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Neutrophils in colorectal cancer:
mechanisms, prognostic value,
and therapeutic implications
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Qianwen Zhang, Junqi Xiong and Yang Liu*
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Science and Technology, Wuhan, China
Neutrophils, the most abundant myeloid cells in human peripheral blood, serve

as the first defense line against infection and are also significantly involved in the

initiation and progression of cancer. In colorectal cancer (CRC), neutrophils

exhibit a dual function by promoting tumor events and exerting antitumor

activity, which is related to the heterogeneity of neutrophils. The neutrophil

extracellular traps (NETs), gut microbiota, and various cells within the tumor

microenvironment (TME) are involved in shaping the heterogeneous function of

neutrophils. This article provides an updated overview of the complex functions

and underlying mechanisms of neutrophils in CRC and their pivotal role in

guiding prognosis assessment and therapeutic strategies, aiming to offer novel

insights into neutrophil-associated treatment approaches for CRC.
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Introduction

Colorectal cancer (CRC) is among the most prevalent malignant tumors worldwide, with

its incidence ranking fourth and mortality ranking third, according to the latest global cancer

data (1). The CRC encompasses hereditary, sporadic, and colitis-associated colorectal cancer

(CAC) forms (2). Indeed, extensive epidemiological and experimental studies have

consistently revealed that chronic inflammation plays a pivotal role in the initiation and

progression of CRC (3–6). Depending on the stage at which inflammation affects CRC

development, it can be categorized into three types: pre-tumor chronic inflammation, tumor-

triggered inflammation, and treatment-induced inflammation. These processes activate

tumor-promoting innate immune cells, inhibit anti-tumor adaptive immune cells, and

establish an immunosuppressive tumor microenvironment (TME) (5).

Neutrophils serve as the primary line of defense against microbial infection by

employing various mechanisms: (1) phagocytosis, wherein they engulf pathogenic

microorganisms to form phagocytic vacuoles and generate toxic chemicals for microbial

eradication (7); (2) degranulation, involving the controlled release of cytotoxic enzymes

and proteases from intracellular vesicles to eliminate microorganisms (8); and (3) the
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formation of neutrophil extracellular traps (NETs), which are

prote in-DNA structures that ensnare and neutra l ize

microorganisms (9). These processes encompass both oxidative

and non-oxidative pathways that drive neutrophils to exert their

antimicrobial effects with potent killing capabilities (10, 11). It has

been traditionally believed that circulating neutrophils cannot

proliferate after reaching maturity, leading to rapid depletion

under steady-state conditions with a half-life of less than 1 day

(12). However, it is important to note that neutrophils exhibit high

plasticity and can transition into different functional states in

various disease contexts, consequently impacting their lifespan

(13). Recent studies have demonstrated that neutrophils recruited

to tissues can undergo reverse migration back into the bloodstream

after functioning and can even migrate to distant organs to induce

inflammatory responses (14, 15).

Neutrophils not only play a crucial role in the body’s defense

against infection, but also exert significant influence in tissue repair,

autoimmune diseases, and tumor development (16–18). Due to the

heterogeneity and plasticity of the tumor-associated neutrophils

(TANs) within the TME, the precise subtype characterization of

TAN has become a crucial research focus. Neutrophils can be

polarized into TAN1 or TAN2 subtypes in the TME. TAN1

exhibits increased expression of immune-activating cytokines and

chemokines, along with reduced arginase. While TAN2

demonstrates elevated expression of angiogenic factors, stroma-

degrading enzymes, and substantial arginase, exerting

immunosuppressive effects (19). The absence of widely recognized

subgroup markers has hindered comprehension of neutrophil

heterogeneity. Consequently, higher-dimensional techniques are

needed for investigation. A study employed time-of-flight mass

spectrometry to identify seven neutrophil clusters in human

melanoma: the CD117+CD66b+ progenitor population and

Cneut1 to Cneut6. It shows the heterogeneity in neutrophil

differentiation. Notably, Cneut2 has the highest expression of

CD101, CD10, and CD16, indicating its maturity (20).

Furthermore, recent advancements in single-cell RNA sequencing

(scRNA-seq) analysis have identified distinct TAN subsets in

cancers. The four TAN subgroups in pancreatic ductal

adenocarcinoma are designated as TAN1 to TAN4. TAN1 is

characterized by elevated expression of VEGFA, PLAU, and

LGALS3. TAN2 expresses inflammation-related genes NLRP3 and

PDE4B. TAN3 is a transitional stage with high expression of

transendothelial migration genes. TAN4 preferentially expresses

interferon-stimulated genes, such as IFIT1, IFIT2, and ISG1 (21).

