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Ulcerative colitis (UC) is an autoimmune disease with an incompletely understood

pathogenesis. The Janus kinase (JAK)/signal transducer and activator of

transcription (STAT) signaling pathway plays a key role in immune response and

inflammation. More and more studies demonstrated that JAK/STAT signaling

pathway is associated with the pathogenesis of UC. The JAK/STAT pathway

affects UC in multiple ways by regulating intestinal inflammatory response,

affecting intestinal mucosal barrier, modulating T cell homeostasis, and

regulating macrophages. Encouragingly, natural products are promising

candidates for the treatment of UC. Natural products have the advantage of

being multi-targeted and rich in therapeutic modalities. This review summarized

the research progress of JAK/STAT pathway-mediated UC. Furthermore, the latest

studies on natural products targeting the JAK/STAT pathway for the treatment of

UC were systematically summarized, including active ingredients such as arbutin,

aloe polysaccharide, berberine, matrine, curcumin, Ginsenoside Rh2, and so on.

The aim of this paper is to provide new ideas for drug development to regulate

JAK/STAT signaling for treating UC.
KEYWORDS

Janus kinase (JAK), signal transducer and activator of transcription (STAT), ulcerative
colitis, natural products, traditional herbal medicine
1 Introduction

Ulcerative colitis (UC) is a refractory digestive disease defined by recurring and

remitting mucosal inflammation. Common clinical signs of UC include recurring

stomach pain, diarrhea, and hematochezia. Typical medications used clinically as the

primary treatment option for UC include aminosalicylates, corticosteroids,

immunosuppressants, biological agents, and microecologics (1). Despite the large

number of drugs available for the treatment of UC, its treatment remains complex and

challenging due to a variety of side effects, medication tolerance, and high relapse rates (2).

Therefore, further development of more effective treatments for UC has become urgent.
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The Janus tyrosine protein kinase (JAK)/signal transducer and

activator of transcription (STAT) signaling pathway has been

identified as a classical inflammatory pathway. The JAK/STAT

signaling is involved in biological processes such as cell

proliferation, differentiation, and apoptosis. The JAK/STAT

pathway plays a key role in the immune response and has

become a focus of research in autoimmune and inflammatory

diseases (3). Notably, the JAK/STAT pathway is associated with

damage induced by exaggerated an innate immune system response

stimulated by immune checkpoint inhibitors (4). JAK/STAT

signaling is frequently dysregulated in UC patients, indicating the

importance of JAK/STAT regulation in UC (5, 6). Furthermore, in

the colitis rat model, the severity of intestinal illness was positively

associated to the expression of JAK2 and STAT3 (7). Theoretically,

intervening in the JAK/STAT signaling pathway using safe and

effective drugs may be an effective way to alleviate or treat UC.

Currently, several JAK inhibitors have achieved efficacy in

numerous clinical settings. The non-selective JAK inhibitor

tofacitinib has been approved for moderate and severe UC (8).

Encouragingly, natural products shows potential for the treatment

of UC (9, 10). However, the existing studies are scattered and

unsystematic. To our knowledge, this is the first thorough review

that elaborates on recent advances of active ingredients in treating

UC by modulating the JAK/STAT signaling pathway.

In this review, the current knowledge of the composition,

activation, and regulation of the JAK/STAT pathway was

discussed. Secondly, the role and mechanism of the JAK/STAT

pathway in UC were particularly emphasized. Finally, we also

systematically summarized the application of natural products

targeting JAK/STAT signaling against UC. This review aims to

provide new research ideas for traditional Chinese medicine (TCM)

in the prevention and treatment of UC.
2 JAK/STAT pathway

2.1 Composition and activation of the JAK/
STAT pathway

JAK is a non-receptor tyrosine protein kinase that is activated

by numerous cytokines and initiates downstream target genes via

STAT, which in turn regulates a variety of cellular functions (3).The

JAK/STAT pathway consists of three main components, including

tyrosine kinase-associated receptors, JAKs, and STATs. Four types

of JAKs have been identified, including JAK1, JAK2, JAK3, and

tyrosine kinase 2 (TYK2). Among them, JAK3 is expressed only in

bone marrow and lymphocytes, while other members are widely

found in various tissues and organs in the body (11). The JAK

proteins are made up of FERM (the complex of four point one,

ezrin, radixin, and moesin), Src homology domain (SH2),

pseudokinase, and kinase domains. STAT proteins are

downstream signaling molecules of JAK. STATs consist of seven

members, namely STAT1, STAT2, STAT3, STAT4, STAT5A,

STAT5B, and STAT6, which are widely distributed in various

tissues. STATs proteins mainly contain five structural domains,

including N-terminal conserved sequences, DNA-binding region,
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Src homology domain 3 (SH3) structural region, SH2 structural

region, and C-terminal transcriptional activation sequence. The

SH2 structural area of STATs is identical to the analogous core

sequence in JAKs, which is in charge of recognizing individual

JAKs. Cytokines attach to cell-surface receptors, which dimerize

and stimulate the polymerization and phosphorylation of JAKs.

Activated JAKs can then bind to the SH2 structural domain of

STATs, which are activated by phosphorylation modification and

ultimately enter the nucleus as homodimers or heterodimers, thus

promoting transcription of specific target genes (12). STAT is then

dephosphorylated in the nucleus and returned to the cytoplasm

(12). Among the STAT family, STAT3 has been recognized to play a

central role in signaling from the plasma membrane to the nucleus

(13). STAT3 is activated by phosphorylation of tyrosine (Y705) or

serine (S727) residues in the transactivation domains, creating a

STAT3 dimer that moves into the nucleus, where it promotes the

transcription of target genes. Phosphorylation of STAT3 at the

Y705 site occurs predominantly through members of the JAK

family, whereas phosphorylation at the S727 site is usually carried

out by mitogen-activated protein kinase, cell cycle protein-

dependent kinase 5, and protein kinase C.
2.2 Negative regulation of the JAK/
STAT pathway

The JAK/STAT pathway is primarily regulated negatively by

three types of factors: suppressor of cytokine signaling (SOCS),

protein inhibitor of activated STAT (PIAS), and protein tyrosine

phosphatase (PTP) (14). (Figure 1). The SOCS family is the main

signaling molecule that weakens the JAK/STAT pathway, including

CIS, SOCS1, SOCS2, SOCS3, SOCS4, SOCS5, SOCS6, and SOCS7.

