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Bladder cancer is one of the most common malignancies of the urinary system

and has always presented great challenges in treatment due to its intricate

biological features and high recurrence rates. Although great developments

were achieved in immunotherapy and targeted therapies within the last

decade, therapeutic outcomes for a great number of patients remain

unsatisfactory, particularly as to long-term efficacy. Review discusses the

molecular mechanisms developed during the process of bladder cancer

progression: genetic and epigenetic alterations, dynamics of the tumor

microenvironment (TME), and dysregulation and abnormal activation of various

signaling pathways—all contributing to therapeutic resistance. It is genetic

mutation, especially in both low- and high-grade tumors, that, alongside

epigenetic modifications, plays a considerable role in tumor aggressiveness

and drug resistance. TME, comprising cancer-associated fibroblasts (CAFs),

immunosuppressive cells, and different components of the extracellular matrix

(ECM), orchestrates a setting that fosters tumor growth and immune evasion and

confers resistance on any therapeutic regime that might be used. The review also

provides an overview of PI3K/AKT and MAPK signaling pathways in the

progression of bladder cancer and the development of targeted therapies

against them. Further, it discusses the challenges and mechanisms of

resistance to immunotherapy, including those involving immune checkpoint

inhibitors. Other promising approaches include the development of new

therapeutic strategies that target not only the signaling pathways but also

immune checkpoints in combination therapies. This review aims to contribute

to the elaboration of more effective and personalized treatment strategies by

fully understanding the underlying mechanisms involved in bladder cancer.
KEYWORDS

bladder cancer, drug resistance, tumor microenvironment, precision therapy,
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1 Introduction

Bladder cancer is one of the most common malignant tumors in

the urinary system. Such complex biological features and a high

recurrence rate have posed great challenges to clinical treatment.

More than 70% of bladder cancers are nonmuscle-invasive bladder

cancers, and the recurrence rate within five years can reach as high

as 50% (1). In the last decade, some advances have been made in

immunotherapies and targeted therapies, but the therapeutic

responses of most patients are still far from optimal, especially

regarding the maintenance of long-term efficacy of the treatment

(2). This further underlines the need for in-depth studies on

molecular mechanisms and drug resistance in bladder cancer.

This review will discuss tumor progression driven by genetics, the

microenvironment, and signaling pathways in an attempt to explain

the causes for resistance to immunotherapies, while presenting

novel strategies to combat drug resistance. These in turn will

contribute to the elaboration of more tailored treatment protocols

offering improved prognosis for patients in the future.
2 Molecular mechanisms of bladder
cancer progression

2.1 Genetic and epigenetic variations

The cascade leading to bladder cancer progression is rooted in a

labyrinth of complex genetic and epigenetic transformations. These

cumulative alterations not only amplify the tumor’s aggressiveness

but also fortify its resistance to therapeutic interventions.

Diverse characteristics, such as genetic mutations in bladder

cancer, vary significantly across different grades. Broadly speaking,

low-grade bladder cancers are often associated with several driver

mutations. In stark contrast, high-grade bladder cancers frequently

exhibit intricate gene alterations and more aggressive mutation

profiles (3).This is understandable; tumors with higher malignancy

often have a higher mutation burden or gene mutations at more

critical sites (4). Based on whether they infiltrate the muscle layer,

we have summarized some gene mutations highly associated with

low/high-grade bladder cancer (Table 1).

Epigenetic changes—including DNA methylation, histone

modifications, abnormal expression of non-coding RNAs, and

aberrant expression of DNA demethylases and histone-modifying

enzymes—further increase tumor heterogeneity, making

therapeutic targeting more difficult (5–7).
2.2 Tumor microenvironment

It is in the tumor microenvironment, in the context of bladder

cancer, that such complexities arise to unmistakably affect, at a very

basic level, the features of cancer growth and progression, as well as

resistance to therapy. The TME in itself is a highly heterogeneous cell

population and the Extracellular Matrix (ECM) matrix, including
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Cancer-Associated Fibroblasts (CAFs), immunosuppressive cells, and

different ECM components. It is anything but a passive background

provided by the tumor cells. Instead, it creates a dynamic and

interactive landscape where these components contribute to

reinforcing not only the structural tumor but also in altering the

behavior itself. Intricate interplay has an effect on the invasiveness of

cancer cells, makes them capable of immune evasion, and determines

responsiveness to various therapeutic modalities.