The six TAN subgroups identified in primary liver cancer are

N e u _ 0 1 _MMP8 , N e u _ 0 7 _APOA2 , N e u _ 0 8 _CD74 ,

Neu_09_IFIT1, Neu_10_SPP1, and Neu_11_CCL4. Subgroups

Neu_09/10/11 are associated with a poorer prognosis. The

expression of CD274, encoding PD-L1, is elevated in TANs,

highest in the Neu_09_IFIT1 subgroup (22). To further

investigate the tissue and phenotype plasticity of neutrophils,

researchers integrated transcriptome data from 225 samples

across 17 cancers. The analysis revealed substantial heterogeneity,

characterized by ten distinct cell states, including S100A12+, HLA-

DR+CD74+, VEGFA+SPP1+, TXNIP+, CXCL8+IL1B+, CXCR2+,
Frontiers in Immunology 02
IFIT1+, ISG15+, MMP9+, NFKBIZ+, HIF1A+, and ARG1+

neutrophils (23).

All these indicate that neutrophils are not single-function cells

with terminal differentiation, but rather their differentiation and

maturation trajectories can be significantly altered under specific

conditions, leading to diverse functional outcomes. Here, we discuss

neutrophils’ multifaceted contributions to CRC development,

encompassing NET formation, interactions with gut microbiota,

and intricate crosstalk within the TME. Furthermore, we discuss

the inhibitory effect of neutrophils on CRC progression and their

potential to guide the prognosis and treatment of CRC. We hope to

provide novel perspectives for optimizing CRC treatment strategies.
Methods

Literature search

Two independent researchers conducted a comprehensive

search to identify the studies published in databases, such as

PubMed and Embase, from January 1st, 2000, to November 30th,

2024. The following medical subject headings (MeSH) or keywords

were used: “colorectal cancer,” or “colorectal carcinoma,” or “colon

cancer,” or “colon carcinoma,” or “rectum cancer,” or “rectum

carcinoma,” or “CRC,” and “neutrophi l ,” or “TAN,”

or “inflammation”.
Selection criteria

The inclusion criteria were as follows: (1) original experimental

studies on the roles of neutrophils in the development of CRC, or

sequencing analysis of neutrophils in CRC, or bioinformatics

analysis, or meta-analysis. (2) full text in English; (3) studies with

necessary ethical approvals.

The exclusion criteria were as follows: (1) studies involving

human or animal subjects without ethical approval; (2) expert

opinions or comments.

The above methods include the literature required for the main

body of the review. In addition to CRC, we also referred to some

relevant studies on other cancers to further discuss the function

of neutrophils.
Neutrophil recruitment in CRC

The classical process of intravascular neutrophil recruitment

during inflammation involves five coordinated stages: tethering,

rolling, adhesion, crawling, and transmigration (24). The entire

process is regulated by a variety of inflammatory-related molecules,

including chemoattractant subfamilies (e.g., chemokines and their

receptors, chemotactic lipids, complement anaphylatoxins),

cytokines, integrins, and cell adhesion molecules (24–26). In

addition to the classical molecules mentioned above, a recent

study discovered that neutrophil surface RNAs with glycan
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modifications facilitate neutrophil recruitment and promote

neutrophil-endothelial interactions by binding to P-selectin on

endothelial cells (27).

Tumor progression is always regarded as a chronic

inflammatory process (28, 29), during which the recruitment

pattern of neutrophils is consistent with physiological

inflammation. Chemotactic compositions present in the TME

mainly include CXCL8 family chemokines (e.g., CXCL1/2/3/5/6/

7/8) (30), cytokine interleukin (e.g. IL-1b, IL-8, IL-17) (31–33), and
the associated signaling pathways (e.g., TGF-b/Smad3) (34),

responsible for neutrophil recruitment and polarization. In CRC,

chemokines (e.g., CXCL1/2) and cytokines (e.g., IL-8, and TGFb)
(35–37) are also involved in regulating neutrophil enrichment to the

TME and facilitating their polarization towards TAN2 phenotype,

while IL-22 plays a role in recruiting beneficial neutrophils (38).
Protumoral role of neutrophils in CRC

