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The role of B cell-activating
factor system in autoimmune
diseases: mechanisms,
disease implications, and
therapeutic advances
Liang Li †, Shengxian Shen †, Shuai Shao, Erle Dang,
Gang Wang*‡, Hui Fang*‡ and Hongjiang Qiao*‡

Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
The B cell-activating factor (BAFF) system, comprising two ligands and three

receptors, plays a pivotal role in adaptive and innate immunity, driving

autoimmunity through dysregulated B and T cell survival, differentiation, and

cytokine production. This review synthesizes evidence linking BAFF system

overexpression to multiple autoimmune diseases, including systemic lupus

erythematosus (SLE), Sjögren’s syndrome (SS), bullous pemphigoid (BP),

pemphigus vulgaris (PV), and alopecia areata (AA), where elevated BAFF system

molecule levels correlate with autoantibody titers, disease activity, and post-B

cell depletion relapse. BAFF-targeted therapies have demonstrated efficacy in

reducing disease activity in SLE and SS. Key challenges include interspecies

receptor expression discrepancies and context-dependent signalling cascades.

Emerging strategies, such as sequential therapy with rituximab followed by

belimumab, show promise in treating refractory autoimmune diseases such as

BP and PV by counteracting the post-depletion BAFF surge. Despite progress,

mechanistic gaps in BAFF-mediated crosstalk between innate and adaptive

immunity, as well as interspecies-specific pathogenesis warrant further

investigation using humanized disease models and single-cell transcriptomic

profiling. This review underscores the therapeutic potential of BAFF system

modulation while advocating for disease-specific clinical trials to optimize

precision-therapeutic targeting in autoimmune diseases.
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1 Introduction

The B cell-activating factor (BAFF) system can be synthesized

in various cell types and consists of two ligands, BAFF and A

proliferation-inducing ligand (APRIL), along with three receptors,

BAFF receptor (BAFFR), B cell maturation antigen (BCMA), and

transmembrane activator and calcium modulator and cyclophilin

ligand interactor (TACI) (1). As a key component of the BAFF

system, BAFF was originally discovered as a fundamental survival

cytokine for B cells. BAFF can maintain B cell survival, autoreactive

B cell selection, class switch recombination, and the maintenance of

long-lived plasma cells (PC) (2). Additionally, increasing evidence

has shown that the BAFF system can promote T cell survival,

differentiation, as well as regulate other immune cells (3–8).

Research in both humans and mouse models has identified that

the BAFF system is a vital player in autoimmunity pathogenesis (9,

10). Overexpression of BAFF system molecules has been detected in

patients with various types of autoimmune diseases, including

systemic lupus erythematosus (SLE), Sjögren’s syndrome (SS),

systemic sclerosis (SSc), bullous pemphigoid, pemphigus vulgaris,

and alopecia areata, and may be involved in the pathogenesis of

these diseases (11–20). Therefore, BAFF system molecules are

considered potential therapeutic targets for autoimmune diseases.

Monoclonal antibodies have been developed to target single or dual

BAFF system molecules, and belimumab has been approved for use

in SLE (21). Moreover, several clinical studies on these mAbs are

underway, with positive results for SS and SSc (22–24).

In this review, we describe the key structural and biological

features of the BAFF system as well as its functional implications in

the pathogenesis of autoimmune diseases. We also highlight that

therapies targeting the BAFF system are a promising strategy for

treating different autoimmune diseases and warrant further

investigation.
2 B cell-activating factor system

2.1 Ligands

B cell-activating factor (BAFF) and its structural homologue A

proliferation-inducing ligand (APRIL) are type II transmembrane

proteins belonging to the tumour necrosis factor (TNF) cytokine

superfamily (25, 26). Although they share the same structure, their

functions are quite different. BAFF can be synthesized as a

membrane-bound form (mBAFF) and converted into a secreted

form (sBAFF), which is the main form in circulation (27, 28). BAFF

is mainly expressed by immune cells, such as monocytes,

macrophages, dendritic cells, and neutrophils (29, 30). Moreover,

BAFF can be produced by non-immune cells, including adipocytes,

keratinocytes, and intestinal epithelial cells (31, 32). BAFF

expression is upregulated by interleukin (IL)-10, interferons

(IFNs), toll-like receptor (TLR) agonists, granulocyte colony-

stimulating factor (G-CSF), and by the activation of interferon

regulatory factors (IRFs), such as IRF1 and IRF2. Conversely, IRF4

and IRF8 negatively regulate BAFF expression (33, 34). APRIL can
Frontiers in Immunology 02
also be synthesized by various types of immune cells in both

