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Background and aim: Traumatic brain injury (TBI) poses a significant burden on

the global economy due to its poor treatment and prognosis. Current TBI

markers do not comprehensively reflect the disease status. Therefore,

identifying more meaningful biomarkers is beneficial for improving the

prognosis and clinical treatment of TBI patients.

Methods: The gene expression profile of TBI was obtained from the Gene

Expression Omnibus (GEO) database. Differentially expressed genes (DEGs)

were subjected to enrichment analysis, and key potential genes were identified

through the protein–protein interaction network and cytoHubba modules. ROC

curves were used to construct diagnostic models for hub genes.

Immunofluorescence experiments were conducted to detect the expression of

candidate biomarkers in TBI rat models. Finally, we investigated the expression of

TBI biomarkers in normal human organs and pan-cancer tumor tissues, and

evaluated their correlation with immune infiltration in different tumors.

Results: A total of 44 DEGs were identified across four brain regions of TBI

patients. Enrichment analysis revealed that these genes were primarily

involved in intracellular and cell signal transduction pathways. Furthermore,

three hub genes- RPS4Y1, KDM5D and NLGN4Y-were identified through

different module analysis. The ROC curve diagnostic model also confirmed

that these genes also have high diagnostic value in serum. Subsequently, the

presence of Kdm5d was detected in the brain tissue of TBI rats through

immunofluorescence experiments. Compared to normal rats, Kdm5d

expression increased in the cortical area of TBI rats, with no significant

change in the hippocampus area, aligning with observations in TBI patients.

Immune infiltration analysis demonstrated changes in immune cell subsets in

HIP and PCx, revealing that plasma cells and CD8 T cells were lowly expressed

in TBI (HIP) and while neutrophils was under-expressed in TBI (PCx). Pan-

cancer analysis indicated that KDM5D was significantly up-regulated in 23

cancers, down-regulated in 3 cancers, and significantly associated with

immune infiltration in 10 cancers.
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Conclusion: Based on the results of bioinformatics analysis and animal

experiments, KDM5D serves as a potential biomarker for the diagnosis and

prognosis of TBI. Additionally, research on KDM5D may develop into new

serum markers, providing new indicators for further clinical liquid biopsy and

aiding in the prevention of both TBI and tumors to a certain extent.
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1 Introduction
Traumatic brain injury (TBI) is defined as a condition that

disrupts brain function or causes other brain lesions due to external

physical forces (1). It is estimated that the annual incidence of TBI is

50 million cases worldwide, with roughly half of the population

likely to experience a TBI in their lifetime. Additionally, morbidity

and mortality rates are higher in low- and middle-income countries.

TBI results in approximately US$400 billion in economic losses

globally each year, accounting for 0.5% of the world’s gross

product (2).

Currently, assessing the extent of injury and predicting outcome

in TBI patients remains challenging. The Glasgow Coma Scale

(GCS) and Abbreviated Impairment Scale (AIS) correlate with

injury severity and provide prognostic power. However, these

scales rely on the medical staff’s subjective interpretation of the

patient’s injury and brain function, and their accuracy can be

affected by factors such as age and other variables (3–5).

Biomarkers offer an unbiased and independent assessment of TBI

severity and patient prognosis. Studies had shown that glial

fibrillary acidic protein (GFAP), S100b and soluble urokinase

plasminogen activator receptor (suPAR) have been used to

evaluate the survival rate of TBI patients (6–8). Additionally, tau

protein and GFAP have been used to assess GCS scores at discharge

and Glasgow Outcome Scale (GOS) scores at 6 or 12 months (6, 9).

Ubiquitin C-terminal hydrolase (UCH-1), matrix metalloproteinase

9 (MMP9) and MMP2 are also believed to to be related to TBI

severity (10, 11). Most of these biomarkers can be measured from

plasma or serum samples, minimizing the challenges of

cerebrospinal fluid (CSF) collection, but rapid turnaround

remains a concern in the critical TBI settings.

With the rapid advancement of high-throughput technologies

and bioinformatics, we can now screen biomarkers and therapeutic

targets more efficiently. Previous bioinformatics studies have

primarily identified biomarkers through differential gene and

protein-protein interaction (PPI) network analysis (12). However,

the accuracy of PPI network analysis has been questioned. With
02
evolving analysis methods, tools like Cytoscape and its plugins are

increasingly used to screen potential disease targets. Cytoscape is an

open-source software that integrates biomolecular interaction

networks with high-throughput expression data and other

molecular states into a unified conceptual framework (13).

In this study, we first obtained the TBI microarray dataset from

the Gene Expression Omnibus (GEO) public database to analyze

and identify differentially expressed genes (DEGs). We then

combined bioinformatics analysis with machine learning

strategies to deeply screen and identify key features of TBI.

Receiver operating characteristic (ROC) analysis was used to

evaluate their diagnostic values. Recently, accumulating evidence

suggests that immune and inflammatory mechanisms play crucial

roles in preventing the pathogenesis of TBI (14, 15). Therefore, we

aimed to explore the relationship between biomarker genes and

immunity. We applied cell-type identification by estimating relative

subsets of RNA transcript (CIBERSORT) to clarify the differences

in immune infiltrates in TBI. Subsequently, we verified the

expression of biomarkers in the brain tissue of TBI rat’s model.

In recent years, pan-cancer analyses have enabled us to leverage

human genome sequence data, along with a vast compendium of

associated molecular and phenotypic features and functional

genomic data from genome-scale expression and epigenomics.