Activated STAT entering the nucleus promotes the transcription of

SOCS, which has a negative regulatory effect on JAK/STAT

signaling by inhibiting STAT receptor binding, inactivating JAK

through N-terminal kinase inhibition, or binding and

ubiquitinating JAK or STAT for proteasomal destruction (15).

PIAS can interact with STAT to prevent STAT dimerization or

prevent STAT dimers from binding to DNA. PTP can

dephosphorylate JAK by interacting with receptors as a

phosphatase. It can also directly dephosphorylate STAT dimers to

block JAK/STAT signaling transmission (16).
2.3 JAK/STAT pathway and
melanocortin system

The melanocortin system is a complex signaling system

composed of multiple hormones, neuropeptides, and receptors,

which exerts a widespread regulatory role in the physiological and

pathological processes in the body. a-, b- and g-melanocyte-

stimulating hormone (MSH) and adrenocorticotropic hormone

are important components of the melanocortin system.

Melanocortin receptors (MCR, MC1R-MC5R) are important

members of the G protein-coupled receptor superfamily. The

latest clinical research data indicate that the expression of MC3R
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and MC5R is significantly increased in inflamed mucosa of

inflammatory bowel disease (IBD) patients compared to normal

mucosa (17). Importantly, the melanocortin system plays a key role

in inflammation and immune regulation (18, 19). The melanocortin

system is involved in the development of IBD through multiple

pathways (20). Melanocortin peptides, especially a-MSH, have

potent anti-inflammatory and immunomodulatory activities (21).

It has been suggested that a-MSH may indirectly affect the activity

of the JAK/STAT signaling pathway by regulating cytokine

production (22, 23). Melanocortin attenuates myocardial

ischemia/reperfusion injury by activating JAK/STAT signaling

(24). Seemingly paradoxically, a-MSH was shown to activate the

JAK2/STAT1 pathway by binding its MC5R receptor (25). The

regulatory mechanism of melanocortin system on the JAK/STAT

pathway remains to be further investigated in depth.
2.4 Cross-talk between the JAK/STAT
pathway and other signaling networks

Diverse components of the JAK/STAT pathway, such as JAK,

STAT, receptors, and gene transcription factors, are embedded in a

dynamic cross-talk with other signaling networks. For example, the

cross-talk between nuclear factor-kappa-B (NF-kB) and STAT3 has
been observed in numerous inflammatory disorders and cancers.

First, IL-6, a gene production regulated by NF-kB pathway, serves

as a critical STAT3 activator (26). Second, STAT3-mediated
Frontiers in Immunology 03
acetylation of NF-kB p65 enhances its transcriptional activity in

the nucleus and promotes the expression of pro-inflammatory

factors such as IL-6 and TNF-a (27). Finally, STAT3 stimulates

the expression of p52 and CD30, which induces sustained activation

of non-canonical NF-kB signaling (28). Furthermore, dimerization

of IL-6-type cytokine receptors not only activates the JAK/STAT

signaling pathway, but also induces the mitogen-activated protein

kinase (MAPK) cascade by recruiting SH2-domain-containing

tyrosine phosphatase (SHP2) to tyrosine-phosphorylated gp130

and phosphorylating it in a JAK1-dependent manner. The

phosphorylated SHP2 combines with the growth factor receptor-

bound protein/Son of Sevenless (Grb2-SOS) complex, resulting in

the activation of the Ras-Raf-MAPK pathway (29). Autophagy in

epithelial cells is usually considered to exert a protective effect in UC

(30). On the one hand, it was found that the activation of JAK2/

STAT3 pathway directly suppressed the transcription of autophagy

regulator Beclin-1, contributing to the inhibition of autophagy and

the initiation of intestinal cell death (31). On the other hand,

autophagy promotes IFN-g-induced Jak2/STAT1 activation by

inhibiting the expression of reactive oxygen species and SHP2 (32).

Other inflammatory pathways such as the NF-kB pathway also

play important roles in inflammation, but the NF-kB pathway is

widely involved in a variety of physiopathologic processes with

relatively limited specificity. In contrast, the JAK/STAT pathway is

more direct and critical in cytokine-mediated inflammatory

signaling. Thus, targeting the JAK/STAT pathway enables more

precise intervention in the inflammatory process of UC. Besides, the
FIGURE 1

Schematic diagram of the JAK/STAT signaling pathway.
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JAK/STAT pathway involves diverse cytokines and immune cells.

Compared to this, the regulatory scope of NF-kB is relatively

limited. Natural products may target the JAK/STAT pathway to

comprehensively regulate the inflammatory response through

multi-target effects. Importantly, JAK inhibitors (e.g., tofacitinib)

have shown significant efficacy in the treatment of UC, further

validating the feasibility of the JAK/STAT pathway as a therapeutic

target (33). In addition, some inflammatory pathways have complex

regulatory mechanisms, making intervention difficult. For example,

there are multiple upstream and downstream kinases in the MAPK

pathway, with complex interactions between members.

Comprehensive intervention may induce more adverse effects.