membrane-bound and secreted form. Similarly, APRIL expression

is regulated by IL-10, IFNs, G-CSF, TLR, and IRFs (9, 35–37).
2.2 Receptors

BAFF receptor (BAFFR), B cell maturation antigen (BCMA),

and transmembrane activator and calcium modulator and

cyclophilin ligand interactor (TACI) are type III membrane

proteins with distinct but complementary effects (38, 39). These

three receptors, like their ligands, can be converted from the

membrane-bound form into the secreted form (40–42). BCMA

and TACI share two common ligands, BAFF and APRIL, whereas

BAFFR has only one ligand, BAFF (43, 44). Moreover, BCMA

shows a lower affinity for BAFF compared with that for APRIL,

whereas TACI has an equal affinity for both ligands (45). In contrast

to the widespread expression of ligands, the expression of these

three receptors is restricted to specific immune cells. Although B

cells can express all three receptors, their expression varies during B

cell maturation stage (37, 46, 47). In contrast to B cells, human T

cells only express BAFFR, whereas mouse T cells express BAFFR

and TACI (47–49).
2.3 B cell-activating factor function in
autoimmunity

B cell-activating factor (BAFF) system molecules modulate a

variety of biological processes, including cell survival,

differentiation, and other effector functions, as demonstrated in

some autoimmune diseases, such as systemic lupus erythematosus

(SLE), Sjögren’s syndrome (SS), and systemic sclerosis (SSc) (50–

52). BAFF receptor (BAFFR) interaction with BAFF activates both

the classical and alternative transcription factor nuclear factor-

kappa B (NF-kB) pathways, whereas B cell maturation antigen

(BCMA) and transmembrane activator and calcium modulator and

cyclophilin ligand interactor (TACI) linked to BAFF only activates

the classical NF-kB pathway (29, 53). Furthermore, BAFF activates

the phosphoinositide-3-kinase (PI3K) dependent signalling cascade

to support cell survival (54) (Figure 1). However, most

immunobiological findings related to molecules of the BAFF

system have been obtained using transgenic mouse models.

2.3.1 Function of BAFF in adaptive immunity
BAFF system molecules play an important role in adaptive

immunity (Figure 2). As discussed in Section 2.2, the differential

expression of the three receptors during B cell maturation stage is

related to their individual functions. BAFFR expression begins in

transitional B cells, preventing premature apoptosis via BAFFR-

dependent pro-survival signals (47, 55–58). BCMA expression is

restricted to long-lived bone marrow plasma cell (PC) and

plasmablasts, where it supports PC formation, maintenance, and

differentiation while preserving antigen presentation (59–63). TACI

is mostly expressed by marginal zone B cells, activated B cells,
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switched memory B cells, and PCs. TACI negatively regulates early

B cell maturation and mediates PC generation, maintenance, and

differentiation, as well as T cell-independent immunoglobulin (Ig)

isotype conversion and release (64–68). Mouse models underscore

BAFF’s essential role in B cell physiology, responsiveness, and

autoimmunity. BAFF transgenic mice (BAFF Tg mice), which

overexpress BAFF, exhibit SLE and SS-like manifestations, such as

increased peripheral mature B cell numbers, immune globulin (Ig)

deposits in the kidney, and enlarged lymphoid organs (69).

Conversely, BAFFR-mutant or BAFF-deficient mice show

significantly reduced peripheral mature B cells and impaired

immune responses (38, 70–72). Compared to BAFF, APRIL

overexpression or APRIL deficiency does not cause remarkable

abnormalities during B cell maturation (73, 74). Additionally,

APRIL-deficient mice show impaired class-switching to IgA and

enhanced IgG responses to T-dependent antigens (33, 75). TACI-

deficient mice exhibit pseudo-autoimmune traits, with increased B

cell numbers, elevated autoantibody-producing cells, and

diminished T cell-independent humoral responses, indicating that

TACI may negatively regulate B cells (65, 76, 77). Finally, the vital

role of BCMA in the survival of long-term bone marrow PCs has

been confirmed in BCMA-deficient mice (59). Despite significant

advances in understanding BAFF’s effects on B cells, many aspects

require further investigation.

The BAFF system also affects T cell activation, proliferation, and

survival by acting as a costimulatory signal together with TCR in

both effector and naïve T cells (4, 78, 79). BAFF-deficient mice

develop reduced quantities of effector T cells, while APRIL-deficient

mice show normal proliferation, differentiation, and T cell function
Frontiers in Immunology 03
(74, 80). BAFF augments T cell stimulation by increasing

costimulatory molecules expression in antigen-presenting cells

and by upregulating the expression of BAFFR and TACI in

murine T cells (3, 81). BAFF, which interacts with BAFFR on T

cells, can promote the activation and proliferation of CD4+ T cells

through the PI3K/Akt pathway (3, 49). However, treatment with

anti-BAFFR antibodies enhances the cytolytic function of human

CD4+ and CD8+ T cells, a discrepancy likely attributable to varying

BAFF concentrations (82). Notably, BAFF may facilitate T-helper

(Th) 1 and Th 17 cell differentiation and suppress regulatory T cell

differentiation (83–86). Moreover, the BAFF system regulates

follicular helper T (Tfh) cells through the noncanonical NF-kB
pathway by mediating the expression of inducible costimulatory

ligand expression on B cells (87). TACI-deficient mice exhibit

increased quantities of Tfh cells in their spleens after T cell-

dependent antigen immunisation, largely owing to the

upregulation of inducible costimulatory ligand on TACI-deficient

B cells (88). However, the effect of the BAFF system on T cells

remains unclear and requires further investigation.