2.2.1 CAFs
CAFs are key stromal cells within the TME of bladder cancer,

promoting tumor growth, invasion, and metastasis by secreting

various growth factors and cytokines. Research indicates that CAFs

play a dual role in tumor progression by secreting transforming

growth factor-beta (TGF-b) and matrix metalloproteinases

(MMPs). TGF-b is a crucial cytokine that can induce epithelial-

mesenchymal transition (EMT), enabling bladder cancer cells to

acquire enhanced invasiveness and migratory capacity. MMPs

degrade extracellular matrix components, creating pathways for

tumor cell metastasis and assisting cancer cells in breaching the

basement membrane, further promoting cancer spread (8).

Additionally, CAFs release chemokines that attract other

immunosuppressive cells—such as regulatory T cells and M2-type

macrophages—to the tumor microenvironment, further weakening

the body’s anti-tumor immune response. These mechanisms not

only make CAFs significant pro-tumor cells in the TME but also

underscore their critical role in the poor prognosis of patients with

malignant bladder cancer (9).

2.2.2 Immunosuppressive cells
The TME of bladder cancer is likewise highly loaded with

different immunosuppressive cells, including regulatory T cells or

Tregs and M2-type macrophages. Tregs suppress the activity of

effector T cells through the secretion of immunosuppressive

cytokines such as IL-10 and TGF-b, which lessens the anti-

tumoral response. M2-type macrophages participate in the

secretion of several pro-tumoral factors, including vascular

endothelial growth factor (VEGF), a factor that promotes the

proliferation and survival of tumor cells through angiogenesis and

increased supply of nutrients (10).

These immunosuppressive cells synergistically constitute the

immune suppressive microenvironment of bladder cancer, which

enables cancer cells to effectively evade host immunity and enhances

the difficulties in treatment. This immune evasion phenomenon also

partly reduces the efficacy of immune checkpoint inhibitors, leading

to poor response rates of bladder cancer to immunotherapy (8).

Conversely, blocking the inhibitory mechanisms that target these

immunosuppressive cells or combining immunosuppressive cell

inhibitors with immune checkpoint inhibitors represents a highly

promising therapeutic strategy (11).

2.2.3 ECM
In the TME of bladder cancer, the extracellular matrix plays an

active role rather than a passive structural role in the interrelationship
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between cancer cells and the TME. Often in patients with bladder

cancer, for example, the structure of the ECM is remodeled through,

among other methods, degradation mediated by enzymes such as

MMPs. This reconstitution enables the ECM to facilitate routes of

migration and dissemination for the tumor cells. Also, such a

remodeled ECM could interact with tumor cell surface receptors to

trigger the pro-proliferative signaling pathways, such as PI3K-AKT,

which eventually supports cancer cell growth and survival (9).

Alterations in ECM structure also significantly affect the

effectiveness of bladder cancer treatment. ECM remodeling

increases tissue density, creating a physical barrier that may hinder

the penetration of chemotherapy drugs and immune cells, thus

reducing the efficacy of drugs and immunotherapies. Consequently,
Frontiers in Immunology 03
disrupting the ECM barrier has become an important research focus

in bladder cancer treatment strategies (10). For example, studies have

demonstrated that exercise can inhibit tumor ECM, thereby

activating the antitumor effects of immune cells (12).
2.3 Abnormal activation of
signaling pathways

In the development and malignant progression of bladder

cancer, the PI3K/AKT and MAPK signaling pathways play crucial

roles. The abnormal activation of these pathways drives tumor cell

proliferation, invasion, and survival, providing a molecular basis for
TABLE 1 Highly related genetic mutation sites of bladder cancer and their basic interaction pathways and impacts.

Gene Mutation Details
Pathway
Impacted

Function
in Cancer

Prognostic
Implications

References
Tumor
Grade

FGFR3

S249C, Y373C - Commonly drives RAS-
MAPK signaling, leading to increased cell
proliferation and reduced differentiation.
Frequently observed in low-risk NMIBC cases.

RAS-MAPK

Stimulates cell
proliferation, lowers
differentiation; favorable
prognosis if isolated.

Associated with
improved outcomes
in NMIBC; may not
progress to
invasive stages.