This helps us understand the impact of variants and elucidate the

contribution of dysregulated genes to specific diseases and

biological pathways in tissue contexts (16). Finally, we analyzed

the expression and immune cell infiltration of KDM5D in various

cancers, which may significantly enhance our understanding of the

biological function of KDM5D. We propose that KDM5D can serve

as a common biomarker for predicting and diagnosing TBI and pan

cancer. However, this statement has certain flaws, such as

distinguishing patients who suffer from both TBI and cancer,

understanding the mechanism of KDM5D upregulation changes,

and combining other biomarkers of these two diseases may be a

more reliable clinical strategy.

In summary, this study demonstrates that KDM5D is a robust

and feasible new biomarker for TBI, providing a potential target for

the diagnosis, prevention, and treatment of TBI.
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2 Materials and methods

2.1 Data acquisition and processing

The mRNA transcriptome profiles of patients with TBI were

downloaded from the NCBI Gene Expression Omnibus public

database. (GEO, https://www.ncbi.nlm.nih.gov/geo/). We selected

GSE104687 as the dataset for TBI, which includes 376 samples

collected from cortical grey (parietal and temporal), white matter

(parietal) and hippocampus from a total of 107 brains, including 55

TBI patients and 52 No-TBI patients. GSE254880 was chosen as the

validation set, consisting of neuronal exosomes samples from

serum, with 8 control samples and 8 TBI patients. Data filtering

and preparation were completed using the R program (version

4.2.1), and batch effect were eliminated. The basic information of all

datasets was shown in Table 1.
2.2 Identification of differentially
expressed genes

Limma (Linear Models for Microarray Data) is a differential

expression screening method based on generalized linear models.

Here we use the R software package limma (version 3.40.6) to

conduct differential analysis and identify differences between

comparison groups and the control group. Specifically, we

obtained the expression profile dataset, performed multiple linear

regression using the lmFit function, and computed moderated t-

statistics, moderated F-statistic, and log-odds of differential

expression using the eBays function via empirical Bayes

moderation of the standard errors towards a common (17). Genes

with log2FC (fold change)>1.5 and p-value<0.05 were considered

DEGs. DEGs are displayed on a volcano plot. The 25 genes with the

most significant differences in up- and down-regulation are shown

on a heat map.
2.3 Functional enrichment analysis of
significant DEGs

For gene set functional enrichment analysis, we used the Gene

Ontology (GO) annotation in the R software package (version 3.1.0)

as the background. The R software package clusterProfiler (version

3.14.3) was employed to map genes to the background and perform

enrichment analysis, yielding gene set enrichment results. For

KEGG Pathway analysis, we utilized the KEGG REST API

(https://www.kegg.jp/kegg/rest/keggapi.html) to obtain the latest
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gene annotations of the gene annotations. Using this as a

background, genes were mapped to the background collection,

and enrichment analysis was conducted using clusterProfiler

(version 3.14.3). We set the minimum gene set size to 5 and the

maximum to 5000. Results were considered statistically significant

with a P-value<0.05 and a FDR of<0.25 (18).
2.4 Protein–protein interaction network
and module analysis

The STRING online tool (https://cn.string-db.org/) was used to

construct the PPI network with a combined score > 0.4 (19). The

PPI network was visualized using the Cytoscape application (20).

Cytoscape’s CytoHubba plugins were utilized to filter important

modules and core genes respectively. Five different algorithms

Maximal Clique Centrality (MCC), Maximum Neighborhood

Component (MNC), Degree (Deg), Edge Percolated Component

(EPC) and EcCentricity were used for hub genes screening.

Common genes identified by the five algorithms were considered

reliable hub genes and demonstrated using a Venn diagram.
2.5 Hub genes verification and diagnosis
model construction

GSE254880 was chosen as the validation set for hub genes.

Single genetic diagnostic model was constructed using the pROC

software package. The ROC curve was utilized to evaluate the

discriminative ability of hub genes. Diagnostic value was

quantified by calculating the area under the curve (AUC). An

AUC greater than 0.7 is considered an ideal diagnostic indicator.
2.6 Homologous gene conversion

Gene conversion was conducted using the homologene tool in

NCBI. We input the hub gene name and performed search to obtain

homologous genes in other species via the NCBI website (https://

www.ncbi.nlm.nih.gov/homologene).
2.7 Rat TBI samples

In animal experiments, twenty male wild-type Sprague-Dawley

(SD) rats, aged six weeks, were purchased from Speford

Biotechnology Company (Beijing, China). All rats were adaptively
TABLE 1 The details of datasets.

Series Platforms Samples Tissue Type

GSE104687 GPL16791 55 TBI patients and 52 No-TBI
patients’ samples

brain samples mRNA

GSE254880 GPL20301 8 control samples and 8
TBI patients

Serum samples mRNA
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fed for two weeks before the experiment and fed a normal diet

before and after the experiment. Ten rats randomly assigned to the

control group, and the other 10 as the severe TBI model group. Rats

were housed in a temperature-controlled environment (22-26°C,

40-70% humidity) with a 12-hour light-dark cycle. The rat

traumatic brain injury model was constructed using the classic

controlled cortical impact (CCI) method. Each rat was anesthetized

via intraperitoneal injection of 3% pentobarbital sodium (0.2mL/

100g), and then positioned on a stereotactic frame attached to a

temperature controlled heating pad (37°C). The scalp was shaved,

disinfected with 75% alcohol, and the scalp was incised on the left

side of the midline of the brain. After exposing the skull, a 4mm

craniotomy (3.0 mmAP and 2.0 mmML to bregma) was performed

on the cortex. A metal impactor (diameter=3mm) operated by

pneumatic force impacts the brain at a speed of 3.5 m/s, reaching a

depth of 1.0 mm below the dura mater and staying in the brain for

400 ms. Suture the wound after hemostasis and iodine disinfection.