2.3.2 Function of BAFF in innate immune cells
Although evidence is minimal, BAFF also affects other immune

cells. Monocytes, which are a source of BAFF, can also be regulated

by BAFF. Along with augmented release of proinflammatory

cytokines, BAFF strongly promotes monocyte survival and

differentiation into macrophages by activating the NF-kB
pathway (6, 89). It induces human myeloid dendritic cell

maturation, increasing costimulatory molecule expression and

inflammatory cytokine secretion (7). Furthermore, regulation of
FIGURE 1

BAFF signaling pathways. BAFF binding to BAFFR activates both the classical and alternative NF-kB pathways. In contrast, BAFF interaction with
BCMA and TACI only activates the classical NF-kB pathway. Furthermore, BAFF binding to BAFFR also activates the PI3K pathways.
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the BAFF system in megakaryocytic cells and natural killer (NK)

cells has also been reported. However, no BAFF receptors are

expressed on NK cells, suggesting that NK cells are indirectly

regulated by BAFF (8, 90, 91).
2.3.3 Future directions on BAFF
Although BAFF system molecules play a central role in

regulating adaptive immunity, their context-specific mechanisms

remain poorly understood. A major translational challenge arises

from species-specific differences in receptor expression: BAFFR is

found exclusively on human T cells, whereas murine models show

co-expression of BAFFR and TACI in T cells. These discrepancies

complicate the extrapolation of findings from animal studies to

human biology. Additionally, paradoxical observations—such as

anti-BAFFR antibodies enhancing human T cell cytotoxicity while

BAFF simultaneously promotes Th17 polarization—highlight the

complexity of BAFF-mediated signaling pathways. To bridge this

translational gap, B-hBAFF/hBAFFR transgenic mouse models

could provide a critical platform. These models would allow

researchers to simulate human-specific receptor signaling by

selectively blocking interference from TACI in murine T cells.

Such systems would be particularly valuable for studying BAFF-

driven pathologies like SLE -associated kidney damage or SS

salivary gland dysfunction, enabling direct validation of

therapeutic targets in a humanized context. Cutting-edge

technologies like spatial transcriptomics combined with single-cell

ATAC-seq could further clarify the spatiotemporal dynamics of

BAFFR, TACI, and BCMA expression within disease
Frontiers in Immunology 04
microenvironments. For example, mapping these receptors in SLE

renal follicular regions might reveal how they coordinate with Tfh

cell expansion and plasma cell differentiation, offering mechanistic

insights into disease progression. Beyond adaptive immunity, BAFF

also influences innate immunity by modulating myeloid cells and

indirectly regulating NK cells. However, its dual roles in driving

inflammation versus supporting tissue repair remain unclear.

Future studies should prioritize myeloid-specific BAFFR knockout

models to dissect BAFF’s effects on macrophage and dendritic cell

function. Equally important is investigating receptor-independent

BAFF-NK interactions, such as potential signaling through heparan

sulfate proteoglycans or extracellular vesicles, which could uncover

novel immunoregulatory pathways. By addressing these gaps,

researchers can unravel BAFF’s multifaceted roles in immunity

and inflammation, paving the way for targeted therapies in

autoimmune and inflammatory diseases.
3 Pathogenic role of the B cell-
activating factor system in
autoimmune diseases

Overexpression of B cell-activating factor (BAFF) system

molecules has been detected in patients with various types of

autoimmune diseases, such as systemic lupus erythematosus

(SLE), Sjögren’s syndrome (SS), systemic sclerosis (SSc), bullous

pemphigoid (BP), pemphigus vulgaris (PV), and alopecia areata

(AA) (Figure 3). Additionally, elevated circulating BAFF levels
FIGURE 2

Function of BAFF on B cells and T cells. Secreted BAFF can be synthesized by several kinds of cells as shown in the figure. BAFF then promotes B cell
survival, generation and differentiation of plasma cells, supports antigen presentation of PCs. BAFF also affects T cell survival and proliferation. BAFF
may promote the differentiation of Th1 and Th17 cells while suppressing Treg differentiation. Moreover, BAFF regulate Tfh development.
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correlate with autoantibody titers in patients with SLE and SSc.

Furthermore, studies on animal models have highlighted that BAFF

system molecules participate in regulating immune cells, promoting

systemic autoimmunity, and mediating the occurrence and

development of autoimmune diseases. Here, we discuss the

expression and the roles of BAFF system molecules in

autoimmune diseases pathogenesis (Table 1).
3.1 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is an idiopathic, complex

autoimmune disease that involves a wide array of organs and

predominantly affects females (105). Approximately 70% of the

patients experience some degree of skin involvement (106). Elevated

BAFF levels have been detected in the skin, serum, urine, and kidneys

of patients with SLE, with correlations to disease pathology and

autoantibody titres in both human and murine models (12, 107–

110). However, the correlation between circulating BAFF levels and

anti-double-stranded DNA (anti-dsDNA) titers remains controversial.