Neutrophils are increased in peripheral blood and tumors of

patients with CRC, as compared to healthy donor peripheral blood

and paired adjacent non-tumor colon tissue, and are associated with

higher cancer stage and histological grade (39). The phenomenon

has been found that ulcerative colitis patients with more neutrophil

infiltration are at a higher risk of developing CAC (40). In both

colitis and CAC models, neutrophil infiltration increased as the

disease progressed, and neutrophils may promote the transition

from colitis to CAC (40). The above studies suggest neutrophils are

important in the development and progression of CRC.
NETs

NETs are extracellular network structures consisting of

decondensed chromatin, histones, and granzymes (41). NETs serve

to capture and eliminate extracellular pathogens, thereby

contributing to the body’s defense against infections (42). Emerging

research indicates that NETs also play an important role in non-

communicable diseases, encompassing autoimmune diseases, allergic

diseases, blood clotting disorders and cancers (43). Notably, NETs

possess potent tumorigenic properties and contribute to the

initiation, spread, and thrombotic complications associated with

cancer (44). An Ewing sarcoma study first demonstrated that

activation of intratumor TANs resulted in NETs releasing, which

was associated with a poor prognosis (45). NETs can capture

circulating tumor cells and wake up tumor cells in vivo (46–49).

Indeed, NETs promote cancer progression through direct promotion

of cell growth and facilitating tumor metastasis in CRC (Figure 1).

NETs can directly modulate the metabolic program of tumor

cells in murine models of metastatic CRC. Under a hypoxia state,

tumor cells in metastatic CRC models release damage-associated

molecular pattern proteins, such as HMGB1, which recruit

neutrophils to the TME and trigger NET formation. Then,

neutrophil elastase released by NETs activates TLR4 on tumor

cells, leading to the upregulation of PGC1a , enhanced
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mitochondrial biogenesis , and accelerated tumor cel l

proliferation (50).

NETs promote liver metastasis in CRC in vivo and in vitro. A

study showed that NETs were frequently detected in CRC tissue

slices (37/85, 44%). It revealed a preferential localization of NETs in

the central or front of invasion within CRC tissue sections and a

significant correlation with tumor grade and lymph node

metastasis. The purified NETs induce filamentous foot formation

and cell migration in CRC cell lines, suggesting their potential to

activate epithelial-mesenchymal transition-like processes and

promote progression and metastasis in CRC (51). In vivo and in

vitro investigations discovered that NETs promote liver metastasis

in CRC by inducing the expression of IL-8 in tumor cells.

Overexpression of IL-8 causes the activation of neutrophils to

release more NETs, which further promotes liver metastasis (52).

CEACAM1 is an important molecule on NETs, facilitating the

adhesion and migration of colon tumor cells at metastatic sites by

mediating the interaction between tumor cells and NETs, as well as

weakening endothelial connections (53). NETs create an

immunosuppressive niche to facilitate the growth and

translocation of the tumor. NETs directly protect the tumor cells

from the immune cells by shielding tumor cells from cytotoxicity

mediated by CD8+ T cells and natural killer (NK) cells (54). In the

mouse CRC model, NETs have been shown to cause dysfunction of

T cell metabolism and function via the PD-1/PD-L1 signaling

pathway, ultimately promoting tumor growth (55). Thus, NETs

contribute to the development of CRC tumors in several ways.

Beyond the roles in the development and metastasis of CRC,

NETs are involved in the formation of thrombin antithrombin

(TAT) and blood vessels, thereby causing adverse clinical outcomes.

There are few studies on how NETs affect angiogenesis in CRC.

During angiogenesis, NETs support human endothelial cells’

proliferation and tubular capacity in vitro (56, 57). NETs in CRC

individuals significantly increase the formation of TAT complexes

and fibrinogen fibril, inducing endothelial cells to exhibit a

procoagulant phenotype, resulting in enhanced platelets

procoagulant activity by inducing phosphatidylserine exposure to

platelets (58). Furthermore, platelets from patients with CRC

stimulate healthy neutrophils to produce NETs (58). Thus,

inhibition of NET is an important strategy for preventing tumor-

related thrombosis in CRC patients.