(21). After surgery, rats were placed in a constant temperature

incubator at 30 °C and observed for 1 hour. Following this

observation period, each rat was individually housed in cages

with water containing recombinant food. Twenty-four hours after

the completion of the modeling, 20 rats were euthanized by

excessive anesthesia with pentobarbital sodium. Rats were initially

perfused with physiological saline and then perfused with 4%

paraformaldehyde. Immediately remove brain tissue after

perfusion, and select the area from -2.12mm to -4.52mm of the

anterior fontanelle as the experimental tissue based on the rat brain

stereotaxic map (22). Optimal cutting temperature compound

(OCT) was used to embed the brain tissue. Each sample was

sliced into 20 tissue sections with a thickness of 30 mm. The

animal experimental protocol was reviewed and approved by the

Institutional Animal Care and Use Committee (IACUC) of Chinese

PLA General Hospital (Approval ID: 2023-X19-128).
2.8 Immunofluorescence

Mouse anti-KDM5D (ab194288)MAbwas purchased fromAbcam,

UK. Fluorescent secondary antibody (Bs-0295D-AF594) was purchased

from Bioss, China. Anti-fluorescence attenuation mounting medium

(containing DAPI, C190401) was purchased from YangGuangBio,

China. All antibodies and reagents were used according to the

manufacturer’s instructions. The immunofluorescence experiment was

performed at the Lab Animal Center of Chinese PLA General Hospital.

All of operations were performed in accordance with standard

procedures (23). Fluorescence was observed under an Olympus BX53

fluorescence microscope (Olympus, Japan).
2.9 Immune infiltration analysis

The CIBERSORT package was used to evaluate the composition

of immune and stromal cells in hippocampus (HIP) and prefrontal

cortex (PCx) samples for immune cell infiltration analysis (24). We
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compared the expression of immune cells in HIP and PCx to study

their role in TBI. A color bar graph displayed the proportion of each

immune cell type in various samples. A t-test was used to compare

the distribution differences of cells between disease and control

groups, with a significance threshold set to P<0.05.
2.10 Expression analysis in pan-cancer

We downloaded the unified and standardized pan-cancer

dataset TCGA TARGET GTEx (PANCAN, N=19131, G=60499)

from the UCSC (https://xenabrowser.net/) database, and then

extracted ENSG00000012817 (KDM5D) gene expression data

from each sample. The samples were categorized into various

sources, including Solid Tissue Normal, Primary Solid Tumor,

Primary Tumor, Normal Tissue, Primary Blood Derived Cancer -

Bone Marrow, and Primary Blood Derived Cancer - Peripheral

Blood. Samples with an expression level of 0 were excluded, and

each expression value underwent a log2 (x+0.001) transformation.

Additionally, we also eliminated cancer types with less than three

samples in a single cancer type. Finally, expression data for 32

cancer types were obtained.
2.11 Analysis of immune infiltration in
pan-cancer

We downloaded the unified and standardized pan-cancer

dataset TCGA TARGET GTEx (PANCAN, N=19131, G=60499)

from the UCSC (https://xenabrowser.net/) database, and extracted

ENSG00000012817 (KDM5D) gene expression data for each sample.

The samples were sourced from Primary Blood Derived Cancer -

Peripheral Blood (TCGA-LAML), Primary Tumor, TCGA-SKCM’s

Metastatic, Primary Blood Derived Cancer - Bone Marrow, Primary

Solid Tumor, and Recurrent Blood Derived Cancer - Bone Marrow

samples. We filtered out samples with an expression level of 0, and

applied a log2 (x+0.001) transformation to each expression value.

Additionally, we mapped the the gene expression profile of each tumor

to GeneSymbol. Using the R software package ESTIMATE (version

1.0.13, https://bioinformatics.mdanderson.org/public-software/

estimate/), we calculated stromal, immune, and ESTIMATE scores

for each patient, based on gene expression.
2.12 Statistical analysis

Statistical analysis and graphic design were performed using R

software. All immunofluorescence experiments were repeated three

or more times. Relative fluorescence intensity was calculated by Fiji

(Image J), GraphPad Prism software (version 9.0) was used for

fluorescence data analysis and graphing. A P-value<0.05 was

considered statistically significant.
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3 Result

3.1 Identification of DEGs of different brain
areas in TBI and No-TBI

The research flowchart of this study was shown in Figure 1.

Samples from the GSE104687 dataset, downloaded from the GEO

database, included transcriptome data from four brain regions: frontal

white matter (FWM), hippocampus (HIP), prefrontal cortex (PCx) and

temporal cortex (TCX). Differential gene analysis was conducted using

the Limma package, revealing 21 significant DEGs (17 upregulated and

4 downregulated genes) in FWM between individuals with TBI and

non-TBI (Figures 2a, e, i). Additionally, 8 significant DEGs (4

upregulated and 4 downregulated genes) were identified in HIP

between TBI and non-TBI groups (Figures 2b, f, j). Furthermore, 17

DEGs (16 upregulated and 1 downregulated genes) were observed in in

PCx between TBI and non-TBI groups (Figures 2c, g, k), and 12 DEGs

(5 upregulated and 7 downregulated genes) were found in TCx

between two groups (Figures 2d, h, l). Heat maps, volcano and bar

charts depicted all DEGs in TBI and non-TBI, visualizing the findings

of the cluster analysis. Please refer to Supplementary Table S1 for a

comprehensive list of DEGs.
Frontiers in Immunology 05
3.2 Functional enrichment analysis of DEGs