This contradiction may be attributed to the different detection

methods (111, 112). BAFF Tg mice with BAFF overexpression

exhibit SLE-like manifestations, such as hypergammaglobulinemia,
Frontiers in Immunology
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increased serum immune complexes, levels of rheumatoid factor (RF)

and anti-dsDNA, as well as renal Ig deposits (69). Moreover, BAFF

overexpression has been observed in other spontaneous SLE-prone

mice (39). Consistently, BAFF blockade attenuates symptoms and

disease activity in SLE mice, thereby improving survival (113, 114).

Excess BAFF may participate in the development of SLE through

supporting autoreactive B cells survival (115). Lupus nephritis (LN) is

a severe complication of SLE, characterized by kidney inflammation

due to autoimmune-mediated damage, primarily affecting the

glomeruli. Glomerular APRIL and BAFF levels are significantly

elevated in patients with LN (95). Furthermore, BAFF levels in the

kidneys of LN mice are correlated with disease activity and the

histopathological activity index (116). BAFF promotes LN by

inducing a tertiary lymphoid structure in the kidney and

modulating the position of glomerular T cells (117). In addition to

LN, cutaneous symptoms are also observed inmany patients with SLE.

The levels of BAFF and its three receptors—BAFFR, BCMA, and

TACI—are increased in patients with cutaneous lupus erythematosus

(CLE). In these patients, BAFF is mainly expressed in keratinocytes,

whereas the three receptors are mainly expressed in the lymphoid cells.

Moreover, BAFF expression is significantly upregulated after

stimulation with immunostimulatory DNA motifs in cultured

keratinocytes (13, 94, 118).
FIGURE 3

The function of BAFF system in autoimmune diseases. BAFF system molecules are elevated in various autoimmune diseases including systemic lupus
erythematosus, Sjögren’s syndrome, systemic sclerosis, bullous pemphigoid, pemphigus vulgaris, alopecia areata, and are involved in the
pathogenesis of these diseases. Furthermore, mouse models have highlighted the role of the BAFF system in regulating immune cells, promoting
systemic autoimmunity, and mediating the occurrence and development of autoimmune diseases.
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3.2 Sjögren’s syndrome

Sjögren’s syndrome (SS) is a chronic systemic autoimmune

disease characterized by impaired function of exocrine glands and

extra glandular manifestations (119). Notably, patients with SS

exhibit elevated serum and SG levels of BAFF. In addition,

increased BAFF levels are strongly correlated with anti-SSA IgG/

IgM and RF levels (18, 98, 120). As mentioned in Section 3.1, BAFF

Tg mice overexpressing BAFF exhibit SLE-like manifestations.

However, as they age, these mice acquire features of SS, such as

glandular inflammation and structural destruction (18). Early

BAFFR blockade alleviates SS-like syndromes in mice (121).

Moreover, salivary epithelial cells in patients can secrete different

forms of BAFF to participate in the pathogenesis of SS, and BAFF

can also promote epithelial cell survival through autocrine

signalling (122). Additionally, studies in patients with SS and

mouse models have shown that BAFF is involved in the

formation of germinal centre-like structures, which are important

in SS pathogenesis (123–126).
3.3 Systemic sclerosis

Systemic sclerosis (SSc) is a complex autoimmune connective

tissue disease characterized by progressive fibrosis and vasculopathy

of the internal organs and skin (127). The serum levels of APRIL

and BAFF are increased in patients with SSc and positively

correlated with skin and pulmonary fibrosis, respectively (16, 17).

Furthermore, adding anti-IgM and BAFF to a co-culture of dermal

fibroblasts and peripheral B cells isolated from patients with SSc

showed that BAFF enhanced the collagen-inducing effect of B cells

in dermal fibroblasts (128). Tight skin (TSK/+) mice, which are

genetic a murine model of SSc, develop cutaneous fibrosis and

autoimmunity. Intriguingly, circulating BAFF levels and skin
Frontiers in Immunology 06
fibrotic cytokines are elevated in the TSK/+ mouse model.

Moreover, BAFF antagonists enhance the expression of anti-

fibrotic cytokines, therefore inhibiting autoantibody production,

skin fibrosis, and fibrotic cytokine expression in TSK/+ mice (129).

