)(Li et al., 2021)(Li et al., 2021) (15) (Li, Guo et al.,

2021) (15) with samples from Homo sapiens and the chip platform

being GPL24676. These datasets were further analyzed. The specific

information is shown in Supplementary Table S1.
Single-cell analysis

The “CreateSeuratObject” function of the R package Seurat v4.0

(20) was used to import the counts matrix of all samples in the

scRNA-seq dataset GSE168652, creating a Seurat object. The

parameters were set to include genes expressed in at least three

cell types and at least 200 genes expressed in each cell. The

proportion of mitochondrial genes indicates whether the cells are

in a steady state. Typically, a cell might be under stress when it has a

higher proportion of mitochondrial genes than all other genes.

Therefore, we filtered out cells with >20% mitochondrial gene

content. Low-quality cells or empty droplets typically have fewer

genes; hence, we filtered out cells with features under 250.

Subsequently, we normalized the sequencing depth of the scRNA-

seq dataset GSE168652 using the “SCTransform” function. Principal

component analysis (PCA) was then applied to identify the principal

components (PCs), which were visualized using the “Elbowplot”

function to determine the p-value distribution. Finally, 10 PCs were

selected for unifiedmanifold approximation, projection (tSNE) analysis,

and dimension reduction. The “FindNeighbors” function was used with

default parameters and the 10 PC dimension parameters to construct

the k-nearest neighbors based on Euclidean distance in the base PCA

space. By calling the “FindClusters” function, the “clustree” function

was applied to find a resolution of 0.5 to divide the cells into different

clusters. Finally, the “RunTSNE” function dimension was used for

dimensionality reduction and visualization of the dataset.
Cell type annotation and single-cell taxa
differential genes

Using “SingleR (21), the “DotPlot” function was used to display

the expression levels of model genes in different cell types. To

identify differentially expressed genes among cell clusters, we used

the “FindAllMarkers” function to compare the gene expression in a

cell to that in all other cells using the Wilcoxon rank-sum test.
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Differential genes with logFC >1 and adjusted p-value < 0.05 for

each cell cluster were retained as cell marker genes for further study.
GSVA of different cell subsets

Gene Set Variation Analysis GSVA (22) was applied to evaluate

the pathways enriched in different samples. The human hallmark

gene set was obtained using the R package msigdbr, and GSVA was

performed on all genes in the single-cell dataset to calculate the

functional enrichment differences among various cell subsets. The

screening criterion for GSVA was adjusted p < 0.05.
Functional and pathway enrichment
analyses

GO (23) analysis is a common method for large-scale functional

enrichment studies, including BP, MF, and CC. KEGG (24) is an

extensively used database storing information on genomes, biological

pathways, diseases, and drugs. The R package clusterProfiler (25) was

applied for GO and KEGG annotation analyses of differentially

expressed genes. The entry screening criteria, adjusted p-value of

under 0.05 and false-discovery rate value (q-value) of less than 0.25,

were considered statistically significant. The Benjamini–Hochberg

(BH) method was used p-value correction.
Survival analysis

Single-sample GSEA (ssGSEA) quantified the abundance of

each gene in a dataset sample. We used the R package GSVA to

calculate the cell correlation score of each sample in the TCGA and

GSE44001 datasets based on the expression matrix of each sample.

We integrated the TCGA-CESC dataset for overall survival (OS)

and disease-free survival (DFS) prognosis, the GSE44001 dataset,

and the TCGA-CESC dataset to categorize cell grades and construct

Kaplan-Meier (KM) survival curves. This analysis facilitated the

optimal stratification of cell groups. Subsequently, based on the

most favorable stratification, cervical cancer (CC) patients within

the TCGA-CESC dataset were segregated into high and low

groups.According to the best grouping, CC patients in the

TCGA-CESC dataset were divided into high and low groups.
Somatic mutation analysis of CC subtypes