To determine the function and pathways of the DEGs between TBI

and non-TBI, we used “cluster profiler” to enrich GO and KEGG

pathways. DEGs in four different brain regions were enriched and

analyzed. Among FWM, GO terms mainly involve histone lysine

demethylation, rough endoplasmic reticulum lumen, and

dioxygenase activity (Figure 3a), KEGG pathways primarily involve

the cAMP signaling pathway and neuroactive ligand-receptor

interaction (Figure 3b). In HIP, GO terms mainly involve oxygen

transport, haptoglobin-hemoglobin complex and haptoglobin binding

(Figure 3c), KEGG pathways primarily involve African

trypanosomiasis and Malaria (Figure 3d). In TCx, GO terms mainly

involve gas transport, haptoglobin-hemoglobin complex and

peroxidase activity (Figure 3e), KEGG pathways primarily involve

African trypanosomiasis and Malaria (Figure 3f). Unfortunately, due

to the large dispersion of DEGs in PCx, the enrichment analysis results

were not available. These results suggest that intracellular signal

transduction and cell signal transduction pathways are involved in

the progression of the TBI. We showed the top ten results of GO and

KEGG enrichment analysis. Please see Supplementary Table S2 for full

enrichment results.
FIGURE 1

Research design flow chart.
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3.3 PPI network analysis and identification
of hub genes

To further identify key genes, Venn diagrams were used to show

the distribution and overlap of DEGs in different brain regions. The

results showed that FWM and HIP had 2 identical DEGs, FWM and

PCx had 8 identical DEGs, and FWM and TCx had 1 identical DEGs,

HIP and TCx have 3 identical DEGs, totaling 14 DEGs (Figure 4a).

The STRING database was used to perform a PPI network analysis of

the 14 communal DEGs to clarify the interactions between DEGs,

revealing that 11 DEGs were closely related to each other

(Figures 4b). In addition, the DEGs were ranked using the five

algorithms DMNC, MCC, MNC, Degree and EPC in the

cytoHubba plug-in, and the top 5 DEGs were obtained for each

algorithm (Figures 4c–g). Subsequently, we analyzed the DEGs

common to these five algorithms through a venn diagram,

including RPS4Y1, KDM5D and NLGN4Y as hub genes (Figure 4h).
3.4 Diagnosis model construction of
Hub genes

We completed the validation of the Hub genes in GSE254880.

Further ROC curve analysis was conducted to verify the diagnostic

value of Hub gene in GSE254880. In the single gene diagnostic model,

the diagnostic value of the three hub genes RPS4Y1, KDM5D and

NLGN4Y was meaningful, with KDM5D having the highest

diagnostic value (AUC=0.90) (Figures 5a–c), suggesting that these

three hub genes may be an effective indicator for detecting TBI.
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3.5 Expression of KDM5D in TBI patients
and TBI rat

To further support the involvement of the three hub genes in

the pathogenesis of TBI, we intend to verify the protein expression

of candidate genes. The literature review revealed that studies have

shown that RPS4Y1 and NLGN4Y are related to TBI or brain injury

(25, 26). However, there are no relevant studies on KDM5D

and TBI.

KDM5D is considered a novel marker and requires further

investigation. We analyzed KDM5D mRNA expression in different

brain regions and found significant differences in FWM (P=0.0392)

and PCx (P=0.0453) (Figures 6a–d). Furthermore, we measured the

expression of KDM5D protein in the brain tissue of TBI rats.

Immunofluorescence staining showed that the expression of

KDM5D protein increased in the cortex of TBI rats compared to

control (Figures 6e, f), while there was no significant difference in

the hippocampus no (Figures 6g, h).
3.6 Immune cell infiltration analysis

To investigate the role of immune cells in HIP and PCx of TBI,

immune cell infiltration was analyzed in the HIP and PCx datasets

using the CIBERSORT algorithm. The analysis results of the HIP

dataset were shown in Figure 7a, and for PCx dataset in Figure 7c.

These color bar graph clearly illustrate changes in the composition

of immune cell subpopulations across the samples.
FIGURE 2

Identification of DEGs across four brain areas in TBI and non-TBI. (a–d) Cluster heat map displaying all DEGs in four brain regions between TBI and
non-TBI. (e–h) Volcano map highlighting DEGs between TBI and non-TBI, with upregulated genes marked in light red and downregulated in light
blue. The threshold was set to |log2FC (fold change)> 0, and p value < 0.05. (i–l) Bar charts illustrating DEGs in four brain areas of TBI and non-TBI.
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In the HIP dataset specifically, we examined the diversity in

immune cell makeup between the TBI and non-TBI samples. This

comparison revealed significant differences in the extent of

infiltration of two immune cell types and highlighted the

heterogeneity of immune responses associated with HIP.

Specifically, plasma cells and T cells CD8 were downregulated in

TBI (HIP) samples (Figure 7b).

Similarly, in the PCx dataset, the heterogeneity of immune cell

composition was assessed between TBI and non-TBI samples. The

results indicated significant differences in the infiltration of one type

of immune cell Neutrophils, which were downregulated in TBI

(PCx) samples (Figure 7d).
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3.7 Analysis of KDM5D in pan-cancer

One of the main hallmarks of TBI is the infiltration of different

immune cell subpopulations. We speculate that this may also impact

on tumor immune infiltration, so we aimed to further explore

whether TBI-related KDM5D is involved in cancer progression.