The majority of studies have highlighted the pro-tumor effects of

NETs but also show negative effects during tumor chemotherapy. For

instance, research has demonstrated that chemotherapy-induced IL-

1b can trigger NET formation, which subsequently activates the TGF-

b signaling pathway in tumor cells, promoting epithelial-

mesenchymal transition and chemotherapy resistance in breast

cancer lung metastasis (59). However, a recent study has revealed

an unexpected outcome: chemotherapy-induced NETs can inhibit

CRC tumor growth. The combination of the glutaminase inhibitor

CB-839 and 5-fluorouracil induces IL-8 expression in PiK3CA-

mutated CRC cells, attracting neutrophils to tumor tissues, inducing

NET formation and releasing Cathepsin G. Cathepsin G enters tumor

cells through the cell surface protein RAGE, leading to mitochondrial

translocation of pro-apoptotic BAX and triggering apoptosis in tumor
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cells (60). This study significantly enhances our understanding of the

complex roles of neutrophils and NETs in anti-cancer therapy.
Crosstalk with gut microbiota

Previous studies have established a correlation between

dysregulation of the gut microbiota and the development of CRC.

The gut microbiota, closely associated with CRC, constitutes a

crucial component of the TME. Certain bacteria, such as

Fusobacterium nucleatum (F. nucleatum), Escherichia coli, and

Peptostreptococcus spp, are presumed to be pro-carcinogenic in

CRC and were found to be abundant in patients, while potentially

protective bacteria, including Roseburia, Clostridium, and

Bifidobacterium were decreased (4). Research has indicated that

the gut microbiota can impact the development of CRC by releasing

various metabolites, proteins, and macromolecules that interact

with colon epithelial cells and immune cells (61).

Neutrophils, as an integral part of immune cells, are known to

play a significant role in the onset and progression of CRC through

their interactions with the gut microbiota (Figure 2). Using

fluorescence in situ hybridization and double RNA sequencing

technique, researchers also discovered a novel association between

Bacteroides fragilis and neutrophil infiltration in CRC (62). CRC is
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more prevalent in individuals with obesity (63, 64). Indeed, A recent

study demonstrated an enrichment of neutrophils in visceral

adipose tissue (VAT) and the presence of bacteria, primarily

Streptococcaceae and Ruminococaceae, in the VAT of obese

individuals. It has been revealed that obesity-induced

translocation of gut microbiota leads to infiltration of neutrophils

in VAT, followed by activation by bacteria or their metabolites,

resulting in pro-inflammatory and anti-apoptotic functions (65).

Peptostreptococcus anaerobius has been found to promote the

development of CRC and modulate tumor immunity. In

ApcMin+/+ mice treated with Peptostreptococcus anaerobius,

myeloid suppressor cells, tumor-associated macrophages, and

TANs were significantly expanded, which are linked to chronic

inflammation and tumor progression (66). Invariant natural killer T

cells (iNKTs) represent an evolutionarily conserved subset of

lymphocytes situated at the interface between innate and adaptive

immunity. The study revealed that tumor-infiltrating iNKTs

promoted tumorigenesis in CRC patients. F. nucleatum can

induce iNKTs cell-mediated recruitment of neutrophils, which

inhibit the adaptive immune response in cancer, by expressing IL-

17 and GM-CSF (67). F. nucleatum infection has been shown to

activate TGF-b, a critical signaling pathway that regulates TAN

differentiation (68). Current findings indicate that CRC with a high

abundance of F. nucleatum have increased neutrophil counts and
FIGURE 1

Roles of NETs in tumor development, metastasis, and thrombogenesis in CRC. Levels of NETs are enhanced by tumor-derived damage-associated
molecular pattern proteins (such as HMGB1). NETs release elastase and promote tumor cell proliferation by enhancing their mitochondrial
biogenesis in the TLR4/PGC1a-pathway. In addition, NETs enhance liver metastases in an IL-8 or CEACAM1-dependent way. The NET formation is
enhanced by tumor cells-derived IL-8. CEACAM1, anchored on NETs, facilitates the adhesion and migration of tumor cells by weakening endothelial
connections. NETs create an immunosuppressive niche and protect tumor cells from cytotoxicity mediated by CD8+ T cells and NK cells. NETs
induce thrombogenesis by increasing the expression of TAT complexes and fibrinogen fibrils, and the procoagulant environment enhances the levels
of NETs in turn.
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elevated levels of NETs. F. nucleatum induces the formation and

release of extensive NETs by activating TLR4-ROS and NOD1/2

signaling, thereby promoting the growth and metastasis of

CRC (69).