(66)

Low-grade
Bladder
Cancer (NMIBC)

PIK3CA

E542K, E545K, H1047R - Activates PI3K-AKT
pathway, enhancing cellular survival and
metabolic activity. Often co-mutated with
FGFR3 in low-grade cases to
potentiate proliferation.

PI3K-AKT

Enhances cell survival
and metabolism,
amplifies oncogenic
signaling in cooperation
with FGFR3.

Linked with
proliferation but low
risk if in
combination with
FGFR3 in NMIBC.

(67)

STAG2

LOF mutations - Affect DNA repair and
cohesion complex stability, essential for early
cell cycle regulation and stability. Mutations
correlate with early-stage progression but
low aggressiveness.

Genomic
Stability

Maintains genomic
integrity; mutations often
promote early tumor
growth but
without invasion.

Early tumor
progression marker
but typically
indicates non-
invasive behavior.

(68, 69)

TP53

R248, R175, G245 - Mutations in TP53 inhibit
cell cycle arrest and apoptosis, leading to
genomic instability and aggressive phenotypes
in high-grade MIBC.

Cell Cycle

Key tumor suppressor;
loss leads to high-grade,
invasive, and
chemotherapy-
resistant tumors.

Strongly linked with
poor outcomes,
invasiveness, and
increased
mutation burden.

(66)

High-grade
Bladder
Cancer (MIBC)

RB1

R661, R698 - Loss of RB1 results in
deregulation of cell cycle control, promoting
unchecked cellular proliferation. Often co-
mutated with TP53, leading to high-grade and
recurrence risk.

Cell Cycle

Critical in cell cycle
control; loss promotes
malignancy and
correlates
with recurrence.

Predictive of poor
prognosis and
recurrence in high-
grade MIBC.

(70, 71)

ERBB2

S310F, V777L - Mutations in ERBB2 (HER2)
enhance signaling for cell proliferation and
invasiveness, often contributing to
therapy resistance.

HER2/EGFR

Proto-oncogene;
mutations lead to
invasive tumor behavior
and resistance to
certain treatments.

Correlated with
aggressive behavior,
invasive phenotype,
and
therapeutic
resistance.

(72)

ARID1A

Q456, R1276 - Loss-of-function in ARID1A
affects chromatin structure and gene
regulation, linked with high-grade
undifferentiated tumors and poor prognosis.

Chromatin
Remodeling

Chromatin regulator;
mutation leads to
dysregulation in gene
expression, especially in
high-grade tumors.

Indicates high
malignancy,
undifferentiated
growth, and
unfavorable
outcomes.

(73)

KMT2D

R2900, Q3432 - Disrupts histone methylation
patterns, promoting oncogenic transcriptional
programs. Associated with aggressive,
treatment-resistant phenotypes.

Histone
Methylation

Regulates transcription;
loss promotes aggressive
tumor characteristics and
therapy resistance.

Associated with
poor response to
therapy and
increased mortality.

(74)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1537808
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2025.1537808
bladder cancer. Targeted blockade of these signaling pathways,

especially in patients with specific pathway mutations, is

considered a potential therapeutic strategy.

2.3.1 PI3K/AKT signaling pathway
The PI3K/AKT pathway has been demonstrated to drive cell

proliferation and anti-apoptotic properties in various cancers.

Studies have shown that in bladder cancer, activation of this

pathway is mainly associated with the loss of PTEN (phosphatase

and tensin homolog) or PIK3CA gene mutations (Table 1), and is

more common in high-grade bladder cancer. PTEN is a major

negative regulator of the PI3K/AKT pathway; when its function is

lost, AKT becomes continuously activated, ultimately promoting

cancer cell proliferation and survival. Activation of AKT not only

enhances cells’ anti-apoptotic ability but also increases cancer cells’

resistance to chemotherapy drugs, making them more refractory

during treatment (13).

2.3.2 MAPK signaling pathway
The MAPK signaling pathway is a primary regulatory pathway

for bladder cancer cell proliferation and angiogenesis. This pathway

includes multiple cascade kinases, where RAS activates downstream

key molecules such as RAF, MEK, and ERK. By regulating the

expression of cell cycle proteins, this pathway promotes cell

proliferation. Simultaneously, by inducing the production of

VEGF, it enhances the tumor’s angiogenic capability, allowing the

tumor to obtain more nutritional support (14). In bladder cancer,

the MAPK pathway is highly associated with FGFR3 mutations

(Table 1), commonly observed in low-grade bladder cancer but also

present in some patients with high-grade invasive bladder cancer,

thereby enhancing the tumor’s invasiveness and metastatic

potential (15).