We used R software (version 3.6.4) to calculate the expression

difference between normal and tumor samples across various

cancer type, and used unpaired Wilcoxon Rank Sum and Signed

Rank Tests for significance analysis. We observed significant

upregulation in three tumors, including PAAD (Tumor: 0.92 ±

3.92, Normal: 0.81 ± 4.45, p=8.1e-4), ALL (Tumor: 1.29 ± 4.04,
FIGURE 3

Functional enrichment analysis of DEGs. (a, c, e) GO analysis of DEGs in FWM, HIP and TCx, respectively. (b, d, f) KEGG pathway analysis of DEGs in
FWM, HIP and TCx, respectively. P < 0.05.
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Normal: 0.39 ± 3.79, p=3.0e-3), and LAML (Tumor: 1.29 ± 4.04,

Normal: 0.39 ± 3.79, p=3.0e-3). Conversely, we observed significant

downregulation in 23 tumors, including GBM (Tumor: 0.57 ± 3.85,

Normal: 1.38 ± 3.81, p=4.2e-4), BRCA(Tumor:-3.96 ± 3.00,

Normal:0.82 ± 4.63,p=7.4e-18), CESC(Tumor:-5.14 ± 1.22,Normal:-

3.94 ± 1.08,p=4.2e-3), LUAD (Tumor:0.69 ± 4.09,Normal:2.35 ± 4.21,

p=8.1e-21), ESCA(Tumor:1.75 ± 2.39,Normal:2.04 ± 4.43,p=7.3e-9),

STES(Tumor:1.44 ± 2.78,Normal:1.87 ± 4.41,p=4.4e-19),KIRP

(Tumor:0.33 ± 2.58,Normal:2.19 ± 2.96,p=3.5e-18),KIPAN

(Tumor:1.05 ± 3.03,Normal:2.19 ± 2.96,p=2.4e-9),COAD

(Tumor:0.76 ± 3.68,Normal:1.57 ± 4.68,p=1.3e-10),COADREAD

(Tumor:0.77 ± 3.58,Normal:1.57 ± 4.66,p=7.0e-12), PRAD
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(Tumor:3.72 ± 0.84,Normal:4.93 ± 0.96,p=8.7e-35), STAD

(Tumor:1.27 ± 2.96,Normal:1.32 ± 4.32,p=4.4e-5), KIRC

(Tumor:1.53 ± 3.20,Normal:2.19 ± 2.96,p=2.2e-3), LUSC

(Tumor:1.53 ± 2.89,Normal:2.35 ± 4.21,p=1.0e-17), LIHC

(Tumor:0.92 ± 2.89,Normal:1.30 ± 3.32,p=2.8e-4), WT(Tumor:0.30

± 3.96,Normal:2.19 ± 2.96,p=0.04), SKCM(Tumor:0.23 ± 3.75,

Normal:2.00 ± 4.13,p=1.7e-11), BLCA(Tumor:1.80 ± 3.06,

Normal:2.54 ± 4.03,p=0.01),THCA(Tumor:0.14 ± 4.67,Normal:2.12

± 4.73,p=1.4e-19), OV(Tumor:- 5.88 ± 0.54,Normal:-3.67 ± 1.20,

p=9.6e-3), TGCT(Tumor:3.70 ± 1.04,Normal:4.78 ± 0.61,p=2.9e-24),

ACC(Tumor:-0.82 ± 4.05, Normal:1.46 ± 5.17,p=2.3e-4), KICH

(Tumor:0.33 ± 2.69,Normal:2.19 ± 2.96,p=9.1e-9) (Figure 8a).
FIGURE 4

PPI network analysis and identification of hub genes. (a) Venn diagrams showing the distribution and overlap of DEGs across four brain regions.
(b) PPI network highlighting communal hub genes. (c–h) Top scoring genes in various PPI network analysis.
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FIGURE 6

KDM5D expression in TBI patients and TBI rat. (a–d) Expression of KDM5D in four brain regions of TBI and non-TBI (GSE104687). (e, f) Expression of
Kdm5d in cortical areas of TBI rats (p=0.0383). (g, h) Expression of Kdm5d in hippocampus areas of TBI rats (p=0.2329). Blue fluorescence indicates
the nucleus, red fluorescence indicates Kdm5d and pink indicates the merge diagram. Scale bars: 50mm.
FIGURE 5

Diagnosis model construction of hub genes. ROC curve of diagnostic model based on three hub genes in GSE254880. (a) RPS4Y1 diagnostic model,
AUC=0.81. (b) KDM5D diagnostic model, AUC=0.90. (c) NLGN4Y Diagnosis model of, AUC=0.86.
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Furthermore, we performed an analysis of immune infiltration

of KDM5D in pan-cancer. We obtained immune infiltration scores

for a total of 6389 tumor samples in 43 tumor types. We used the

corr.test function of the R software package psych (version 2.1.6) to

calculate the Pearson’s correlation coefficient between genes and

immune infiltration scores in each tumor. In order to determine the

significantly correlated immune infiltration score, we observed that

the gene expression was significantly correlated with immune

infiltration in 10 cancer types, with 9 showing a significant

positive correlation, such as TCGA-ESCA (N=165, R=0.22,

p=3.7e-3), TCGA-STES(N=458,R=0.14,p=3.8e-3),TCGA-KIRP

(N=236,R=0.16,p=0.01), TCGA-KIPAN(N =695, R=0.23, p=6.2e-

10), TCGA-STAD (N=293, R=0.14, p=0.01), TCGA-KIRC (N=417,

R=0.10, p=0.05), TCGA -LUSC(N=414,R=0.16,p=1.1e-3), TCGA-

LAML(N=132,R=0.35,p=4.0e-5), and TCGA-PCPG(N=123,

R=0.20, p=0.03). There is 1 significant negative correlation, such

as TCGA-LUAD (N=327, R=-0.12, p=0.04) (Figure 8b). Please see

Supplementary Table S3 for tumor full name and abbreviation.
4 Discussion

TBI has the highest incidence among common neurological

diseases and poses a significant public health burden. TBI is

recognized not only as an acute disease but also as a chronic one

with long-term consequences, including an increased risk of

delayed neurodegeneration. Although blood-based protein

biomarkers have proven important in the assessment of TBI,
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most available assays are for research use only (27). Identifying

more meaningful biomarkers is crucial for the diagnosis, treatment

and prognosis of TBI. Transcript profiling is a promising tool for

uncovering molecular mechanisms and biomarkers. Fortunately, we

obtained transcriptome data of traumatic brain tissues from TBI

patients in the GEO database. Damaged brain tissue not only

reflects the pathological changes of the disease process (more

clinical effects), but is also significant for the screening key genes.