The JAK/STAT pathway is comparatively clear and its

intervention by natural products has been more intensively

studied. Consequently, JAK/STAT a privileged target for natural

products in UC.
3 Role of JAK/STAT pathway in the
pathogenesis of UC

3.1 Influence on inflammatory response

The JAK2/STAT3 axis is a major pathway for transcription

factors associated with mediating proinflammatory cytokine in

intestinal mucosal inflammation. Inflammatory factors such as

interferon-g (IFN-g) and interleukin (IL) have been found to

promote the activation of JAK/STAT pathway, which in turn
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exerts immunomodulatory functions (34, 35). In recent years,

increasing evidence suggested that aberrant activation of the

JAK/STAT signaling pathway is related to the pathogenesis of

UC. The expression of four JAK genes was upregulated in the

intestinal mucosal epithelium of patients with active UC (36).

Polymorphisms in JAK2 and STAT3 genes correlate with

the severity of UC patients (37). Most cytokines mediate

inflammatory responses by activating JAK/STAT pathway in UC

(summarized in Figure 2). Previous studies have revealed that IL-6

is involved in the pathogenesis of UC (38). IL-6 binding to its

receptor activates JAK1/2 and TYK2 and contributes to the

phosphorylation and transcriptional activation of STAT3, which

ultimately regulates T cell differentiation and inflammatory

response (35, 39). Moreover, IL-12 and IL-23 activate STAT3 and

STAT4 through JAK2 and TYK2, respectively (40, 41).
3.2 Impact on intestinal epithelial cells

Intestinal mucosal structures are maintained by a balance

between apoptosis and proliferation of intestinal epithelial cells

(IECs). However, IECs in UC patients exhibit a higher rate of

apoptosis (42). Abnormal apoptosis leads to the loss of intestinal

epithelial structures, disrupting the intestinal mucosal barrier and

further activating excessive immune responses, eventually leading

to uncontrollable inflammatory responses and mucosal damage.

The JAK pathway is known to play an influential role in the

regulation of cell proliferation and apoptosis (43). Studies showed
FIGURE 2

Potential role of JAK/STAT signaling pathway in the pathogenesis of UC.
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that the activation of STAT1 or STAT3 promotes apoptosis in IECs

(44, 45). miR-124-3p can directly target the STAT3 3’-UTR to

modulate STAT3 expression (46). A recent study indicated that

the overexpression of miR-124-3p attenuates apoptosis and

reactive oxygen species production by targeting STAT3 in

lipopolysaccharide (LPS)-induced colonocytes (47).
3.3 Modulation of intestinal macrophages

Under homeostatic conditions, circulating lymphocyte antigen

6 complex (Ly6C) monocytes in mice and CD14 monocytes in

humans are constantly attracted to the intestinal tract and

differentiate into mature F4/80 macrophages with high levels of

CX3C chemokine receptor 1 (CX3CR1hi). CX3CR1 macrophages

directly activate neighboring T cells to amplify the inflammatory

response (48). A recent study found that gut-resident CX3CR1hi

macrophages trigger tertiary lymphoid structures and IgA response

in situ (49). Furthermore, intestinal mucosal CXCR4+ IgG plasma

cells drive the activation of CD4 macrophage and exacerbate UC

(50). Compared to the lamina propria of the normal mucosa, the

number of macrophages is greatly increased and activated in the

localized colonic tissues of individuals with active UC, indicating

that intestinal macrophages are implicated in the occurrence and

progression of UC (51). Particularly, different expression of Tim-4

and CD4 can divide intestinal macrophages into three subsets,

including locally maintained macrophages (Tim-4+CD4+),

circulating monocyte-renewing macrophages (Tim-4-CD4+), and

macrophages with the high monocyte-replenishment rate (Tim-4-

CD4-) (52). Furthermore, macrophages from colonic lamina

propria cells can be divided into subpopulations based on the

expression of F4/80 and CD11b. F4/80hi macrophages are

considered to be intestinal resident macrophages, whereas

CD11bhi macrophages are regarded as infiltrative macrophages

supplemented by circulating monocytes (53, 54). Interestingly,

JAK/STAT signaling has an important regulatory effect on

macrophage (55–58). It was found that inhibition of the JAK2/

STAT3 pathway resulted in a significant reduction in apoptosis,

collagen deposition, and immunoreactivity of intestinal

macrophages (59). Notably, the levels of IFN-g are markedly

elevated in the mucosa of IBD patients. This cytokine promotes

the pro-inflammatory characteristics of CD14hi macrophages in

humans (60). Consistently, the complete deletion of IFNgR1 or its

downstream transcription factor STAT1 suppresses the formation

of immature Ly6C MHCII macrophages (61).

Macrophages are highly plastic in different environments,

exhibiting different phenotypes and functions depending on

microenvironmental stimuli and signals (62). Macrophages are

divided into classically activated M1-type macrophages with

proinflammatory effects and alternatively activated M2-type

macrophages with anti-inflammatory effects (63, 64), both of

which are involved in UC pathology (65). Recently, a growing

amount of studies indicated that STAT1 plays a critical role in the

modulation of M1 macrophage polarization (66–68). It was

reported that miR-19a-3p inhibited M1 macrophage polarization

as an upstream regulator of STAT1 (69). Moreover, SOCS3-
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deficient macrophages showed increased STAT3 expression and

M1 polarization (70). Interestingly, the JAK1/STAT6 pathway is an

important pathway in the induction of M2macrophage polarization

(71). IL-4 binds to its receptor to activate JAK1, which recruits

STAT6 phosphorylation and promotes the expression of M2

macrophage markers (72).