Notably, neutralisation of BAFF or deletion of the BAFF gene led to

diminished fibrosis in a bleomycin-induced model of pulmonary

fibrosis (130). Furthermore, a small pilot study using BLM to

suppress BAFF showed an improvement in skin hardening in

patients with SSc (51). The results of these studies show that the

pathogenesis of SSc is complicated and involves various

environmental and genetic factors, warranting further

investigation in future studies.
3.4 Bullous pemphigoid

Bullous pemphigoid (BP) is an autoimmune bullous skin

disease characterized by tense skin bullae and less oral

involvement. These manifestations may be due to the presence of

complement component C3 and IgG autoantibodies, which target

the dermo–epidermal basement membrane, resulting in dermal

separation (131). One study revealed increased levels of

circulating BAFF in patients with BP (15). Furthermore, flow

cytometric analysis confirmed elevated BAFF expression in

memory and naïve B cells in patients with BP (132). Conversely,

another study found that the levels of circulating BAFF molecules in

healthy controls were comparable with those in patients with BP

(133). This discrepancy is likely attributable to differences in disease

duration. Serum APRIL levels are also increased in patients with BP

(11). RTX is a third-line treatment for BP and has clinical benefits

for severe BP. One study found that serum BAFF level increased

after RTX treatment in patients with BP. Additionally, serum BAFF

levels increased before the peripheral B cell number returned to

normal, implying a relapse (134). Dipeptidyl peptidase 4 inhibitors
TABLE 1 Expression of BAFF system molecules in autoimmune diseases.

Disease location BAFF APRIL BAFFR BCMA TACI Reference

SLE Serum Elevated Elevated / Elevated Elevated (12, 40, 41, 92)

Skin Elevated no mention Elevated Elevated / (13, 93, 94)

Renal Elevated(mRNA) Elevated / Elevated(mRNA) Elevated(mRNA) (95)

Urine Elevated Elevated no mention no mention no mention (96)

SS Serum Elevated Elevated no mention no mention no mention (18, 19)

Salivary gland Elevated / no mention no mention / (18, 19, 97, 98)

SSc Serum Elevated Elevated Elevated no mention Elevated (16, 17, 99, 100)

Skin Elevated(mRNA) no mention no mention no mention no mention (16)

BP Serum Elevated Elevated no mention no mention no mention (11, 15)

PV Serum Elevated / no mention no mention no mention (14, 15, 101)

AA Serum Elevated / no mention no mention no mention (102–104)

Skin Elevated no mention no mention no mention no mention (104)
AA, alopecia areata; APRIL, A proliferation-inducing ligand; BAFF, B cell-activating factor; BAFFR, BAFF receptor; BCMA, B cell maturation antigen; BP, bullous pemphigoid; PV, pemphigus
vulgaris; SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; SSc, systemic sclerosis; TACI, transmembrane activator and calcium modulator and cyclophilin ligand interactor.
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(DPP4is), commonly used for the treatment of type 2 diabetes,

increase the risk of BP (DPP4is-associated BP). BAFF expression is

higher in regular BP skin (not associated with DPP4is) compared to

that in DPP4i-associated BP skin (135). However, few studies have

explored the role of BAFF in BP pathogenesis, with studies largely

restricted to phenomenological observations. Thus, further

investigation is required to determine whether and how BAFF is

involved in BP pathogenesis.
3.5 Pemphigus vulgaris

Pemphigus vulgaris (PV) is an autoimmune bullous disease

characterized by erosions and flaccid blisters of the skin and the

mucous membranes owing to the intra-epidermal separation of

keratinocytes (136). While some studies report elevated serum APRIL

levels in patients with PV, others show no significant differences, casting

doubt on its role (11, 14). A similar inconsistency is observed with

serum BAFF levels in PV (15, 101, 137), likely due to variations in

sample sizes across studies. Rituximab (RTX), a targeting B-lymphocyte

CD20 mAb, is the most common B cell-depleting therapy for bullous

dermatoses. One study found that circulating BAFF levels were

significantly increased after RTX treatment, which normalised upon

the recovery of peripheral CD19+ B cells (138). Another reported higher

baseline BAFF levels in patients with PV than in healthy controls, with

levels rising further after 3 months of RTX treatment, suggesting a link

between BAFF and PV immunopathogenesis (137). Although the B

cell-depleting agent RTX is effective for patients with PV, relapses are

frequent. Hebert et al. observed that most relapses occurred precisely

when autoreactive B cells reappeared and BAFF serum levels increased,

suggesting that relapse after RTX therapymight be attribute to a raise in

circulating BAFF levels and the reappearance of autoreactive B cells

(101). Taken together, the role of the BAFF system in PV remains

unclear, and further studies are required to elucidate its role in PV.
3.6 Alopecia areata

Alopecia areata (AA) is a non-scarring autoimmune hair loss

disorder characterized by inflammatory cell infiltration around

actively growing hair follicles (20). Circulating BAFF levels are

elevated in patients with AA with more than three lesions (102).

This phenomenon was confirmed by a later study, which also

revealed increased tissue BAFF levels in patients with AA.