Bacteria translocation not only facilitates the proliferation of

tumor cells at the primary site but also enhances tumor metastasis.

Various bacterial strains have been demonstrated to activate innate

and adaptive immune cells, thereby amplifying inflammation at the

primary site and compromising intestinal barrier function (70).

After damaging the barrier function of the gut, bacteria migrate

from the lumen through the blood circulation to the liver,

promoting the recruitment of neutrophils in metastatic lesions

and establishing a pro-inflammatory immune microenvironment

conducive to pre-metastatic niche formation in the liver (71, 72).
Crosstalk with cells in the TME

The TME consists of cellular components, including tumor

cells, immune cells, endothelial cells, neurons, etc., as well as

extracellular components such as extracellular matrix,

extracellular vesicles, and chemokines (73–75). Further study

showed that the TME was classified into five distinct states based

on the scRNA-seq analysis: immune activation, immune

suppression mediated by myeloid or stromal cells, immune

exclusion, and immune residence phenotypes (22). Crosstalk

between neutrophils and various components in the TME

contributes to creating a favorable milieu for tumor initiation and

advancement (Figure 3).
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Communication between various cells in the TME and

neutrophils promotes CRC development. The stromal cell-derived

factor-1 (CXCL12/SDF-1) facilitates the accumulation of

neutrophils expressing high levels of CD15 in CRC tumors, in

which case, CD8+ T cells produce high levels of Granzyme K,

subsequently diminishing E-cadherin on the intestinal epithelium

and promotes tumor progression (76). Epithelial NOTCH1

signaling drives metastasis through TGFb-dependent neutrophil

recruitment, which always leads to poor prognostic human CRC

subtypes (CMS4 and CRIS-B) (77). Apoptotic tumor cells release a

number of neutrophil chemokines, such as IL-8, which strongly

attract neutrophils into the tumor (52). The neighboring

macrophages facilitate neutrophil activation to accelerate the

development of an immunosuppressive TME, potentially

contributing to tumor recurrence after chemotherapy-induced

apoptosis (35). FGF19 has been identified as a tumorigenic gene

in human cancers (78–80). It activates the autocrine of IL-1a
through the FGFR4-JAK2-STAT3 pathway, leading to the

polarization of hepatic stellate cells into inflammatory tumor-

associated fibroblasts (81). These fibroblasts play a role in

promoting neutrophil infiltration and NET release in liver

metastasis niches by secreting complement C5a and IL‐1b,
thereby facilitating the colonization of CRC cells (81). In

addition, TANs enhance the migration of CRC cells through

CD98hc-xCT via secreting anterior gradient-2 (82).

Neutrophils also influence the state of other immune cells,

forming an immunosuppressive TME. T cell‐mediated anti-tumor

immune response correlates with favorable disease outcome in

cancer immunotherapy. High level of T cell infiltration in CRC is
FIGURE 2

Involvements of neutrophils through interaction with gut microbiota in CRC. Peptostreptococcus anaerobius (P. anaerobius) and Fusobacterium
nucleatum (F. nucleatum) possess pro-tumor activities. P. anaerobius promotes the proliferation of TANs. F. nucleatum enhances the expression of
iNKT cell-derived IL-17 and GM-CSF, which further promotes the expansion of TANs. F. nucleatum also facilitates the differentiation of TANs to
TAN2 by activating the TGF-b pathway. Furthermore, by activating TLR4-ROS and NOD1/2 signalings, F. nucleatum induces the formation and
release of extensive NETs, thereby promoting tumor growth and metastasis. In addition, high levels of inflammation induced by the gut microbiota
facilitate liver metastasis niche by compromising the intestinal barrier.
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FIGURE 3