Notably, most of the current studies have been conducted

mainly using in vitro bone marrow-derived macrophages

(BMDMs). When cultured in vitro, BMDMs rely on specific

cytokines to induce differentiation. However, the induction

process is significantly different from the complex intestinal

microenvironment in vivo. Moreover, BMDMs differ from

intestinal macrophages in their degree of differentiation and

maturation, leading to their distinct performance in the

expression and activity of some key functional proteins. Apart

from participating in immune defense, intestinal macrophages

also play a crucial role in maintaining intestinal homeostasis and

regulating intestinal microbiota balance. On the other hand,

BMDMs lack gut-related signaling stimulation in the in vitro

environment to fully exhibit these complex functions of

intestinal macrophages.
3.4 Regulation of T cell balance

T cells are another important type of immune cells involved in

adaptive immunity. Studies demonstrated that the JAK/STAT

signaling pathway is critical in modulating T cell differentiation

(35, 73, 74). A recent study showed a significant increase in the

number of CD4 T cells in UC patients (75). Naive CD4 T cells are

induced to differentiate into different types of T cells in different

cytokine microenvironments, including T helper cell 1 (Th1), Th2,

Th17, and regulatory T cells (Tregs). Abnormally activated CD4 T

cells differentiate into subpopulations of Th1 and/or Th17 cells that

subsequently infiltrate the colon to mediate autoimmune responses

in UC (76). Cytokines such as Th1-induced IL-2 and IFN-g, and
Th17-induced IL-17 and IL-21 promote inflammatory responses

and exacerbate colitis (77). In contrast, Tregs control effector T cell

immunosuppression through intercellular contacts or secretion of

anti-inflammatory cytokines. Th17/Treg balance facilitates the

maintenance of intestinal immune homeostasis, an imbalance of

which is the source of immune dysfunction in intestinal mucosa

(78). Increasing data suggested that proinflammatory cytokines

that stimulate the JAK/STAT signaling pathway govern

the differentiation of naive Th1 and Th17 cell subsets and

aggravate the development of UC (35, 73). STAT5 and forkhead

box P3 (Foxp3) are key transcription factors for Tregs, whereas

retinoic acid-related orphan receptor gt (RORgt) and STAT3 are key
transcription factors for Th17 cells (79, 80). The overactivation of

STAT3 promotes the Th17-like transformation of Treg and

exacerbates immune responses (81). IL-12 or IFN-g binds to their

receptors to activate STAT1, STAT4, and the T-box transcription

factor, driving the differentiation and function of Th1 cells.

Similarly, IL-6 binds to its receptor and drives Th17

differentiation by activating RORgt and STAT3 (82, 83).

Interestingly, TAK-242, a specific inhibitor of Toll-like receptor-4
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(TLR4), was shown to alleviate UC by regulating macrophage

polarization and Th homeostasis through the TLR4/JAK2/STAT3

signaling pathway (84).
4 Natural products involved in the
regulation of JAK/STAT signaling
in UC

4.1 Glycosides

Arbutin (molecular formula: C12H16O7, molecular weight:

272.25) is a glycoside compound mainly extracted from the leaves

of arbutus. The chemical structure of arbutin is shown in Figure 3.

Arbutin is a hydroquinone glucoside, with two different

configurations: a and b arbutin. Compared to a-arbutin, b-arbutin
is more frequently found in nature and typically occurs in higher

concentrations in plants. b-arbutin has been widely researched for its

whitening, anti-inflammatory, antimicrobial, antioxidant, and

anticancer properties (85). Arbutin has been reported to

significantly down-regulate the levels of inflammatory cytokines

(IL-1b, IL-6, and TNF-a), iNOS, and cyclooxygenase-2 (COX-2) in
Frontiers in Immunology 06
colitis mice (86). In addition, arbutin remarkably inhibited the

phosphorylation of JAK2 and STAT3 and suppressed IECs

apoptosis, thereby improving barrier function (Table 1). In vivo

experiment demonstrated that p-JAK2 expression was significantly

inhibited by arbutin and AG490, a JAK2 inhibitor (86). No additional

therapeutic efficacy was observed with the combination of arbutin

and AG490. In vitro experiment showed that the inhibitory effect of

arbutin on p-STAT3 and inflammatory factors (TNF-a and IL-6) was

significantly reversed by AG490, further suggesting that arbutin may

be a potential JAK2 inhibitor. These results indicated that the effect of

arbutin on JAK was primary rather than secondary to broader anti-

inflammatory effects. Interestingly, a recent study found that arbutin

also inhibited the formation of neutrophil extracellular traps and

increased the diversity and abundance of gut microbiota (87).
4.2 Polysaccharides

Chrysanthemum morifolium Ramat (Juhua), as a medicinal and

edible homeopathic plant with strong heat-removing and

detoxifying abilities, has long been widely used for the treatment

of various diseases, including influenza, colitis, stomatitis,
FIGURE 3

Chemical structures of natural products. (A) Arbutin. (B) Berberine. (C) Matrine. (D) Hesperetin. (E) Curcumin. (F) Resveratrol. (G) Limonin.
(H) Ginsenoside Rh2. (I) 2′-Hydroxycinnamaldehyde. (J) Daphnetin. (K) ZT01.
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TABLE 1 Summary of natural compounds involved in the regulation of JAK/STAT signaling in UC.

Phytochemicals Type Experimental model Mechanisms References

Arbutin Glycoside DSS-induced UC mice, LPS-
stimulated IEC-6 and
RAW264.7 cells

↓TNF-a, IL-1b, and IL-6,
↓iNOS and COX2,
↑Bcl2, ↓MLCK,
↓p-JAK2, p-STAT3, and SOCS3

(86)

Chrysanthemum polysaccharide Polysaccharide TNBS-induced colitis rats ↓TNF-a, IFN-g, IL-6, and IL-1b,
↓MDA and MPO, ↑SOD,
↓p-p65, TLR4, p-STAT3, and p-JAK2

(94)

Tetrastigma
hemsleyanum polysaccharide

Polysaccharide DSS-induced UC mice,
Caco-2 cells induced by LPS in
combination with IL-6

↑Claudin-1,
↓IL-6, TNF-a, MCP-1, and IFN-g, ↓IL-17A, ↑Foxp3,
↓p-JAK2, JAK2, p-STAT3, and STAT3, ↑SOCS1

(97)

Aloe polysaccharide Polysaccharide TNBS-induced colitis rats,
HT-29 cells stimulated by TNF-a
and LPS