Furthermore, BAFF and TH17 synergistically participate in the

pathogenesis of AA (104). While research on BAFF’s role in AA

remains limited, its significance cannot be overlooked.
4 Targeting B cell-activating factor
system molecules for autoimmune
diseases therapy

Since their discovery in 1999, studies targeting single or dual B

cell-activating factor (BAFF) system molecules have been
Frontiers in Immunology 07
conducted (Figure 4). Belimumab (BLM) is a fully humanised

recombinant IgG1l mAb that antagonises the biological activity

of sBAFF by preventing its interaction with receptors. BLM was

approved for systemic lupus erythematosus (SLE) therapy in 2011,

suggesting that BAFF system molecules are potential targets for the

treatment of several autoimmune diseases. Several clinical trials are

ongoing, with encouraging results for sjögren’s syndrome (SS) and

systemic sclerosis (SSc), reinforcing BAFF-targeting therapies as a

potential strategy for autoimmune diseases treatment. Below, we

summarize several BAFF system-targeting therapies for

autoimmune diseases (Table 2).
4.1 B cell-activating factor-targeted
therapies

The efficacy and safety of belimumab (BLM) in systemic lupus

erythematosus (SLE) were validated across multiple pivotal clinical

trials (139–146). In phase III trials for active SLE, intravenous BLM

combined with standard therapy significantly outperformed placebo in

SLE Responder Index (SRI) rates at week 52 in the BLISS-76 and

BLISS-SC trials (141, 142). Subcutaneous administration further

improved outcomes in moderate-to-severe SLE, with an SRI-4

response rate of 61.4% vs 48.4% and a 49% reduction in severe flare

risk (143). Notably, hypocomplementemic/anti-dsDNA+ patients

exhibited enhanced benefits alongside corticosteroid-sparing effects

(144). Long-term extension data confirmed sustained efficacy over 7

years: SRI response increased from 41.9% (year 1) to 75.6% (year 7),

with 31.4% mean prednisone reduction and 83.2% CD20+ B cell

depletion, while maintaining stable safety profiles (145). In LN

management, BLM combined with standard therapy significantly

improved primary and complete renal responses, reducing renal-

related event/death risk by 49% (146). These findings led to FDA

approval for SLE in 2011 and an expanded indication for active LN in

2020, cementing BLM as a key LN therapy (146, 172).

The use of BLM in patients with sjögren’s syndrome (SS) has

also been assessed. In a clinical study, there was a significant

improvement in clinical manifestations and biomarkers of B cell

activation in patients with SS who were treated long-term with BLM

(23, 147). Furthermore, a clinical study assessed the safety and

efficacy of BLM in patients with SSc who received background

mycophenolate mofetil. This study found a significantly

improvement of clinical symptoms in the BLM group compared

with the placebo group (22). Overall, the results are encouraging

and justify further randomised controlled studies with

larger populations.

The use of BLM after rituximab (RTX) for the treatment of SLE

with bullous pemphigoid (BP) has also been reported. For example,

one patient with SLE overlapping with BP achieved significant

clinical remission and steroid sparing after RTX-BLM sequential

treatment, suggesting that a combination therapy of anti-CD20 and

anti-BAFF mAbs might maintain longer B cell depletion and

clinical remission (172). In addition, a case of pemphigus vulgaris

(PV) was successfully treated with BLM after a failed steroid therapy

course. After four cycles of BLM treatment, clinical symptoms and
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autoantibody levels were significantly decreased in the patient,

highlighting the effectiveness of BLM in treating PV (173).
4.2 B cell-activating factor receptor-
targeted therapies

Ianalumab (VAY736), a fully human anti-B cell-activating factor

receptor (BAFFR) mAb, has two action mechanisms: direct depletion

of BAFFR+ B cells and competitive BAFFR blockade, leading to B cell

apoptosis (149). In a clinical study, ianalumab was used as a single-dose

treatment for patients with sjögren’s syndrome. The results showed

that ianalumab reduced clinical manifestations, B cell activation

biomarker expression, and serum Ig light chain levels and

augmented the salivary flow rate in sjögren’s syndrome (148).

Moreover, a dose-finding study confirmed a dose-related decrease in

disease activity (149). However, Novartis terminated a clinical trial of

VAY736 in patients with pemphigus vulgaris prior to its completion

for strategic reasons (152, 174).
4.3 B cell-activating factor- and a
proliferation-inducing ligand-targeted
therapies

4.3.1 Atacicept
Atacicept is a recombinant soluble fusion protein that targets

both B cell-activating factor (BAFF) and a proliferation-inducing
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ligand (APRIL) (175). A phase II study showed that patients with

systemic lupus erythematosus (SLE) administered with 150 mg

atacicept experienced a lower flare rate than those administered

with a placebo (153). Moreover, a post-hoc analysis of this study

demonstrated a dose–response relationship between atacicept

concentrations and reduced flare rates, which further confirmed

the efficiency of atacicept (154). Additionally, a phase IIb ADDRESS

II trial demonstrated the dose-dependent efficacy of atacicept (75/

150 mg) in treating active SLE, with 75 mg achieving a significant

SRI-4 response and reduced flare risk in high-activity subgroups,

while maintaining placebo-comparable safety (155, 156).

Subsequently, a long-term extension of this study was conducted.