“Masked Somatic Mutation” data of CESC samples were

selected through the TCGA platform and preprocessed using

VarScan software and the R package maftools (26).
Immune-related analysis

The TIDE (27) (http://tide.dfci.harvard.edu) score predicts the

potential response to immune checkpoint blockade therapy. The TIDE
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algorithm models two main mechanisms of tumor immune evasion:

induction of T cell dysfunction in tumors with high cytotoxic T

lymphocyte (CTL) infiltration and prevention of T cell infiltration in

tumors with low CTL levels. The expression of each gene in tumor

patients was assessed based on its interaction with CTL infiltration level

to influence the survival rate in a large tumor group with T cell

dysfunction. Based on the TIDE analysis results, we calculated and

compared the differences in TIDE grouping between the high and low

groups in the TCGA-CESC dataset using the Mann–Whitney U test or

Wilcoxon rank-sum test. The test was also applied to calculate the

differences in tumor mutation load between the high- and low-TMB

groups using TCGA data obtained from CESG. A p-value of less than

0.05 was considered statistically significant.
Space transcriptome analysis

Samples from the single-cell spatial transcriptome dataset

GSE208654 were imported using the “Load10X_Spatial” function of

the R package Seurat v4.0 (20) and created as Seurat objects. The

GSE208654 dataset was normalized using the “SCTransform” function.

PCA was applied to identify significant PCs, and ten PCs were selected

for Uniform Manifold Approximation and Projection analysis for

dimensionality reduction. The “FindNeighbors” default parameter

and ten PC dimension parameters were used to construct the k-

nearest neighbors based on Euclidean distance in the base PCA space.

The cells were then divided into different clusters using the

“FindClusters” function. The Human Primary Cell Atlas Data

dataset was applied for cell annotation via the singleR function,

combined with the previously identified epithelial marker genes in

cells. Subsequently, the “FindTransferAnchors” and “TransferData”

functions were used to combine single-cell spatial data, followed by

visualization of gene expression in different cell types using the

“SpatialDimPlot” function.
Cell communication analysis

Multicellular organisms communicate via cytokines and

membrane proteins to regulate their life activities. Among these,

receptor-ligand-mediated intercellular communication is essential

for various BPs, such as development, cell differentiation, and

disease. Moreover, cell communication analysis deduces the

interaction among cells by measuring the expression and pairing

of receptors and ligands in various cell types.

To increase confidence in potential ligand-receptor interactions of

cell-to-cell communication, we adopted a strategy based on consensus

analysis of multiple approaches and compared the results of different

ligand-receptor inference methods to predict interactions. We used the

“liana_wrap” and “liana_aggregate” functions in the R package liana

for cell communication analysis, which runs other methods in the

background and generates a consensus. This approach could be

beneficial in identifying ligand-receptor interactions that are highly

significant in different methods, including CellPhoneDB. These

methods include the following:
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Connectome: a network analysis-based approach inferring

functional connections between cells from single-cell transcriptome

data. Log2FC: a method based on gene expression differences

identifying ligand-receptor pairs that change under different

conditions from single-cell transcriptome data. NATMI: a machine

learning-based method predicting cell-to-cell ligand-receptor

interactions from single-cell transcriptome data. SingleCellSignalR: a

pathway-based approach reconstructing cell-to-cell signaling networks

from single-cell transcriptome data. CellChat: a probabilistic graph

model-based approach inferring cell-to-cell communication patterns

from single-cell transcriptome data.
Single-cell susceptibility analysis

Beyondcell (28) is a single-cell drug sensitivity analysis method

that identifies subsets of tumor cells with different drug responses

and proposes cancer-specific therapies. In this study, we used the R

package Beyondcell for single-cell drug sensitivity analysis as

follows: First, the single-cell drug sensitivity was determined by

the expression of drug-related genes in each single cell.