↓IL-6,
↓p-JAK2, JAK2, p-STAT3, and STAT3

(7)

Berberine Alkaloid DSS-induced UC mice ↓NLRP3, ASC, and cleaved caspase-1,
↓IL-1b, IL-6, and IL-18,
↑ZO-1, E-cadherin, occludin, claudin-1, and MUC2,
↓OSM and OSMR,
↓p-JAK1, p-JAK2, p-STAT1, and p-STAT3

(112)

Matrine Alkaloid DSS-induced NCM460 cells ↓TNF-a, IL-1b, IL-2, and IL-6,
↓MPO and NO,
↓Bax and cleaved caspase-3, ↑Bcl-2,
↓p-JAK2/JAK2 and p-STAT3/STAT3

(116)

Hesperetin Flavonoid TNBS-induced colitis rats ↑GSH and SOD, ↓NO content,
↓IL-6, NF-kB, RAGE, and TNF-a,
↓p-JAK2 and p-STAT3, ↑SOCS3

(117)

Curcumin Polyphenol

DSS-induced UC mice

↓IL-7, IL-15, and IL-21,
↓JAK1, STAT5, and p-STAT5, ↑PIAS1

(122)

↓p-STAT3, ↓DNA-binding activity of STAT3
dimers,
↓MPO, IL-1b, and TNF-a

(123)

TNBS-induced colitis mice ↓p-JAK2, p-STAT3, and p-STAT6,
↑SOCS1, SOCS3, and PIAS3,
↓Activation of dendritic cells

(119)

Resveratrol Polyphenol DSS-induced UC mice,
HCT116 cells

↓IL-6, IL-1b, and TNF-a, ↑ IL-10,
↓O-GlcNAcylation, ↓p-JAK2 and p-STAT3,
↓NOS2 and COX2

(133)

Ginsenoside Rh2 Terpenoid DSS-induced UC mice, IL-6-
stimulated NCM460 cells

↓TNF-a, IL-6 and IL-1b, ↓p-STAT3, ↓miR-
214, ↑PTEN

(138)

Limonin Terpenoid DSS-induced UC mice, IL-6-
stimulated NCM460 cells

↓IL-6 and TNF-a, ↑IL-10,
p-STAT3, ↓miR-214,
↑PTEN and PDLIM2

(140)

2′-Hydroxycinnamaldehyde Other types DSS-induced UC mice,
LPS-treated FHC cells

↓TNF-a, IL-6 and IL-1b, ↑IL-10,
↑ZO-1, occludin, Bcl-2, E-cadherin, and Claudin-3,
↓Bax,
↓p-STAT3 and the translocation of STAT3 from
cytoplasm to nucleus

(145)

Daphnetin Other types DSS-induced mice, LPS-challenged
Caco-2 cells

↓TNF-a, IFN-g, IL-6, and IL-1b,
↑ZO-1, occludin, and BCL-2, ↓Bax and cleaved
caspase 3,
↓MDA and SOD,
↓JAK2 and STAT3

(152)

ZT01 Other types DSS-induced UC mice,
BMDMs stimulated by LPS and
IFN-g

↑ZO-1 and E-candherin,
↓p-JAK1, p-JAK2, p-STAT1, and p-STAT3,
↓the differentiation of Th1 and Th17 cell,
↓the proinflammatory macrophage
phenotype polarization

(154)
F
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cardiovascular diseases, and various chronic diseases (88).

Polysaccharide is one of the key active components in

Chrysanthemum morifolium Ramat. It exhibits anti-inflammatory,

antioxidant, immunomodulatory, anti-cancer, hepatoprotective,

and gastrointestinal function regulatory effects (89, 90). The

monosaccharides of Chrysanthemum polysaccharides (CP) mainly

include galactose, glucose, arabinose, and mannose (89).

Several studies have reported that the biological activity of CP is

related to their chemical propertiesm, molecular weights, and

monosaccharide composition (91, 92). The high antioxidant

activity of snow CP is partly attributed to the low molecular

weight and high content of unmethylated galacturonic acid (93).

In rats with 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced

colitis, CP reduced the expression of proinflammatory cytokines

and blocked the phosphorylation of STAT3 and JAK2, resulting in

significant relief of colitis (94). Furthermore, CP influenced

biomarkers and metabolic pathways in plasma and urine.

Although this study found that CP decreased the expression of

IL-6/JAK2/STAT3 pathway-related proteins and mRNAs, it was not

clear whether the effect of CP on JAK/STAT was primary or

secondary to broader anti-inflammatory actions. For a deeper

understanding of its mechanism of action, further experiments

need to be designed to distinguish the primary and secondary

effects. For example, after treatment with specific pathway

inhibitors or activators, the changes in the effects of CP on the

JAK/STAT pathway and inflammatory response should

be observed.

Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing) is a

traditional herb native to China. Its whole plant is medicinally

used and it is of great concern for its remarkable medicinal value.

In particular, it shows strong potential in anti-inflammatory,

antibacterial, and antiviral properties (95). Tetrastigma

hemsleyanum Diels et Gilg is rich in active substances such as

flavonoids, phenolic acids and polysaccharides. Tetrastigma

hemsleyanum polysaccharide (THP) consists of various

monosaccharides, mainly including galactose, glucuronic acid,

mannose, glucose, rhamnose, and arabinose (96). THP has

shown great potential in the treatment of UC (97, 98). THP

reduces the expression of the proinflammatory cytokines IL-6,

TNF-a, and IL-17 and promotes the regulatory factors forkhead

box protein P3 and Tregs (97). Importantly, it exerts anti-

inflammatory effects by promoting SOCS1 expression and

inhibiting JAK2/STAT3 signaling (97). Additionally, THP

elevates levels of tight junction proteins in colonic tissues and

decreases colonic permeability, improving the intestinal mucosal

barrier. Interestingly, it can also modulate the gut microbiota

structure and corresponding short-chain fatty acid metabolites in

mice with IBD (98). Notably, although most studies used p-JAK2

and p-STAT3 as efficacy biomarkers, they did not distinguish

whether natural products inhibited them directly or regulated

them indirectly through upstream cytokines or microbiota-

derived metabolites. The specific mechanism by which natural

products regulate JAK/STAT signaling is currently not precise

enough. Follow-up studies could construct STAT knockdown

models by CRISPR/Cas9 technology to verify the specific action

targets of active ingredients.
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Moreover, relevant upstream regulators can be knocked down

or overexpressed to further explore the regulation mechanism of

STAT3 phosphorylation by THP.