Although it was terminated early owing to drug supply shortage,

atacicept exhibited an acceptable safety and efficacy during the

study period (157, 158). Although these clinical trials yielded

positive results, further research is needed to evaluate the safety

and effectiveness of atacicept for treating SLE.

4.3.2 Telitacicept
Telitacicept (RC18) is a novel, recombinant transmembrane

activator and calcium modulator and cyclophilin ligand interactor-

Fc fusion protein. Similar to atacicept, telitacicept can bind to BAFF

and APRIL simultaneously. The safety and efficacy of telitacicept

have been assessed in patients with SLE in a phase IIb trial, and it

succeeded in meeting the primary endpoint, validating its safety

(160, 161). Telitacicept was approved for treating active SLE in

China in 2021 (176). A subsequent phase III randomised, double-
FIGURE 4

BAFF system targeted therapies. Several experiments that target BAFF system molecules have been conducted in mouse models and clinical settings,
and belimumab was approved for systemic lupus erythematosus therapy. BAFF system molecules are considered potential targets for the treatment
of several autoimmune diseases.
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blind, placebo-controlled trial involving 335 patients demonstrated

robust efficacy and safety of weekly subcutaneous telitacicept

combined with standard therapy compared to placebo (162).

These promising results have driven global multicentre clinical

trials, some of which are currently recruiting. Moreover, the use

of telitacicept in patients with SS was assessed in a phase II study

and yielded positive results, with significant improvements in

clinical manifestations (164). Ongoing phase III trials aim to

further evaluate its efficacy (177).
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4.4 Belimumab and rituximab combination
therapy

Despite the demonstrated efficacy of rituximab (RTX) in

autoimmune diseases therapy, frequent relapses remain a clinical

challenge. Several studies have investigated this issue, revealing that

serum B cell-activating factor (BAFF) levels rise significantly during

B cell depletion post-RTX and return to baseline upon B cell

recovery. Given that excessive BAFF has been shown to rescue
TABLE 2 BAFF targeted clinical trials in autoimmune diseases.

Agent Target Disease
Trail registration
number

Number of
participants Status Phase Reference

Belimumab BAFF SLE NCT00657007 70 Completed Phase 1 (139)

NCT00071487 449 Completed Phase 2 (140)

NCT00410384. 819 Completed Phase 3 (141)

NCT00424276 865 Completed Phase 3 (142)

NCT01484496
NCT00724867

839
268

Completed
Completed

Phase 3
Phase 3

(143, 144)
(145)

NCT01639339 448 Completed Phase 3 (146)

SS NCT01160666 20 Completed Phase 2 (23, 147)

NCT01008982 15 Completed Phase 2 (23, 147)

SSc NCT01670565 20 Completed Phase 2 (22)

Ianalumab
(VAY736)

BAFFR SS NCT02149420 27 Completed Phase 2 (148)

NCT02962895 192 Completed Phase 2 (149)

NCT05350072 285 Recruiting Phase 3 (150)

NCT05349214 489 Recruiting Phase 3 (151)

PV NCT01930175 13 Terminated
(strategic reasons)

Phase 2 (152)

Atacicept BAFF and APRIL SLE NCT00624338 461 Completed Phase 2 (153, 154)

NCT01972568 306 Completed Phase 2 (155, 156)

NCT02070978 253 Terminated
(shortage of
drug supply)

Phase 2 (157, 158)

NCT05609812 360 Recruiting Phase 3 (159)

Telitacicept
(RC18)

BAFF and APRIL SLE NCT02885610 249 Completed Phase 2 (160, 161)

NCT04082416 335 Completed Phase 3 (162)

NCT05306574 341 Recruiting Phase 3 (163)

SS NCT04078386 42 Completed Phase 2 (164)

NCT05673993 37 Not yet recruiting Phase 3 (165)

Belimumab
& Rituximab

BAFF&CD20 SLE NCT02260934 43 Completed Phase 2 (166)

NCT03312907 292 Completed Phase 3 (167, 168)

NCT03747159 70 Recruiting Phase 3 (169)

SS NCT02631538 86 Completed Phase 2 (170)

SSc NCT03844061 30 Recruiting Phase 2 (171)
APRIL, A proliferation-inducing ligand; BAFF, B cell-activating factor; BAFFR, BAFF receptor; PV, pemphigus vulgaris; SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; SSc,
systemic sclerosis.
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self-reactive B cells from apoptosis, these findings suggest that the

recovery of self-reactive B cells may be attributed to elevated BAFF

levels following B cell depletion (178, 179). These findings led to

investigations of sequential therapy with RTX followed by

belimumab (BLM). For instance, a multicentre randomised trial

in patients with refractory lupus nephritis demonstrated that

adding BLM to RTX/cyclophosphamide therapy was safe and

modulated B cell reconstitution more effectively than B cell

depletion alone (166). However, the phase III BLISS-BELIEVE

trial found that sequential subcutaneous BLM with a single RTX

cycle did not achieve superior disease control at week 52 or clinical

remission at week 64 compared to BLM plus placebo. Nonetheless,

this combination significantly reduced anti-dsDNA antibodies,

modulated B cell subsets, and prolonged disease control duration,

warranting further investigation (167, 168). In sjögren’s syndrome

(SS), sequential RTX-BLM therapy improved clinical outcomes

compared to monotherapies without compromising safety (170,

180). Collectively, although current studies on sequential therapy

are limited, these findings highlight its potential as a promising

therapeutic strategy that warrants further research to explore its

long-term effects and mechanisms.