Subsequently, single cells with similar drug sensitivity were

grouped using a clustering algorithm to form therapeutic clusters

(TCs). Finally, differences in drug sensitivity among TCs were

analyzed to guide sensitivity-based selection. Beyondcell has been

validated in five single-cell datasets and has demonstrated that TCs

could be used to target malignant cells in cancer cell lines and

tumor patients.
AUCell

AUCell identifies cells with active gene sets in single-cell RNA

sequence data and analyzes whether the input gene set is enriched in

the genes expressed in each cell, based on the AUC. The distribution

of AUC scores facilitates the exploration of the relative expression

of features. Given that the scoring method employed by AUCell

relies on ranking, the tool functions through assessing gene

expression following established standard protocols. Furthermore,

because cells were evaluated individually, AUCell could be applied

to larger datasets and expression matrices as needed. Therefore, we

selected cell marker genes for AUCell scoring to identify cell

populations with high scores.
Immunohistochemistry

Immunohistochemistry (IHC was conducted as described

previously (29). The protein levels of three macrophage-related genes

were analyzed by IHC using tissue microarrays from incisional biopsy

specimens taken before treatment and this study was approved by the

Ethical Review Board for Research; All the antibodies were purchased

from Zhongshan Goldbridge Biotechnology for immunohistochemistry

staining. Each tumor was represented by a tissue core on a microarray.

The tissue samples were fixed in 10% neutral-buffered formalin and
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embedded in paraffin before slicing into 4-mm-thick sections and

mounting on glass slides. Antigen retrieval was performed to enhance

antigenicity, and the sections were blocked to minimize nonspecific

binding. Subsequently, the sections were incubated overnight at 4°C

with primary antibodies targeting CD163, CD14, and CD68,

respectively, followed by HRP-coupled anti-rabbit (Pasilla) or anti-

mouse (tubulin) secondary antibody. Finally, the slides were treated

with a chromogenic substrate to visualize the antigen-antibody

interaction, which was enhanced by hematoxylin counterstaining.

The stained sections were examined under an optical microscope to

assess CD163, CD14, and CD68 expression levels, and the intensities

were compared between the tumor and adjacent groups to determine

the differential expression patterns using ImageJ software.
Statistical analysis

All data were processed and analyzed using R software, version

4.2.0. Continuous variables were presented as mean ± standard

deviation, and the Wilcoxon rank-sum test was used for comparison

between the two groups. Correlation coefficients between different

molecules were calculated using Spearman’s correlation analysis,

unless otherwise specified. All results were considered statistically

significant at an adjusted p-value <0.05.
Results

Flow diagram of single cel l spatial transcriptome

(Supplementary Figure S1).
Cell type annotation

The cells were classified into 12 clusters based on the single-cell

dataset GSE168652 using t-distributed stochastic neighbor

embedding (tSNE) for visual dimension reduction at a resolution

of 0.5. The tSNE diagram illustrates distinct groups of cells

(Figure 1A). Subsequently, the R package SingleR was used to

categorize the cell clusters into three cell types (Figure 1B):

macrophages, CD8+ T cells, and epithelial cells. The expressions

of nine model genes including EPCAM, CDH1, CDKN2A, CD3D,

CD7, CD8A, CD68, CD163 and CD14 in the single-cell dataset were

displayed on a bubble plot (Figure 1C). The gene sets underlying the

differences in the three cell types were identified using gene set

variation analysis (GSVA). The results indicated that most

HALLMARK gene sets have high scores in macrophages and

epithelial cells, while most cells had low scores (Figure 1D).
Gene set enrichment analysis

By GO and KEGG pathway enrichment analyses, we explored the

biological processes (BPs), cellular components (CCs), and molecular

functions (MFs) associated with various cell marker genes.
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GO analysis revealed that epithelial cells regulate endopeptidase

and peptidase inhibitor activity, as well as calcium-dependent protein

binding, suggesting their involvement as structural constituents of the

cytoskeleton. CD8+ T cells and major histocompatibility complex

(MHC) class II are involved in protein complex binding, MHC-

protein complex interaction, and ATP-dependent protein folding

chaperone activities, with implications in chemokine activity and

unfolded protein responses.

Macrophages are involved in peptide-MHC class II receptor

activity, immune receptor activity, and MHC class II protein

complex interactions, indicating their role in antigen presenting

immune response modulation (Supplementary Figure S2A). The

KEGG pathway analysis revealed that epithelial cells are associated

with pathways such as amoebiasis, interleukin (IL)-17 signaling, p53

signaling, estrogen signaling, and Staphylococcus aureus infection. CD8

+ T cells are linked to pathways including rheumatoid arthritis, viral

protein interaction with cytokines and cytokine receptors such as

interferon gamma receptor, tumour necrosis factor alpha and so on,

lipid metabolism, atherosclerosis, Chagas disease, measles, and antigen

processing and presentation. Meanwhile, macrophages are involved in

pathways such as leishmaniasis, phagosome formation, rheumatoid

arthritis, viral protein interaction with cytokines and cytokine

receptors, lipid metabolism, atherosclerosis, and Chagas disease

(Supplementary Figure S2B).