Aloe polysaccharide is an active macromolecule extracted from

Aloe vera. It shows excellent protection against ulcers and

significantly prevents ulcer formation (99). In vivo and in vitro

experiments have demonstrated that aloe polysaccharide effectively

ameliorated apoptosis in colon tissue by inhibiting the JAK2/

STAT3 signaling pathway (7). Meanwhile, aloe polysaccharide

contributed to the reduction of IL-6 levels and restoration of

colon length in TNBS-induced UC rats. Similarly, this study only

used methods such as immunohistochemistry, Western blot, and

RT-PCR to detect the expression level of the JAK/STAT pathway,

with insufficient depth and specificity of the mechanism of action.
4.3 Alkaloids

Berberine (molecular formula: C20H18NO4
+, molecular weight:

336.4), a natural pentacyclic isoquinoline alkaloid, is the most

representative and abundant constituent of the TCM Coptis

chinensis Franch (Huanglian). Berberine contains two benzene

rings, an isoquinoline ring, and functional groups such as

methoxy groups, which endow it with unique biological activities.

In addition to its anti-inflammatory and antioxidant activities,

berberine exhibits a variety of pharmacological effects, including

anti-apoptotic, antitumor, hepatoprotective, and cardiovascular

protective effects (100–102). Interestingly, it is widely known for

its anti-inflammatory effects in inflammatory gastrointestinal

diseases (103). In a double-blind phase I trial, berberine was

demonstrated to improve colonic mucosal histologic scores in

Chinese patients with UC (104). Furthermore, the Xijing Hospital

of Digestive Diseases is currently undertaking a phase IV clinical

trial to determine the impact of berberine on the annual recurrence

rate of UC in remission (NCT02962245, ClinicalTrials.gov).

Interestingly, a recent ex vivo study explored the synergistic

effects of berberine, Hericium erinaceus, and quercetin, providing

a more effective therapeutic option for UC patients. Their

combination reduced the expression of proinflammatory

cytokines and promoted the expression of the anti-inflammatory

cytokine IL-10 in IBD tissues (105). Berberine has been discovered

to relieve experimental colitis by altering the inflammatory response

of immunological and epithelial cells, improving intestinal barrier

function, and modulating intestinal microbiota (106–109).

Oncostatin M (OSM) belongs to the IL-6 cytokine family and is

primarily produced by activated macrophages, neutrophils,

dendritic cells, and T cells (110). Previous studies have confirmed

that recombinant OSM induces the activation of the JAK-STAT

pathway via a heterodimeric receptor consisting of OSMR and

gp130 (111). Importantly, berberine has been found to alleviate

intestinal fibrosis by inhibiting the OSM-mediated JAK-STAT

pathway and interfering with the interaction between intestinal

stromal cells and immune cells (112). Furthermore, berberine was

shown to inhibit M1 macrophage polarization and induce M2

macrophage polarization, by activating the IL-4-STAT6 signaling

pathway, thereby exerting a therapeutic effect on UC (113).
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Radix Sophorae Flavescentis is the dried root of Sophora

flavescens Aiton (Kushen), belonging to the Leguminosae family. It

is a promising traditional herb with the effect of clearing heat and

dampness and has long been used to treat UC. Alkaloids and

flavonoids are the main components of Sophora flavescens Aiton.

Matrine is isolated from the roots of Sophora flavescens Aiton,

Sophora tonkinensis, and Sophora alopecuroides (Kudouzi). Matrine

is a tetracyclic quinolizidine alkaloid with the chemical formula

C15H24N2O and a molecular weight of 248.36. Matrine exhibits a

wide range of pharmacological activities, including analgesic,

anticancer, anti-inflammatory, antiviral, antifibrotic, and

immunomodulatory effects (114). Because of its anti-inflammatory

and immunomodulatory properties, matrine has great potential in

the treatment of UC (115). Apart from this, matrine improved the

composition and function of intestinal microbiota in mice with

dextran sulfate sodium (DSS)-induced colitis. It decreased the

proportions of Firmicutes, Bacteroidetes, and Proteobacteria,

increasing the relative abundance of Lactobacillus and Akkermansia

(115). A recent study confirmed that matrine inhibited

proinflammatory factors, MPO activity, NO production, and

apoptosis, thus effectively alleviating UC (116). Furthermore,

matrine was found to suppress the phosphorylation levels of JAK2

and STAT3, but did not affect the phosphorylation of STAT5.
4.4 Flavonoids

Hesperetin (molecular formula: C16H14O6, molecular weight:

302.28) is a naturally occurring flavonoid compound in citrus fruits

and is widely found in various traditional herbal medicines such as

grapefruit peel, orange peel, and tangerine peel. In TNBS-induced

UC rats, hesperetin significantly enhanced glutathione levels and

superoxide dismutase activity to reduce colonic oxidative stress,

while significantly reducing NO levels (117). Hesperetin also

mitigated the inflammatory injury by significantly decreasing IL-6

as well as inhibiting the expression of NF-kB, receptor for advanced
glycation end products, and TNF-a. In addition, hesperetin

significantly inhibited the phosphorylation of JAK2 and STAT3

and promoted the expression aof SOCS3, thereby alleviating colitis.