Given the central role of the PI3K/AKT and MAPK signaling

pathways in bladder cancer progression, therapeutic strategies

targeting these pathways have been extensively researched. PI3K/

AKT inhibitors (such as BEZ235 and BKM120) (16), and inhibitors

targeting the MAPK pathway (such as MEK and ERK inhibitors)

(17), have shown potential in inhibiting bladder cancer cell growth

in preclinical models. By blocking downstream signal transduction

of PI3K/AKT, these inhibitors reduce tumor cell proliferation rates

and induce apoptosis. They can significantly decrease the

invasiveness of bladder cancer cells, making them especially

suitable for patients with FGFR3 mutations or abnormal

activation of the MAPK pathway.
3 Immunotherapy of bladder cancer

Immunotherapy, especially checkpoint inhibitors targeting PD-1

and PD-L1, has become a significant advancement in the treatment of

bladder cancer. However, there is considerable variation in patient

responses to treatment, and the frequent occurrence of resistance

poses a major challenge to therapeutic efficacy.
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3.1 Traditional immunotherapy approaches

Immune checkpoint inhibitors have demonstrated efficacy in

bladder cancer patients unresponsive to chemotherapy. For

example, pembrolizumab and atezolizumab have been approved

by the FDA (18), but only a small portion of patients achieve

durable therapeutic responses, indicating the need for predictive

biomarkers to optimize patient selection (19).
3.2 Mechanisms of resistance

Resistance to immunotherapy arises frommultiple intrinsic and

extrinsic tumor factors. Tumor cells can downregulate PD-L1

expression or employ other immune checkpoints (such as CTLA-

4) to evade immune recognition (20). Additionally, the presence of

myeloid-derived suppressor cells (MDSCs) and tumor-associated

macrophages (TAMs) within the tumor microenvironment creates

an immunosuppressive setting, which significantly dampens T-cell

activity and contributes to therapeutic resistance. Specifically, in the

tumor microenvironment, MDSCs and M2-type TAMs

contribute through:
1. Secreting various immunosuppressive cytokines to inhibit T

cells (21).

2. Expressing immune checkpoint molecules (like PD-L1)

or promoting upregulation of checkpoint receptors

(such as PD-1 and CTLA-4) on T cells, leading to T-cell

“exhaustion” (21).

3. Depriving T cells of nutrients and energy (L-arginine and L-

tryptophan) and producing excessive reactive oxygen

species (ROS) that interfere with T-cell metabolism (22).
This process allows tumor cells to continue proliferating under

the “umbrella” of the microenvironment.
3.3 Emerging
immunotherapeutic strategies

To overcome resistance, current research is exploring new

methods. For instance, CAR-T cell therapy is gradually being

adapted for solid tumors. Specifically for bladder cancer,

researchers have developed novel CAR-T cells targeting SIA-CIgG,

which have shown effective anti-tumor activity (23) (Figure 1).

Furthermore, the exploration and development of immune

mechanisms are progressively advancing. Survival analyses

conducted using database resources have revealed an association

between IL-15 expression and favorable cancer prognosis across

multiple cancer types (pan-cancer) (24). Additionally, the

production of IL-15 is highly correlated with exercise (25),

suggesting that interventions in lifestyle habits (such as physical

activity) during the early stages of cancer may influence the overall
frontiersin.or
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cancer outcomes. In the future, cancer treatment strategies may

extend beyond clinical interventions to include the formulation of

plans based on patients’ lifestyle behaviors (26, 27).
4 Drug sensitivity and
targeted therapy

Traditional chemotherapeutic agents like cisplatin and

gemcitabine have certain efficacy in the treatment of bladder

cancer, but their toxicity and resistance limit long-term outcomes

(28, 29). In recent years, targeted drugs, such as erdafitinib, which

targets FGFR mutations, have shown positive efficacy in bladder

cancer patients carrying FGFR mutations, demonstrating the

potential of biomarker-driven therapies (30).
Frontiers in Immunology 05
4.1 From drug sensitivity to clinical
decision-making

Tailoring treatment based on biomarkers to predict patients’

sensitivity to drugs is crucial for personalized medicine.