Additionally, subgroup analysis revealed that epithelial cells can be

divided into five categories. Genes with a logfold-change (FC) >1 and

adjusted p < 0.05 were identified as markers through KEGG analysis.

The results indicated that Epithelial_1 is associated with complement

and coagulation pathways, focal adhesion, AGE-RAGE (advanced

glycation end products and the receptor for AGEs) signaling

pathway in diabetic complications, and the HIF-1 signaling pathway;

Epithelial_2 is involved in oocyte meiosis, cell cycle regulation, cellular

senescence, the p53 signaling pathway, and apoptosis. Epithelial_4

mainly interacts with cytokine–cytokine receptors, Toll-like receptor

signaling, chemokine signaling, and the RIG-1-like receptor signaling

pathway (Supplementary Figures S2C).
Survival analysis

To explore the antitumor effects of different cell marker genes in

CC, we analyzed the correlation between overall survival (OS) in

different cancer types and cell marker genes using Kaplan–Meier

(KM) curve analysis. Correlation analysis (Figure 2A) revealed that

macrophage marker genes were associated with OS and disease-free

survival (DFS) in patients. Additionally, subpopulations 1 and 4 of

epithelial cells, along with CD8+ T cells, showed correlations with

patient OS. The KM curve showed that the macrophage marker

gene group showed a statistically significant difference in DFS

(Figure 2B) and OS (Figure 2C) between patients with high and

low expression of macrophage marker genes (p < 0.05), where a

higher score indicated better outcomes. Furthermore, a statistically

significant correlation was observed between epithelial

subpopulation 1 marker genes and OS (Figure 2D) (p < 0.001),

where a higher score indicated a poorer prognosis. Macrophages
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1537785
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1537785
were associated with both OS and DFS, while epithelial

subpopulation 1, which predominates in tumor tissue, was

primarily linked to OS.
Immune correlation analysis

Given the current important role of immunotherapy in tumors.

The sensitivity of CC patients to immunotherapy in the high- and
Frontiers in Immunology 06
low-risk groups of the Cancer Genome Atlas cervical squamous cell

carcinoma and endocervical adenocarcinoma (TCGA-CESC)

dataset was assessed using the tumor immune dysfunction and

exclusion (TIDE) algorithm, with results analyzed through the

Wilcoxon rank-sum test. As shown in Figure 3, the TIDE

immunotherapy score of CESC patients exhibited a significant

difference between the high and low macrophage score groups

(p < 0.001, Figure 3A), with the high-score group showing lower

scores compared to the low-score group. Therefore, the high-score
FIGURE 1

Cell type annotation. (A). Clustering into 12 cell clusters by tSNE. (B). The Cells were annotated into 3 cell types by R package singleR: Epithelial
Cells, CD8+T Cells, and Macrophages. (C). Visualization of bubble plots of expression levels of nine Model Genes. The deeper the color according to
the higher expression level, the bigger the circle, said gene expression within the cells of the higher proportion. (D). Gene set variation analysis
(GSVA) between different cells.
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group may have a more favorable immunotherapy response than

the low-score group. Analysis of TCGA-CC patient samples from

the CESC dataset revealed no statistically significant difference in

TMB within macrophages between the high- and low-score groups

(p > 0.05) (Figure 3B).

In contrast to macrophages, TIDE immunotherapy scores in

CESC patients did not significantly differ between the high- and

low- score groups in Epithelial_1 group (Figure 3C). However,

TMB in Epithelial_1 showed a significant difference between the

high- and low-score groups (p < 0.01, Figure 3D).
Somatic mutation analysis of high and low-
macrophage groups

The analysis of the frequency of gene mutations in the high- and

low-macrophage groups, conducted using the R package maftools,

showed a higher mutation frequency in PIK3CA in macrophages

between the high and low groups (Supplementary Figure S3A).