As mentioned above, the present study did not clarify whether

natural products directly inhibit JAK2/STAT3 phosphorylation

through small-molecule binding or indirectly modulate this

pathway through upstream cytokines. Natural products may affect

JAK2 and STAT3 phosphorylation through different mechanisms

in different studies. If all do not distinguish between direct and

indirect regulation and only use them as biomarkers of efficacy, it

will cause incomparability between the results of studies.
4.5 Polyphenols

Curcumin (molecular formula: C21H20O6, molecular weight:

368.4) is an active polyphenol obtained from the dry rhizomes of

herbs such as turmeric and tulip. It is also considered one of the

potential drugs for the treatment of UC (118). Curcumin could

alleviate UC by inhibiting dendritic cell-mediated expression of
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proinflammatory factors (119), modulating Th17/Treg homeostasis

(120), and regulating M1/M2 macrophage polarization (121).

Interestingly, the regulation of memory T cell homeostasis

by curcumin is associated with the inhibition of JAK1/STAT5

signaling activity (122). In addition, curcumin not only

suppressed STAT3 phosphorylation and STAT3 dimer

binding to DNA, but also significantly inhibited the expression of

proinflammatory cytokines, consequently ameliorating UC

(123). Another study revealed that curcumin inhibited the

phosphorylation of JAK2, STAT3, and STAT6 and upregulated

the expression of downstream proteins (SOCS1, SOCS3, and

PIAS3) in TNBS-induced UC rats (119). Moreover, curcumin

inhibits dendritic cell activation and restores immune

homeostasis by modulating the JAK/STAT/SOCS signaling

pathway, effectively treating colitis (119). A randomized, double-

blind, placebo-controlled trial demonstrated that the herbal

combination of curcumin-QingDai significantly reduced the

Disease Activity Index (DAI) score in patients with active UC

and effectively induced their response and remission

(CLINICALTRIALS: gov ID: NCT03720002).

Resveratrol (3,5,4’‐trihydroxy‐trans‐stilbene) is a polyphenolic

stilbenoid isolated from Veratrum grandiflorum and abundantly

found in grapes, mulberries, peanuts, rhubarb and several other

plants. It is a well-known antioxidant (124). Due to its planar

stilbene motif, resveratrol exhibits relatively high hydrophobicity.

As a result, it demonstrates a comparatively strong affinity for

hydrophobic pockets and binding sites within proteins.

Furthermore, the polar hydroxyl (OH) groups serve as both

hydrogen-bond donors and acceptors. These groups are capable

of establishing numerous interactions with amino acid side chains

and backbone amide groups (125). Clinical and preclinical studies

have demonstrated that resveratrol exerts protective effects in

numerous disease models, including digestive diseases,

cardiovascular diseases, diabetes, tumors, and neurodegenerative

diseases, which may be related to its multi-targeting properties

(126–129). Notably, resveratrol has been demonstrated to restore

the homogeneity and diversity of gut microbiota to some extent in

colitis mice (130). Moreover, dietary resveratrol attenuated the

inflammatory status and down-regulated the expression of

proinflammatory cytokines such as IL-2, IFN-g, IL-1b, IL-6, and
TNF-a in colitis mouse model (131). Among the known resveratrol

targets, JAK-STAT signaling has received widespread attention

(132). It was shown that increased O-linked N-acetylglucosamine

modification (O-GlcNAcylation) of STAT3 upregulated the

expression of proinflammatory cytokines such as IL-6, IL-1b, and
TNF-a, while downregulating the level of the anti-inflammatory

cytokine IL-10 and aggravating colitis in mice (133). In addition, the

levels of COX-2 and iNOS were elevated. Encouragingly, resveratrol

inhibited the O-GlcNAcylation of STAT3, thereby inhibiting its

phosphorylation as well as the activity of JAK2/STAT3 pathway,

and consequently alleviating IBD (133). Moreover, resveratrol

induced Tregs in mice with colitis, which was dependent on the

downregulation of miR-31 (134). Meanwhile, it suppressed

inflammatory T cells (Th1 and Th17). A randomized, double-

blind, placebo-controlled study showed that supplementation with

500 mg resveratrol for 6 weeks improved the quality of life and
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reduced colonic inflammation in UC patients (135). Unfortunately,

resveratrol’s low bioavailability and poor water solubility restrict its

therapeutic use. The stability and oral bioavailability of resveratrol

should be improved by future research using different delivery

methods and changes (136).
4.6 Terpenoids

Ginseng, a traditional herbal medicine, is the dried root of

Panax ginseng C. A. Meyer., a plant of the family Wujiaceae. As a

valuable medicinal herb, it has been used in China for more than

2,000 years. Ginsenoside Rh2 (molecular formula: C36H62O8,

molecular weight: 622.9) is one of the active ingredients extracted

from ginseng root. It possesses various pharmacological activities

and has great potential in the treatment of UC (137). In vivo and in

vitro experiments revealed that ginsenoside Rh2 effectively inhibited

STAT3 phosphorylation and miR-214 expression (138).

Ginsenoside Rh2 was found to indirectly suppress STAT3

phosphorylation by inhibiting the upstream cytokine IL-6.

Limonin (molecular formula: C26H30O8, molecular weight:

470.5) is a triterpenoid derived from citrus and possesses

favorable anti-inflammatory and antiapoptotic effects. Limonin

reduced the generation of proinflammatory cytokines TNF-a, IL-
1b, and IL-6 as well as the expression of inflammatory proteins

COX-2 and iNOS in the colonic tissues of mice with DSS-induced

colitis (139). Moreover, limonin was found to ameliorate DSS-

induced chronic colitis in mice by inhibiting the endoplasmic

reticulum-stressed PERK-ATF4-CHOP pathway and NF-kB
signaling (139). In addition to this, limonin also improved the

prognosis of UC by downregulating p-STAT3/miR-214 levels (140).
4.7 Other types

2’-Hydroxycinnamaldehyde (HCA) (molecular formula:

C9H8O2, molecular weight: 148.16) is an active component

isolated from the stem bark of Cinnamomum cassia (Rougui)

(141). HCA was proved to have anticancer, anti-inflammatory,

antioxidant, and immunomodulatory effects (141–143).