1. PIK3CA gene mutations and loss of PTEN can activate the

PI3K/AKT signaling pathway; the PIK3CA-targeted inhibitor

alpelisib has been used in breast cancer (31).

2. FGFR3 gene mutations can activate the RAS-MAPK signaling

pathway. Erdafitinib is an FDA-approved FGFR inhibitor that has

shown significant efficacy against bladder cancer with FGFR3

mutations or translocations (30).

3. TP53 and RB1 genes can cause cell cycle dysregulation. APR-

246 is an investigational p53 reactivator undergoing trials in

different types of cancer, showing certain promise (32). In tumors
FIGURE 1

The outermost circle and the second circle from the outside inward illustrate the direct impact of each mechanism on the tumor or tumor
microenvironment. The inner circle (the third circle from the outside inward) represents the underlying therapeutic rationale or prognosis associated
with multi-mechanism combination therapies.
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with RB1 mutations, CDK4/6 inhibitors (such as palbociclib) may

indirectly control the cell cycle (33).APR-246 and CDK4/6

inhibitors could provide a synergistic effect by targeting both p53

and cell cycle pathways, as demonstrated in preclinical models and

ongoing trials (34).

4. CTLA-4 and PD-L1 act on immune checkpoints to induce

immunosuppres s ion , sugges t ing sens i t i v i ty to the i r

corresponding inhibitors.

5. High tumor mutational burden (TMB) and microsatellite

instability-high (MSI-H) make tumors more immunogenic,

indicating sensitivity to immune checkpoint inhibitors (ICIs) (35).

6. The application prospects of ERBB2 (HER2) inhibitors,

common in breast cancer treatment strategies, are also receiving

much attention in bladder cancer. New multitargeted ERBB2 family

inhibitors, such as afatinib and dacomitinib, show potential for

treating tumors resistant to traditional HER2-targeted therapies by

irreversibly inhibiting multiple ERBB2 receptors. These inhibitors

may offer an advantage in tumors expressing multiple ERBB2

receptors, such as bladder cancer (36).

However, even with targeted therapy, the issue of resistance

still exists.
4.2 Mechanisms of resistance to single-
target therapy

4.2.1 Bypass Activation of Signaling/Cell
Cycle Pathways

Even when using PIK3CA inhibitors (such as alpelisib) to

inhibit PI3K/AKT, tumor cells may continue to proliferate by

activating other pathways such as MAPK or JAK/STAT (37).

Similarly, using erdafitinib to target FGFR3 mutations, activation

of other pathways may allow tumor cells to continue growing under

FGFR3 inhibition (38). Both TP53 and RB1 can activate

compensatory cell cycle pathways through bypass mechanisms,

and the cell cycle network regulated by RB1 is extremely

complex. This complexity makes it difficult for single CDK4/6

inhibitors to completely stop cell proliferation, which explains

why targeted therapies rarely focus solely on RB1 (39–41).

Additionally, in HER2-positive breast cancer cells, tumor cells

may escape ERBB2 inhibition through bypass signaling pathways

such as PI3K/AKT and MAPK, enhancing the growth and

proliferation of tumor cells. Activation of these bypass pathways

is a major factor in treatment failure (42).

4.2.2 Adaptive Changes in Signaling Pathways
Mutations in downstream molecules may lead to continuous

activation of signaling pathways, thereby reducing the efficacy of

PI3K inhibitors and drugs targeting FGFR3 mutations (43, 44).
4.2.3 Resistance to Immune
Checkpoint Inhibitors

Even when using CTLA-4 and PD-L1 inhibi tors ,

immunosuppressive cells in the tumor microenvironment (such
Frontiers in Immunology 06
as MDSCs and Tregs) can hinder T-cell activity by secreting

immunosuppressive factors like TGF-b and IL-10, allowing

tumors to evade immune attack (45). Studies have also found that

tumor cells may escape the immune system by upregulating other

immune checkpoints such as TIM-3 and LAG-3, increasing drug

resistance (46). Moreover, long-term immunotherapy can lead to T-

cell exhaustion, causing them to gradually lose the ability to attack

cancer cells, resulting in therapeutic resistance (47).