Additionally, we analyzed the changes in biological function caused

by mutations in high- and low-density groups of macrophages. The

results demonstrated that the increased mutation frequency
Frontiers in Immunology 07
associated with functional changes in macrophages was

concentrated in the RTK-RAS and Hippo signaling pathways

(Supplementary Figure S3B), while the lesser mutation group was

focused on the RTK-RAS and NOTCH signaling pathways

(Supplementary Figures S3C).

Finally, based on the mutation and Drug Gene Interaction

database (DGIdb), we integrated different cancer gene subtypes

from patients into the medicinal database (Gene Druggability) to

explore the interactions between drugs and genes. The results

(Supplementary Figures S3D, E) revealed that in the macrophage

high group, the predicted drugs were likely to target the druggable

genome (CACNA1H, CASP8, DMD, EP300, and HMCN1).

Conversely, for the macrophages in the low group, the potential

effects of the drugs were detected on the druggable genome

(ADGRV1, DMD, DST, EP300, and MUC16).
Somatic mutation analysis of high and low
groups in epithelial subpopulation 1

The R package maftools was used to analyze the frequency of

gene mutations in the high and low groups of epithelial
FIGURE 2

Survival analysis. (A). The relationship between different cell marker genes and patients’ overall survival (OS) and disease-free survival (DFS). (B, C).
Kaplan-Meier (KM) curves of macrophage marker gene score and disease-free survival (DFS, panel B) and overall survival (OS, panel C) of patients.
(D). Kaplan-Meier (KM) curves of epithelial cell subset 1 and overall survival (OS).
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subpopulation 1. Similar to the mutation frequencies observed in

the high-low subgroups of macrophages, both PIK3CA and TTN

had high mutation frequencies in the high-low subgroups for

epithelial subpopulation 1 (Supplementary Figures S4A).

Additionally, we analyzed the changes in biological function

caused by mutations in epithelial subpopulation 1 between the

high and low subgroups. The results showed that mutations in the

epithelial cells level 1 subgroup led to altered biological functions

between the high and low subgroups, are both primarily

concentrated in the RTK-RAS and NOTCH signaling pathways

(Supplementary Figures S4B, C).

Finally, gene druggability and drug-gene interactions in

different cancer subtypes were explored based on the mutation

profiles and DGIdb. The results (Supplementary Figures S4D, E)

indicated that the predicted drugs were likely to target the druggable

genome (ADGRV1, DMD, DST, EP300, and MUC16) in the high

subgroup of epithelial subpopulation 1. Conversely, in the low

group, the drug prediction suggested potential effects on

ADGRV1, CREBBP, DMD, DST, and EP300.
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Spatial transcriptome analysis

We used the R package SingleR to identify two cell types in the

spatial transcriptome dataset GSE208654: macrophages and epithelial

cells, along with their spatial distribution (Figure 4A). The expressions

of the six model genes in the single-cell dataset were represented in the

bubble plot (Figure 4B), which exhibited similarities to those in the

single-cell dataset GSE168652. Furthermore, Figures 4C, D shows the

distribution of CD14, CD68, and CD163 genes in the cells, primarily

located within the macrophage region.

Upon examining the GSE168652 dataset, specific marker genes

were identified for the ‘Epithelial_1’ single-cell subgroup. Concurrent

analysis with the GSE208654 dataset revealed that the gene MMP-

SPRR2A demonstrated notably increased expression within the

‘Epithelial_1’ population. Furthermore, Figure 4E illustrates the

expression profiles of various marker genes across the single-cell

landscape in the GSE168652 dataset. In alignment with the expression

data, and using the annotation available from GSE208654, ‘Epithelial_1’

was subdivided into three distinct clusters, as depicted in Figure 4F.
FIGURE 3

Immune correlation analysis. Comparison of TIDE immunoscore (A) and TMB score (B) groups between high and low macrophage groups in TCGA-
CESC data set. Comparison of TIDE immune score (C) and TMB score (D) groups between macrophage high and low groups in TCGA-CESC data
set. ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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AUCell and cell communication analysis

We used the R package AUCell to score the expression of

epithelial subpopulation 1 marker genes (Figure 5A) and

macrophage marker genes (Figure 5B) in the idle dataset,

visualizing them in the group comparison plots for the single-cell

dataset GSE168652 described above. The results showed that the

epithelial subpopulation 1 marker genes had the highest area under

the curve (AUC) scores in cell subpopulation 3, which aligns with

the previously obtained results. Similarly, the macrophage marker
Frontiers in Immunology 09
genes displayed the highest AUC scores in cell subsets 4 and 5,

consistent with our annotation results.