Additionally, for TBI patients, transcriptomic analysis and

validation of brain tissue can more accurately describe the physio

pathological changes of TBI.

In this study, we first identified the differential genes co-

expressed by four brain areas of TBI and non-TBI patients

through limma package, and obtained 44 DEGs (Figure 2,

Supplementary Table S1). Subsequently, we explored the common

biological functions and signaling pathways involved in these DEGs

through GO and KEGG enrichment analysis. The results indicated

that the mechanisms of TBI and non-TBI are mostly related to

molecular modifications and signal transduction pathways, which

could be the key mechanisms connecting the two.

The prominent enrichment of hemoglobin complex genes

(HBA1/HBB) among our DEGs suggests an intriguing connection

between erythrocyte extravasation and neuroinflammation post-TBI

(Figure 3). Our co-expression analysis revealed strong correlations

between HBA1 expression and microglial activation markers,

supporting recent findings that hemoglobin breakdown products

can activate TLR4 signaling in microglia (28). Clinically, we

observed significant associations between HBB expression and both
FIGURE 7

Analysis of immune cell infiltration. (a) Color bar plot illustrating the distribution of 22 immune cell types across various HIP samples. (b) Boxplot
showing the expression profiles of two immune cell significant dysregulated in TBI compared to non-TBI. (c) Color bar plot illustrating the
distribution of 22 immune cell types across PCx samples. (d) Boxplot showing the expression profile of one immune cell type significant
dysregulated in TBI compared to non-TBI. *P<0.05, **P<0.01.
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interleukin-6 (IL-6) levels and peripheral NOD-like Receptor (NLR)

(29), suggesting these genes may serve as biomarkers for systemic

inflammatory response after TBI. This aligns with Chen’s (30)

demonstration of hemoglobin-driven inflammasome activation in

subarachnoid hemorrhage models. TBI-induced brain damage

manifests as excitotoxicity, neuroinflammation, cytokine damage,

oxidative damage, and ultimately cell death (31). Studies have

shown that it can prevent neuronal death and dysfunction in TBI

by using of calpain inhibitors (AK295, SJA6017) and neurotrophic

factors (NGF, BDNF) (32). Brain damage disrupts normal signaling

pathways, leading to changes in brain function. Normally, in the

central nervous system (CNS), signals are transmitted by various

neurotransmitters such as gamma-aminobutyric acid (GABA),

glutamate, glycine, norepinephrine, dopamine and serotonin. TBI

may alter the levels of these neurotransmitters, ultimately disrupting

the brain’s normal function (33). In summary, through enrichment

analysis and previous studies, we believe that molecular modifications

and signal transduction pathways are critical mechanisms of TBI.
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To further identify key genes, we used Venn diagrams to show the

distribution and overlap of DEGs in four brain regions (FWM, HIP,

PCx, TCx), identifying 14 DEGs. We determined the protein

interaction relationship of those DEGs through the STRING

database, revealing that 11 DEGs were closely related (Figures 4a, b).

However, we still could not obtain the Hub gene. Further analysis

using the CytoHubba module algorithm analysis in Cytoscape

identified 3 hub genes, including RPS4Y1, KDM5D and NLGN4Y

(Figures 4c–h). Notably, validation results from external data sets

(neuronal exosomes samples from serum) showed that RPS4Y1,

KDM5D and NLGN4Y have high diagnostic value, with KDM5D

having the highest diagnostic value (AUC=0.90) (Figure 5).

This suggests that these hub genes can serve as biomarkers in

both damaged brain tissue and serum, demonstrating high

diagnostic significance.

Ribosomal protein S4 Y-linked 1 (RPS4Y1) is a member of the

ribosomal protein S4E family and is encoded as ribosomal protein

S4 located on chromosome p11.31. RPS4Y1 is ubiquitously
FIGURE 8

Analysis of KDM5D in pan-cancer. (a) Differences expression of KDM5D between tumors and normal tissues in the Cancer Genome Atlas (TCGA).
*P<0.05, ** P<0.01 and *** P<0.001. (b) Immune correlation analysis of KDM5D across various immune infiltrates in human tumors. Positive values
indicate positive correlation, and negative values indicate negative correlation.
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expressed and plays an important role in correct development (34,

35). RPS4Y1 has been used as a marker for a variety of diseases,

such as the disease resistance gene for corticosteroid combined with

cyclosporine A treatment in Vogt-Koyanagi-Harada, and as a

candidate gene in multiple sclerosis (36, 37). The latest single-cell

transcriptome sequencing found that RPS4Y1 was up-regulated in

four cell clusters: oligodendrocytes, microglia, astrocytes and

neurons in post-traumatic brain tissue (26), which is consistent

with our findings. Furthermore, there are studies suggesting that

abnormal expression of RPS4Y1 may affect the signal transduction

of signal transducer and activator of transcription 3 (STAT3). For

instance, in preeclampsia induced hypertension, abnormal

expression of RPS4Y1 impairs STAT3 signaling, thereby

inhibiting the migration and invasion of trophoblast cells (34).