4.2.4 Immunotherapy Resistance in High TMB
and MSI-H Tumors

AlthoughMSI-H tumors with high mutation burdens produce a

great number of neoantigens, studies on colorectal cancer have

demonstrated that tumors may develop antigen presentation defects

due to the loss of b2-microglobulin (B2M), weakening the immune

response (48). In some tumors with high TMB, despite the presence

of high-affinity neoantigens, their low expression levels lead to

ineffective T-cell recognition and response to tumor cells (49).

Similarly, as immune pathway targeting points, high TMB and

MSI-H can also be undermined by the upregulation of other

immune checkpoints like LAG-3 and TIM-3 and by T-cell

exhaustion, as mentioned above.
4.3 Emerging combination therapies

Under the heavy burden of drug resistance, finding effective

treatment methods to overcome resistance has become a

top priority.

4.3.1 Combination of signaling pathway
inhibitors/combination of cell cycle inhibitors

Many studies have found that regardless of inhibiting cell cycle

pathways or signaling pathways, bypass activation remains a very

common and important mechanism of resistance. Therefore,

combined therapeutic strategies targeting this mechanism may

have very broad prospects. This strategy has been proven to be

significant not only in bladder cancer but also in head and neck

squamous cell carcinoma (50) and clear cell ovarian carcinoma (51).

The combined use of PI3K inhibitors and MEK inhibitors can

significantly inhibit the growth of bladder cancer cells, overcome

the resistance of single agents, and exhibit stronger anti-tumor

activity than single drugs (52, 53) (Figure 1).

4.3.2 Immune checkpoint inhibitors combined
with signaling pathway inhibitors

In addition to “blocking” signaling pathways, combining

immune checkpoint inhibitors and signaling pathway inhibitors

seems to be a very promising method through multiple

mechanisms. Mathematical models have shown that combining

FGFR inhibitors with anti-PD-L1 therapy can optimize the

treatment effect of FGFR-mutant bladder cancer (54). Some

studies have also proposed that this scheme has advantages

(55) (Figure 1).
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4.3.3 Reversing T-cell exhaustion—combined
activation of CD40 and TLR4

Studies have shown that by combining CD40 and TLR4

stimulation, it is possible to restore the sensitivity of exhausted T

cells in PD-1 inhibitor-resistant tumors. Specifically, when CD40

and TLR4 are simultaneously activated, the resulting immune

response is not limited to local tumors but also induces systemic

anti-tumor T-cell responses. This “in situ vaccine” therapy

reactivates immune cells within the tumor, allowing effector T

cells to enter the tumor microenvironment and enhance their

specificity in attacking tumors (56) (Figure 1).
5 Discussion

5.1 The intricate genetic molecular
network of bladder cancer

The resistance of bladder cancer—to traditional treatments,

immunotherapy, or targeted therapy—resembles a complex

intertwined network, with overlapping mechanisms yet distinct

differences. So far, we have preliminarily revealed the roles of

genetic variations, tumor microenvironment, and abnormal

signaling pathways in the progression of bladder cancer.

At the genetic level, efforts to discover unidentified key genes

and mutation sites—starting from signaling networks and cell

cycles—will become easier to achieve with the support of

sufficient gene expression databases. Identifying more combined

targets can facilitate the development of innovative treatment plans.

For epigenetic mutations, directly targeting or treating them is

relatively difficult, specifically because:
Fron
1. Epigenetic modifications not only act on cancer cells but also

affect various cell types in the tumor microenvironment

(such as immune cells and stromal cells). Different cell

types may respond differently to epigenetic therapy, leading

to unpredictable treatment effects (57, 58). Moreover,

epigenetic modifications often involve multiple types; they

function like a team, relying on each other and acting

synergistically, making it difficult to produce significant

effects by targeting a single modification (59).

2. Epigenetic modifications exist in both normal and cancer

cells, lacking tumor specificity. Epigenetic drugs may affect

gene expression in normal cells, leading to unforeseen side

effects. For example, DNA methylation inhibitors or

histone deacetylase inhibitors (HDAC inhibitors) may

cause widespread changes in gene expression, affecting

the function of healthy tissues (57, 58).