The liana package was employed for consensus cell

communication analysis based on different methods. We

visualized the intensity (Figure 5C) and quantity (Figure 5D) of

cell communication through bubble charts and heat maps,

respectively. Notably, macrophages and Epithelial_1 exhibit

multiple ligand-receptor combinations of interaction modes.

Moreover, macrophages and Epithelial_1 have a high number

of interactions.
FIGURE 4

Spatial transcriptome analysis. (A). spatial location of different cell comments. (B). Visualization of bubble plots of expression levels of the six Model
Genes. (C, D) Spatial location expression of CD14, CD68 and CD163 genes. (E). Heat map of the expression of marker genes in different subsets of
GSE168652 in the single cell dataset in the idle dataset. (F) Annotation of the spatial location of different cells.
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Susceptibility analysis

We applied the bc4Squares function in the Beyondcell package

to summarize the drug ranking between macrophages and epithelial

subpopulation 1 (Supplementary Figures S5A, B). The upper left

and lower right corners of the figure contain all selected drugs with

low and high sensitivity in the cells. In panels C–E, we specifically

focus on triptolide and memantine, two compounds that

demonstrate distinct differential effects between macrophages and

epithelial cell subpopulation 1. Specifically, epithelial cell

subpopulation 1 demonstrated sensitivity to triptolide, while

macrophages were more sensitive to memantine.
Protein expression of macrophage-related
genes CD163, CD14, and CD68

The protein levels of macrophage-related genes, including CD163,

CD14, and CD68, were assessed using immunohistochemistry (IHC) on

tumor tissues and adjacent tissue microarray. The results revealed a

significant increase in the protein levels of CD163, CD14, and CD68 in

the tumor tissue compared to adjacent tissue (p < 0.0001, Figures 6A–C).
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Discussion

CC is one of the most common gynecological malignancies with

high morbidity and mortality (30–32). Currently, the treatment of CC

includes surgery, radiotherapy, and chemotherapy; however, the

efficacy in patients with recurrent and advanced stages remains

limited, often resulting in poor prognosis (33–35). For patients

progressing after initial treatment, options are sparse, with low

response rates to second-line and subsequent chemotherapy, and a

median progression-free survival of approximately 3–6months. Hence,

immunotherapy emerges as a promising alternative, particularly as a

second-line or subsequent therapy (36). However, the efficacy of

immunotherapy varies among patients, with some showing no

response, and the underlying mechanisms remain unclear. Therefore,

understanding immune escape mechanisms and developing additional

immunotherapy strategies is imperative.

Notably, the TME likely plays a vital role in immune escape

(37, 38). Additionally, TME significantly influences cancer

progression, with diverse signals impacting tumor promotion and

suppression (39). HPV infection contribute to immune evasion (40);

however, the mechanisms of virus-TME interactions and cancer

induction warrant further exploration (19).
FIGURE 5

AUCell and cell communication analysis. (A, B). Group comparison plots of AUC scores of epithelial subpopulation 1 marker genes and macrophage
marker genes between different cell clusters are visualized. (C). Consensual-based bubble plot of cell communication analysis implemented by
LIANA, where the size of the dots represents the confidence level and the color from dark to light represents the stronger communication effect.
(D). Heat map of the number of interaction relationship pairs among the three cell types. The deeper the red color, said interaction ligand - receptor
on the more the number.
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The diverse immune cells, such as the cancer-associated

fibroblasts (CAFs), endothelial cells, and extracellular matrix

(ECM), along with additional tissue-resident cells, contribute to

the evolving TME during all stages of cancer (41). Single-cell RNA

sequencing (scRNA-seq) reveals the features of cellular gene

expression that cannot be observed in bulk RNA sequencing (42).

Moreover, it exhibits the crosstalk among tumor cells, immune cells,

and CAFs in the TME (43, 44). Therefore, scRNA-seq has many

applications in cancers (45–47).