STAT3 is known to have a protective effect on ischemic brain

injury; however, it is still unclear which type of brain cell mediates

this effect and through what mechanism. Research has shown that

endothelial STAT3 may help prevent ischemic brain injury by

protecting the endothelial function of cerebral blood vessels and

the integrity of the blood-brain barrier (38). Therefore, it’s

conceivable that abnormal expression of RPS4Y1 in TBI may

cause dysfunction of cerebral arterial endothelial cells. For

example, if RPS4Y1 overexpression damages the protective effect

of STAT3 on cerebral blood vessels, it may exacerbate TBI.

Identifying the potential mechanisms of RPS4Y1 and STAT3

action is a novel research direction for future studies.

Neuroligin 4Y (NLGN4Y) is a member of the neuroligin gene

family located in Yq11 (39). Previous research found that NLGN4Y

gene mutations play a crucial role in male homosexuality and

autism. These mutations often lead to severe neurodevelopmental

disorders (40, 41). In a report of pediatric traumatic brain injury,

NLGN4Y may be involved in the convergence of sex differences

with TBI, but no further studies have been conducted (42). In short,

NLGN4Y as a gene related to neurodevelopment, deserves further

exploration for its connection with TBI.

Lysine-specific demethylase 5D (KDM5D), a member of the

KDM5 family, is a male-specific histone demethylase (43). Histone

methylation and demethylation play crucial roles in gene regulation

and biological events during disease development, including

neurological disorders and multiple cancer types. Similar to other

KDM5 family members, KDM5D enables dimethyl and trimethyl

H3K4 demethylation. KDM5 is involved in the pathogenesis of

various cancers by inhibiting the expression of certain genes at the

transcriptional level (44–46). TBI can lead to cognitive decline and

impaired memory consolidation, as the cerebral cortex and

hippocampus are critical for controlling cognitive functions and

social behavior (47, 48). In mice, Kdm5d is expressed in the cortex

and hippocampus, which may be associated with the prevalence of

multiple neurological and psychiatric disorders, such as multiple

sclerosis, schizophrenia and autism (48). In our study, we found

that compared with non-TBI, the expression of KDM5D in the four

brain regions of TBI patients showed an upward trend, with

significant difference in FWM and PCx (Figures 6a–d).

Immunofluorescence experiments on brain tissue of TBI rats also

showed that Kdm5d expression significantly increased in the
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cortical area, but no obvious difference in the hippocampus

(Figures 6e–h). It is worth noting that Kdm5d is normally

expressed in the cortex of the control rats. KDM5D is known to

be physiologically expressed in the brain, particularly in the cortex,

according to the Human Protein Atlas and functional studies

(https://www.proteinatlas.org/). This basal expression likely

reflects KDM5D’s normal roles in cortical functions, such as

epigenetic regulation of gene expression and maintaining

neuronal homeostasis (49, 50).The results of clinical trials and

animal experiments are consistent, indicating that KDM5D

expression changes after TBI occur mainly in cortical areas. Our

key finding is the significant upregulation of KDM5D in the cortex

following TBI, not its mere presence in the control brain. It is this

marked increase in KDM5D expression in the context of TBI that

points to its pathological role and diagnostic potential.

KDM5D encodes the histone H3 demethylase on K4, and

H3K27me3 demethylase has been confirmed to activate microglia

to produce inflammation through STAT and TLR signaling

pathways (48, 51). This is similar to microglial activation after

TBI (52). In addition, the epigenetic regulatory function of

KDM5D, as a histone demethylase, suggests a potential

mechanism for sustained changes in gene expression in microglia,

potentially leading to prolonged activation (53). H3K27me3 was

known to induce microglia to express pro-inflammatory genes

through TLR (54), suggesting that KDM5D-mediated

demethylation at specific gene loci in microglia could result in the

sustained upregulation of pro-inflammatory mediators or the

downregulation of genes responsible for resolving inflammation,

thus contributing to a chronic activated state.

TLR signaling, particularly TLR4 which is known to be

activated by various damage associated molecular patterns

(DAMPs) released after TBI, is a potent inducer of pro-

inflammatory responses in microglia. If KDM5D activation in

microglia promotes TLR signaling, it could amplify the release of

a range of DAMPs typically associated with TLR activation, such as

High Mobility Group Box 1 (HMGB1), heat-shock proteins and

extracellular ATP (55, 56). These DAMPs, in turn, can further

propagate neuroinflammation and maintain prolonged microglial

activation, potentially creating a feed-forward loop that sustains

chronic inflammation in the TBI milieu (56–58).

Moreover, it’s conceivable that KDM5D-mediated epigenetic

modifications could specifically influence the expression of genes

encoding for certain types of DAMPs in microglia. For instance, if

KDM5D demethylates and activates the promoters of genes

encoding for pro-inflammatory cytokines or chemokines that can

act as DAMPs (e.g., TNF-a, IL-1b, CCL2), this could result in a

sustained release of these specific DAMPs, contributing to

prolonged inflammation and microglial activation. Further

research is warranted to investigate the precise DAMPs released

by microglia upon KDM5D activation and TLR signaling in the

context of TBI, and to elucidate the epigenetic mechanisms by

which KDM5D regulates their expression. Identifying these specific

DAMPs and the underlying mechanisms will be crucial for

developing targeted therapeutic strategies to modulate microglial

activation and neuroinflammation in TBI.
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As mentioned before, we found that the expression of KDM5D

in the cortex and hippocampus was completely inconsistent. We

speculated that this may be related to immune cells. Through

immune infiltration analysis of PCx and HIP brain regions in

GSE104687, it was found that the expression of neutrophils in

PCx was reduced in TBI (Figure 7). Previous studies have shown

that TBI is accompanied by an increase in neutrophils, but most

studies are limited to patients with mild and acute TBI or animal

experiments. There are few studies on patients with severe or even

fatal TBI (59). Recent reports suggest that neutrophil plasticity and

crosstalk with other cells also complicate their function in TBI.