3. Epigenetic modifications are reversible, which is advantageous to

some extent because normal gene expression can be restored

through intervention (60). However, this reversibility also

allows cancer cells to adjust their modification state through

feedback mechanisms, thereby developing drug resistance (61).
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In summary, discovering the associations between epigenetic

changes and various environmental factors, identifying causes and

high-risk factors to promote avoidance, is a more cost-effective

choice. For instance, by continuously updating large-sample

databases and bioinformatics data with population representation,

advanced clinical prognostic models can be developed to optimize

prevention and early treatment.
5.2 Bladder cancer in the
tumor microenvironment

Regardless of the type of tumor, the microenvironment in

which it resides is always a primary focus of research in its

treatment. The immunosuppressive nature of bladder cancer

exacerbates treatment difficulties, primarily due to the presence of

infiltrating MDSCs and TAMs within its microenvironment. These

cells suppress the anti-tumor activity of T cells, leading to poor

efficacy of immune checkpoint inhibitors. Future treatments can

focus on key components of the TME, such as inhibiting the activity

of CAFs, reducing the immunosuppressive effects of Tregs and M2-

type macrophages, or increasing drug permeability by altering the

structure of the ECM (62, 63).

Moreover, the advancement of CAR-T therapy from

hematological tumors to solid tumors also shows considerable

development prospects. The development of novel CAR-T cells

targeting SIA-CIgG suggests that we can focus on discovering

suitable targets to adapt to more solid tumors in the future (23).

In addition, emerging combination therapies that reverse T-cell

exhaustion suggest that the tumor microenvironment not only

promotes tumors but, under proper guidance and tool utilization,

can also be transformed into a “sharp blade” in our hands to combat

tumor progression (56).

As the tumor genetic loci, signaling pathways, and immune

mechanisms associated with bladder cancer are gradually being

elucidated, a diverse array of therapeutic approaches has emerged.

Fundamentally, the further advancement of cancer treatment lies in

the integration of diagnostic technologies with therapeutic methods.

For example, among 100 bladder cancer patients, there may exist

100 distinct subtypes of bladder tumors. The more precisely these

patients are classified and the more effectively personalized targeted

therapies are administered(Moreover, classification can be based

not only on genetic phenotypes and signaling pathway

characteristics but also on demographic baseline differences such

as gender and age (64), as well as biological differences including

metabolic activity (65).), the better the prognoses for the patients

will be. This review comprehensively enumerates various targeted

loci, as well as personalized treatment regimens and combination

therapies based on tumor phenotypes, within this framework. We

propose that the future of cancer therapy will ultimately involve

extensive classification databases and corresponding treatment

regimen databases, facilitating a transition from generalized

treatments to personalized therapies.
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31. Juric D, André F, Singer CF, Sohn JH, Campone M, Loibl S, et al. Abstract P4-10-
04: Clinical outcomes of alpelisib in hormone receptor-positive, human epidermal
growth factor receptor-2-negative advanced breast cancer by next-generation
sequencing-detected PIK3CA alteration status and phosphatase and tensin homolog
loss: Biomarker analysis from the SOLAR-1 study. Cancer Res. (2020) 80. doi: 10.1158/
1538-7445.SABCS19-P4-10-04

32. Bykov VJ, Zhang Q, Zhang M, Ceder S, Abrahmsen L, Wiman KG. Targeting of
mutant p53 and the cellular redox balance by APR-246 as a strategy for efficient cancer
therapy. Front Oncol. (2016) 6:21. doi: 10.3389/fonc.2016.00021

33. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat
Rev. (2016) 45:129–38. doi: 10.1016/j.ctrv.2016.03.002

34. El-Deiry WS, Arnoff TE, Carneiro BA, Desouza A, Amin A, Safran H, et al.
Genomic and immunologic profiles of concurrent RB1 and CDKN1A/p21(WAF1)
truncating mutations (RW+) in bladder cancer. J Clin Oncol. (2022) 40:4571.
doi: 10.1200/JCO.2022.40.16_suppl.4571

35. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite
instability status determined by next-generation sequencing and compared with PD-
L1 and tumor mutational burden in 11,348 patients. Cancer Med. (2018) 7:746–56.
doi: 10.1002/cam4.2018.7.issue-3

36. Subramaniam D, He AR, Hwang J, Deeken J, Pishvaian M, Hartley ML, et al.
Irreversible multitargeted ErbB family inhibitors for therapy of lung and breast cancer. Curr
Cancer Drug Targets. (2015) 14:775–93. doi: 10.2174/1568009614666141111104643

37. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, et al. PI3K pathway
activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res.
(2009) 69:4286–93. doi: 10.1158/0008-5472.CAN-08-4765

38. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M,
et al. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR
cascades which alter therapy response. Oncotarget. (2012) 3:954–87. doi: 10.18632/
oncotarget.v3i9

39. Mancini M, Yarden Y. Mutational and network level mechanisms underlying
resistance to anti-cancer kinase inhibitors. Semin Cell Dev Biol. (2016) 50:164–76.
doi: 10.1016/j.semcdb.2015.09.018

40. Condorelli R, Spring L, O’Shaughnessy J, Lacroix L, Bailleux C, Scott V, et al.
Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients
with metastatic breast cancer. Ann Oncol. (2018) 29:640–5. doi: 10.1093/annonc/
mdx784

41. Knudsen ES, Pruitt SC, Hershberger PA, Witkiewicz AK, Goodrich DW. Cell
cycle and beyond: exploiting new RB1 controlled mechanisms for cancer therapy.
Trends Cancer. (2019) 5:308–24. doi: 10.1016/j.trecan.2019.03.005

42. Smith AE, Ferraro E, Safonov A, Morales CB, Lahuerta EJA, Li Q, et al.
HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nat
Commun. (2021) 12:6667. doi: 10.1038/s41467-021-27093-y

43. Ocana A, Vera-Badillo F, Al-Mubarak M, Templeton AJ, Corrales-Sanchez V,
Diez-Gonzalez L, et al. Activation of the PI3K/mTOR/AKT pathway and survival in
solid tumors: systematic review and meta-analysis. PloS One. (2014) 9:e95219.
doi: 10.1371/journal.pone.0095219

44. Candido S, Salemi R, Piccinin S, Falzone L, Libra M. The PIK3CA H1047R
mutation confers resistance to BRAF and MEK inhibitors in A375 melanoma cells
through the cross-activation of MAPK and PI3K-akt pathways. Pharmaceutics. (2022)
14:590. doi: 10.3390/pharmaceutics14030590

45. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune
checkpoint inhibitors. Br J Cancer. (2018) 118:9–16. doi: 10.1038/bjc.2017.434

46. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving
beyond PD-1 and CTLA-4. Mol Cancer. (2019) 18:155. doi: 10.1186/s12943-019-1091-2

47. Franco F, Jaccard A, Romero P, Yu YR, Ho PC. Metabolic and epigenetic
regulation of T-cell exhaustion. Nat Metab. (2020) 2:1001–12. doi: 10.1038/s42255-
020-00280-9

48. Gurjao C, Liu D, Hofree M, AlDubayan SH, Wakiro I, Su MJ, et al. Intrinsic
resistance to immune checkpoint blockade in a mismatch repair-deficient colorectal
cancer. Cancer Immunol Res. (2019) 7:1230–6. doi: 10.1158/2326-6066.CIR-18-0683

49. Westcott PMK, Sacks NJ, Schenkel JM, Ely ZA, Smith O, Hauck H, et al. Low
neoantigen expression and poor T-cell priming underlie early immune escape in
colorectal cancer. Nat Cancer. (2021) 2:1071–85. doi: 10.1038/s43018-021-00247-z

50. Peng X, Liu Y, Zhu S, Peng X, Li H, Jiao W, et al. Co-targeting PI3K/Akt and
MAPK/ERK pathways leads to an enhanced antitumor effect on human
hypopharyngeal squamous cell carcinoma. J Cancer Res Clin Oncol. (2019)
145:2921–36. doi: 10.1007/s00432-019-03047-2

51. Caumanns JJ, van Wijngaarden A, Kol A, Meersma GJ, Jalving M, Bernards R,
et al. Low-dose triple drug combination targeting the PI3K/AKT/mTOR pathway and
the MAPK pathway is an effective approach in ovarian clear cell carcinoma. Cancer
Lett. (2019) 461:102–11. doi: 10.1016/j.canlet.2019.07.004
Frontiers in Immunology 09
52. Noguchi S, Yasui Y, Iwasaki J, Kumazaki M, Yamada N, Naito S, et al.
Replacement treatment with microRNA-143 and -145 induces synergistic inhibition
of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK
signaling pathways. Cancer Lett. (2013) 328:353–61. doi: 10.1016/j.canlet.2012.10.017
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