Recent studies have provided valuable insights into the cellular

dynamics of the TME in CC. Guo et al. (19) demonstrated that the

overall abundance of CD8+ T cells is elevated in cancer tissues, with

a notable increase in exhausted T cells (Tex). Mucosal-associated

invariant T (MAIT) cells were found to be predominant in high-

grade squamous intraepithelial lesions (HSIL), while terminal

effector memory RA+ (TemRA) T cells exhibited a biphasic

response, initially increasing and subsequently decreasing

following HPV infection. Among CD4+ T cell subsets, Th17 cells

displayed a similar biphasic trend, whereas Th1-like and regulatory

T cells (Tregs) showed progressive infiltration during disease

progression. In the myeloid compartment, plasmacytoid dendritic

cells (pDCs) accumulated in cancer tissues but exhibited functional

impairment, and macrophages underwent a polarization shift from

the M1 to the M2 phenotype. Li et al. (48) focused on non-immune

cells within the TME, identifying 22,451 fibroblasts and smooth

muscle cells (SMCs) that were further classified into 13 distinct

clusters based on gene expression profiles. Qu et al. (49) revealed

heterogeneous immune cell signaling patterns in the CC TME and
Frontiers in Immunology 11
identified a subset of cancer-associated fibroblasts (CAFs) that

impede lymphocyte infiltration and remodel the extracellular

matrix (ECM). Despite these advances, a comprehensive scRNA-

seq analysis of epithelial and macrophage dynamics in the CC TME

remains lacking. This gap underscores the need for further research

to elucidate the intricate interplay between these cell types, which

could provide critical insights for developing effective

immunotherapeutic strategies.

We analyzed cervical cancer using datasets GSE44001,

GSE168652, and GSE208654 for the first time. GSE168652

identified 12 cell clusters, including CD8+ T cells, macrophages,

and epithelial cells. CD8+ T cells, despite dysfunction in cancers, are

key antitumor agents, with therapies aiming to boost their cancer-

fighting abilities. Tumor-associated macrophages (TAMs) have

dual roles in cancer, promoting and inhibiting tumor growth.

Using scRNA-seq, we detailed macrophage-epithelial interactions

in cervical cancer’s tumor microenvironment (TME). Our study

integrated multiple analyses to understand TME dynamics,

revealing macrophages’ active role and epithelial cells’ lower

activity. GO and KEGG analyses linked cell types to specific

biological functions and pathways in cervical cancer. Macrophage

markers correlated with better survival outcomes, suggesting their

potential as prognostic biomarkers and therapeutic targets.

Immunohistochemistry confirmed higher macrophage marker

expression in cancer tissues, underscoring their prognostic

significance for cervical cancer.

TMB in epithelial cell subgroup 1 differs significantly between the

high- and low-score groups. Moreover, a high TMB indicates the
FIGURE 6

The protein expression of macrophage related genes CD163, CD14, CD68 in adjacent tissues and tumor tissues through IHC (A-C). ****p < 0.0001.
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potential to carry new antigens, rendering the epithelial subgroup a

target for activated immune cells. These observations indicate an

emerging biomarker for susceptibility to immune checkpoint

inhibitors, as assessed by IHC, which is associated with the

response to CTLA-4 and PD-1 inhibition in immunotherapy (50–

52). The evaluation of the TIDE algorithm showed marked

differences in TIDE immunotherapy scores among CESC patients

between the high- and low-rating groups of macrophages, while no

statistically significant difference was detected in epithelial cell

subgroup 1. This finding suggested that different immune

microenvironment states have an impact on immunotherapy

reactivity, with macrophages potentially playing a key role in

influencing the sensitivity of CC patients to immunotherapy.