Emerging BAFF-targeted therapies for systemic lupus

erythematosus (SLE), SS, and systemic sclerosis show translational

promise in understudied autoimmune diseases. In bullous

pemphigoid (BP), elevated BAFF molecule levels in memory B cells

and post-RTX surges correlate with relapse, while DPP4 inhibitor-

associated cases exhibit reduced BAFF molecule levels, implicating

pathogenic heterogeneity (134, 135). Dual BAFF/APRIL inhibitors

and SLE-validated B cell maturation antigen chimeric antigen

receptor T cell immunotherapy therapies may counteract BP

autoantibody pathology. For pemphigus vulgaris, post-RTX BAFF

resurgence aligns with B cell recovery (101, 137, 138); sequential use

of RTX-BLM or transmembrane activator and calcium modulator

and cyclophilin ligand interactor agonists could limit autoreactivity.

In alopecia areata, BAFF elevation is linked to Th17 inflammation

(104), supporting the potential for telitacicept or JAK/BAFF dual

inhibition. Disease-specific trials are critical to refine BAFF-axis

modulation strategies across autoimmune diseases.
5 Conclusions

The B cell-activating factor (BAFF) system plays an

indispensable role in autoimmunity. Increasing numbers of

clinical trials targeting BAFF antagonism have yielded promising
Frontiers in Immunology 10
results, leading to the approval of BLM for active systemic lupus

erythematosus. However, despite these advances, the understanding

of BAFF’s role in autoimmune diseases pathogenesis remains in its

early stages, leaving many aspects yet to be explored. In terms of

targeted BAFF therapy for autoimmune diseases, there is a shortage

of available drugs; therefore, additional clinical trials with larger

sample sizes are required to identify new targeted drugs.
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Glossary

AA alopecia areata
Frontiers in Immunol
anti-dsDNA anti–double-stranded DNA
APRIL A proliferation-inducing ligand
BAFF B cell-activating factor
BAFFR BAFF receptor
BAFF Tg mice BAFF transgenic mice
BCMA B cell maturation antigen
BLM belimumab
BP bullous pemphigoid
CLE cutaneous lupus erythematosus
DPP4is dipeptidyl peptidase 4 inhibitors
ESSDAI European League Against Rheumatism Sjögren’s Syndrome

Disease Activity Index
ESSPRI European League Against Rheumatism Sjögren’s Syndrome

Patient Reported Index
G-CSF granulocyte colony-stimulating factor
Ig immunoglobulin
IFNs interferons
IL interleukin
LN lupus nephritis
IRFs interferon regulatory factors
mAbs monoclonal antibodies
ogy 15
mBAFF membrane-bound form BAFF
NF-kB nuclear factor-kappa B
NK natural killer
PC plasma cell
PI3K phosphoinositide-3-kinase
PV pemphigus vulgaris
RF rheumatoid factor
RTX rituximab
sBAFF soluble form BAFF
SG salivary gland
SLE systemic lupus erythematosus
SS Sjögren’s syndrome
SSc systemic sclerosis
TACI transmembrane activator and calcium modulator and

cyclophilin ligand interactor
Tfh follicular helper T
Th T-helper
TLR toll-like receptor
TNF tumour necrosis factor
TSK/+ tight skin
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1538555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	The role of B cell-activating factor system in autoimmune diseases: mechanisms, disease implications, and therapeutic advances
	1 Introduction
	2 B cell-activating factor system
	2.1 Ligands
	2.2 Receptors
	2.3 B cell-activating factor function in autoimmunity
	2.3.1 Function of BAFF in adaptive immunity
	2.3.2 Function of BAFF in innate immune cells
	2.3.3 Future directions on BAFF


	3 Pathogenic role of the B cell-activating factor system in autoimmune diseases
	3.1 Systemic lupus erythematosus
	3.2 Sj&ouml;gren’s syndrome
	3.3 Systemic sclerosis
	3.4 Bullous pemphigoid
	3.5 Pemphigus vulgaris
	3.6 Alopecia areata

	4 Targeting B cell-activating factor system molecules for autoimmune diseases therapy
	4.1 B cell-activating factor-targeted therapies
	4.2 B cell-activating factor receptor-targeted therapies
	4.3 B cell-activating factor- and a proliferation-inducing ligand-targeted therapies
	4.3.1 Atacicept
	4.3.2 Telitacicept

	4.4 Belimumab and rituximab combination therapy

	5 Conclusions
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Glossary