Therefore, it is premature to conclude whether neutrophils are

beneficial or detrimental in TBI. Neutrophils act in a well-defined

and limited manner, as the protective or deleterious effects of

neutrophils depend on the stage and type of injury, with which

they interact. However, the molecular mechanisms of how the brain

environment modulates neutrophil function and how neutrophil

function affects brain injury and repair have not been well

elucidated. More research is required to elucidate the complex

roles of neutrophils at various stages of TBI and the underlying

mechanisms. Future advancements may pave the way for the

developing novel therapeutic strategies aimed at selectively

eliminate the harmful effects of neutrophils, while preserving the

beneficial impacts in TBI (60). Studies have showed that KDM5D is

involved in neutrophil degranulation, activation, and neutrophil-

mediated immune response, but the detailed molecular mechanism

remain unreported (61). This finding may offer a promising

direction for the diagnosing and prognosticating of TBI. Cancer is

one of the most challenging global health concerns, sharing

metabolic and risk factor characteristics with other diseases.

Therefore, it is plausible that TBI biomarkers could also be used

in tumor prediction strategies. Significant down-regulation of

KDM5D was observed in 23 types of tumors, whereas up-

regulation occurred in only 3 types of tumors (Figure 8a).

Exploring KDM5D expression in cancer infiltration, we observed

significant correlation with immune infiltration levels in 10 cancers

(Figure 8b). This suggested a potentially adverse prognostic impact

of effect.

At present, there is limited literature directly studying the role

of KDM5D in TBI. However, based on its known functions in other

diseases such as cancer and cardiovascular disease (CVD), further

speculation on the potential mechanisms of KDM5D in TBI (such

as cerebral vascular injury, endothelial dysfunction, or vascular

inflammation) is particularly interesting. A proteomics study of

CVD found that overexpression of KDM5D in patients with CVD

resulted in reduced protein levels of their substrate (H3K4me3) and

dysfunction of vascular endothelial cells (62). In TBI, cerebral

vascular injury may lead to local ischemia and hypoxia, which in

turn can cause changes in epigenetic modifications (63).

Overexpression of KDM5D may exacerbate cerebral vascular

injury by reducing H3K4me3 levels, inhibiting the expression of

vascular repair and protective genes, such as endothelial nitric oxide

synthase (eNOS) and phosphate and tension homology deleted on

chromosome ten (PTEN). And KDM5D was found to be related to

endothelial injury and neurological inflammation of cerebral
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microvessels (64, 65), although it did not directly indicate the role

of KDM5D in TBI, which provides a new idea for our subsequent

in-depth research.

While our findings highlight KDM5D as a promising diagnostic

biomarker for TBI, we should acknowledge a significant limitation:

the potential overlap in KDM5D expression with cancer. KDM5D is

also expressed and dysregulated in various cancers, raising concerns

about its specificity as a TBI-specific biomarker. Indeed, studies

have reported altered KDM5D expression in a wide range

of malignancies, with downregulation observed in clear cell

renal cell carcinoma (66) and upregulation in colon cancer (67).

This complex expression pattern in cancer underscores the

challenge of relying solely on KDM5D to differentiate TBI from

cancer, or even to diagnose TBI in patients with pre-existing or

concurrent cancer.

In cancer, KDM5D alterations are often linked to epigenetic

reprogramming and oncogenic signaling pathways, contributing to

tumor development and progression (68). In contrast, in TBI, we

propose that KDM5D upregulation is primarily triggered by

neuroinflammation, cellular stress, and the cascade of secondary

injury events following the initial trauma. This difference in

upstream triggers could potentially lead to distinct downstream

effects and temporal expression patterns of KDM5D in TBI versus

cancer. To address the specificity limitations of KDM5D as a

standalone TBI biomarker, we propose a multi-faceted diagnostic

strategy. Firstly, combining KDM5D with established TBI

biomarkers, such as Glial Fibrillary Acidic Protein (GFAP) and

Neurofilament Light chain (NFL) (69), which exhibit high axonal

specificity and are less likely to be influenced by cancer could

significantly enhance diagnostic accuracy.

Secondly, incorporating cancer-specific markers, such as

Carcinoembryonic Antigen (CEA) and Cancer Antigen 125

(CA125) (70), for individuals at risk or suspected of having

cancer, could aid in differential diagnosis. Thirdly, integrating

biomarker data with clinical findings and neuroimaging

techniques would provide a more comprehensive diagnostic

picture, especially in complex scenarios.

A particularly challenging clinical scenario arises when an

individual presents with symptoms potentially indicative of both

TBI and cancer, or when a patient with known cancer sustains a

head injury. In such cases, relying solely on KDM5D might lead to

misdiagnosis or an inaccurate assessment of injury severity or cancer

progression, as KDM5D levels could be elevated due to either or both

conditions. Our proposed multi-biomarker and multi-modal

approach is specifically designed to mitigate this challenge and

improve diagnostic accuracy in these complex clinical presentations.
5 Conclusion

Based on the bioinformatics analysis and animal experimental

verification, we propose that KDM5D could serve as a potential

function as a co-biomarker for predicting and diagnosing TBI and

pan-cancer. Additionally, investigating KDM5D may lead to the

development of novel serum markers, providing new indicators for
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clinical liquid biopsy and potentially enhancing strategies for TBI

and cancer prevention.
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