Interesting, HCA was screened as a natural STAT3 inhibitor

(141, 144). A recent study showed that HCA directly binds to

STAT3 and inhibits its activation (145). The hydroxyl group of

HCA may interact with the protein-binding site of STAT3 via

hydrogen bonding to enhance binding specificity. Thanks to this

property, it inhibits inflammatory cytokine expression, reduces

apoptosis of IECs, and attenuates intestinal mucosal barrier

damage, thus effectively alleviating UC (145).

Daphnetin (molecular formula: C9H6O4, molecular weight:

178.14), a coumarin derivative isolated from the Daphne plant, is

a natural compound with multiple therapeutic potential (146–148).

Daphnetin possesses oxygen-containing heterocycles with a

characteristic benzo-a-pyrone framework (149). The catechol

moiety served as the crucial pharmacophore for the antioxidant

activity of daphnetin (149). Apart from its antioxidant activity,
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anti-inflammatory, analgesic, antibacterial, neuroprotective,

hepatoprotective, nephroprotective, and anticancer activities

(150). A previous study has demonstrated that daphnetin

ameliorates colitis by regulating microbiota composition and

TH17/Treg balance (151). A recent study reported that

Daphnetin attenuated intestinal inflammation, oxidative stress,

and apoptosis in UC, which was associated with the inhibition of

REG3A-dependent JAK2/STAT3 signaling (152).

Triptolide, a natural diterpenetriepoxide which is isolated from

Tripterygium wilfordii Hook F (Leigongteng), has prominent anti-

inflammatory and immunosuppressive properties. ZT01 is a newly

obtained tretinoin derivative with strong anti-inflammatory effects

and low toxicity (153). ZT01 may be an attractive candidate for

future development as an anti-UC drug. Importantly, ZT01

significantly inhibits T cell differentiation into Th1 or Th17 cell

subsets and prevents macrophage polarization to an inflammatory

phenotype by modulating the JAK/STAT signaling pathway (154).
5 Conclusion and perspective

The increasing incidence of UC has placed a heavy burden on

the global health system. The JAK/STAT signaling pathway

mediates the pathogenesis of UC to some extent. There are

limitations to some of the current studies on the JAK/STAT

pathway and UC. The sample sizes of the studies detecting the

activation level of the JAK/STAT pathway in colon biopsies from

UC patients are small. Although it is possible to obtain information

on a specific patient group to some extent, it is difficult to fully

reflect the real situation of the entire UC patient population and is

prone to bias. Moreover, single-center studies may be affected by

factors such as geography and medical level, which makes the

generalizability of the findings questionable. Future studies need

to expand the sample size, use multicenter studies, and deeply

investigate the reasons for the differences in JAK/STAT pathway

activation. In terms of findings, higher levels of JAK and STAT

expression were detected in the inflamed colonic mucosa of UC

patients compared to the uninflamed mucosa. However, the current

study did not further investigate the reasons for this difference,

whether it is genetic differences in individuals, living environment

or other factors. The lack of in-depth analysis would limit a

comprehensive understanding of the pathogenesis of UC.

In recent years, natural products have received extensive attention

from the medical community. They have the advantages of multiple

pathways and multiple targets. It has been demonstrated that herbal

active ingredients alleviate UC through various pathways, such as

targeting the JAK/STAT pathway to reduce intestinal inflammation,

improving the function of IECs, regulating Th17/Treg balance, and

modulating macrophage status. This review systematically summarized

the recent advances in natural products targeting the JAK/STAT

pathway to treat UC, including polysaccharides, alkaloids,

polyphenols, terpenoids, flavonoids, glycosides, and other types of

compounds. Natural products are potential candidates to treat UC

by targeting the JAK/STAT pathway.
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Nevertheless, there are many challenges. Firstly, the current

studies on the targeting of the JAK/STAT pathway by natural

products for the treatment of UC mainly focus on the animal and

cellular experimental level, which cannot be fully equated with the

immunohistopathology of UC patients. At present, there is

insufficient research on the pharmacokinetic properties of many

natural products, such as their absorption, distribution,

metabolism, and excretion in the body. These uncertainties affect

the design of standardized dosages and the formulation of dosing

regimens. Furthermore, natural products such as resveratrol have

poor water solubility and low bioavailability, making it difficult to

make suitable dosage forms for clinical use. There is an urgent need

to improve the stability, solubility, and bioavailability of natural

products to overcome the transformation challenges. Besides, when

herbal active ingredients are combined with other drugs, they may

affect pharmacokinetics and pharmacodynamics through multiple

pathways, but their specific mechanisms and links are difficult to be

clearly defined. These limitations pose a great challenge to

mechanism research and efficacy assessment in the translation

process of TCM. Preclinical and clinical studies are needed to

validate the safety and efficacy of herbal active ingredients for the

treatment of UC. Secondly, crosstalk exists between the JAK/STAT

pathway and other signaling pathways, which means that targeting

only one of JAK or STAT may not be sufficient for significant

therapeutic effects. Exactly how natural products interfere with the

JAK/STAT pathway and whether they interact with other signaling

has not been fully elucidated. Therefore, subsequent scholars still

need to conduct profound research on the mechanism of herbal

active ingredients in the treatment of UC. Finally, the vast majority

of studies have been limited to the effect of natural products on the

JAK/STAT pathway and have not analyzed the in-depth laws

between their chemical structures and pharmacological activities.

The structural features of phytochemicals may influence their

specificity for JAK/STAT through factors such as molecular size,

shape, functional groups, charge distribution, and conformational

flexibility. Although the intrinsic laws have not been fully revealed,

structure-activity relationship studies and molecular docking will

provide important clues for understanding these interactions.
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