There are limited and conflicting reports on the prognostic

utility of PIK3CA and the assessment of PIK3CA in cervical cancer

before radical hysterectomy may help identify patients at higher risk

of node-positive disease (53). Maftools mutation analysis revealed

that PIK3CA had a higher mutation frequency in both macrophages

and epithelial subset 1. PIK3CA in our study, which is a common

oncogene, exhibited a high mutation frequency in various cancers

(54), and its mutations may have a critical impact on tumor

progression and treatment response. One of the biggest obstacles

to achieving a long-lasting response to cancer therapies is drug

resistance (55). Gabriele Romano et al. found that the mutations

PIK3CA E545K and NRAS Q61 are sufficient to generate resistance

(56). Combined with our study, by highlighting the presence of

PIK3CA mutations in macrophages and epithelial cells and their

potential role in tumor progression and drug response, this research

suggests avenues for the development of targeted therapies as well

as the possibility of using PIK3CA mutation status to guide

treatment decisions, which may be possible leads to more effective

treatment of CC.

The spatial transcriptome dataset GSE208654 revealed the

location of two major spatial locations of macrophages and

epithelial cells. It validated the observations of the single-cell

dataset GSE168652 through model gene expression levels. Spatial

transcriptomic analyses offer insights into the spatial distribution

and interactions of various cell types within the TME, thereby

enhancing our understanding of tumor heterogeneity and the

complexity of its microenvironment.

Finally, we identified potential targeted treatment drugs,

triptolide and memantine. Triptolide is a diterpenoid compound

isolated from the Chinese herb Tripterygium wilfordii. It is effective

in treating various autoimmune diseases (57)) and has antitumor

properties (58–60). Some studies have shown that triptolide induces

protective autophagy in human CC cells, inhibits cell viability, and

promotes cell apoptosis by activating targeted autophagy pathways

(61). The antitumor effect of triptolide aligns with our conclusion.

Memantine is an uncompetitive antagonist with moderate affinity

for NMDA (N-methyl-D-aspartate) receptors, primarily used for

the treatment of Alzheimer’s and cardiovascular diseases and cancer

(62). However, its application in CC has not been reported. It has

been reported that triptolide causes apoptosis (63). The

development of novel therapeutics is facilitated by the

introduction of triptolide and memantine as potential treatments,
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based on their effects on cellular mechanisms relevant to CC. The

creative part is not just finding new medications, but also explaining

how they specifically act on various cell types in the TME, leading to

more planned, focused, and efficient therapies.

This study has several limitations that warrant consideration.

First, while Kaplan-Meier survival analysis identified significant

correlations between specific cell marker genes, particularly

macrophage marker genes, and both overall survival (OS) and

disease-free survival (DFS) in patients, we acknowledge the

importance of investigating the co-expression patterns of

macrophage and epithelial marker genes to better elucidate cell-

cell interactions. Due to constraints in time and resources, these

analyses were not included in the current study but are planned for

future investigations to enhance the comprehensiveness of our

findings. Second, although we utilized publicly available datasets

and validated the expression of macrophage markers in cervical

cancer (CC) and normal tissues using immunohistochemistry

(IHC), the underlying biological mechanisms driving these

interactions remain to be fully elucidated. Further validation

through in vivo and in vitro functional assays, as well as larger-

scale clinical studies, will be essential to substantiate our

observations. Third, research on the prognosis and therapeutic

outcomes of patients with refractory cervical cancer, including

recurrent, persistent, or metastatic disease, remains limited.

Future studies should focus on exploring the associations between

distinct disease subgroups and potential therapeutic strategies to

address this unmet clinical need.

In conclusion, this study emphasizes the necessity and promise

of personalized medicine in the treatment of cancer by providing a

thorough understanding of the cellular and genetic makeup of the

TME, with a focus on the function of TAMs and the consequences

of particular genetic mutations. This implies that a better

understanding of the TME at the molecular and cellular levels

may influence treatment choices and improve patient outcomes in

the long run. In order to provide a clear roadmap for the continued

development of CC treatment, we suggest specific areas for future

research, such as investigating the role played by macrophages in

the progression of cancer, the effects of triptolide and memantine on

macrophages and epithelial cells, and the interaction between drug

therapy and specific genetic mutations. This study lays the

groundwork for important advancements in the diagnosis,

prognosis, and treatment of cervical cancer by creatively focusing

on the details of macrophage roles, the effects of TAM and epithelial

cell mutations, and investigating novel drug therapies based on

TME dynamics. Clinical ramifications could include improved

patient outcomes and increased survival rates in CC, as well as

the creation of tailored, targeted treatment plans and more accurate

prognostic evaluations.
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