Mechanisms for tumor promotion effects of neutrophils through crosstalk with the TME. (A) Crosstalk with several types of cells in TME. The stromal
cells facilitate the accumulation of CD15+ neutrophils by releasing stromal cell-derived factor-1 (SDF-1). In this case, CD8+ T cells produce
Granzyme K, diminishing E-cadherin on the intestinal epithelium. Activation of Epithelial NOTCH1 promotes TGFb-dependent neutrophil
recruitment. Apoptotic tumor cells release several neutrophil chemokines and attract neutrophils into the tumor. Tumor cells promote polarization
of hepatic stellate cells into inflammatory cancer-associated fibroblasts by releasing fibroblast growth factor 19 (FGF19). These fibroblasts facilitate
colonizing tumor cells in the liver by promoting neutrophil infiltration and NET release in liver metastasis niches. (B) Crosstalk with other immune
cells in TME. Neutrophils suppress the activities of T cells by releasing metalloproteinase (MP) to activate the TGF-b. Neutrophils also promote T-cell
exhaustion via CD80/CD86-CTLA4 signaling. CD16+ neutrophils competitively inhibit cholesterol intake of NK cells by activating the CD16/TAK1/NF-
kB axis. Moreover, CD16+ neutrophils can directly induce NK cell death by releasing NETs. In visceral adipose tissue, neutrophils upregulate the level
of proinflammatory CD4+ Th1 cells and reduce the level of anti-inflammatory Treg cells. The above activities of neutrophils promote the formation
of an immunosuppressive TME. (C) Crosstalk with the tumor cell-derived exosomes. Exosomes can transfer mutated KRAS protein into neutrophils,
stimulate IL-8 secretion of CRC cells, promote neutrophil recruitment, and induce NET formation. Exosomal circRNA promotes the differentiation of
TAN1 to TAN2 neutrophils. Exosomal tri-phosphate RNA has been discovered to attract neutrophils through chemokine CXCL1 and
CXCL2 secretion.
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the basis of favorable immunotherapy response (83, 84).

Neutrophils from CRC patients suppressed T cell activity

via act ivation of latent TGFb by neutrophil‐secreted

metalloproteinase for creating an immunosuppressive TME in

vitro (85). Sui et al. also discovered that in high microsatellite

instability (MSI-H) CRC, increased neutrophil infiltration

promotes T cell exhaustion by activating CD80/CD86-CTLA4

signaling, which is associated with an immunosuppressive status

(86). Activation of the CD16/TAK1/NF-kB axis in CD16+

neutrophils up-regulates scavenger receptors for cholesterol

intake, thereby enabling these neutrophils to block the formation

of NK lipid rafts and transduction of anti-tumor signals by

competitively inhibiting cholesterol intake of NK cells.

Furthermore, it was found that CD16+ neutrophils can directly

induce NK cell death by releasing NETs (87). Transcriptome

analysis revealed elevated levels of inflammation-related factors

and antiapoptotic proteins in VAT neutrophils of obese

individuals with CRC. The increase in VAT neutrophils was

sub s equen t l y a c compan i ed by an up r egu l a t i on o f

proinflammatory CD4+ Th1 cells and a decrease in anti-

inflammatory Treg cells (65).

Exosomes derived from CRC cells are effective vectors for

regulating neutrophil activity. Exosomes loading with mutated

KRAS protein can transfer mutated KRAS protein into

neutrophils and stimulate IL-8 secretion of CRC cells, thereby

accelerating neutrophils recruitment and NET formation,

eventually leading to CRC deterioration (88). CircPACRGL is an

exosomal circular RNA, promoting differentiation of TAN1 to

TAN2 neutrophils via miR-142-3p/miR-506-3p-TGF-b axis,

further promoting CRC cells proliferation, migration and

invasion (89). Exosomal tri-phosphate RNA, derived from CRC

stem cells, has been discovered to attract neutrophils through

secretion of CXCL1 and CXCL2, as well as to prolong the

survival of neutrophils by inducing the expression of IL-1b via

the NF-kB pathway (90).
Others: regulation of DNA repair landscape
and angiogenic functions

The direct carcinogenic effect of neutrophils in CRC is

associated with generating reactive oxygen species. Excessive

H2O2 from myeloid cells triggers the mutation of genomic DNA

and promotes the metaplasia of intestinal epithelial cells. H2O2 also

induces intestinal epithelial cells to secrete cytokines and

chemokines through the TNFa autocrine ring to recruit myeloid

cells and form positive feedback conducive to tumor

development (91).

Neutrophils play a role in modulating the landscape of DNA

repair. In low-grade CRC, neutrophils promote deficiency in

homologous recombination by down-regulating RAD51 in a Mir-

155-dependent manner, thereby impeding tumor growth. However,

in advanced CRC, neutrophil-mediated genotoxicity resulting

from the accumulation of double-strand breaks induces non-

homologous end-joining repair, facilitating tumor survival and

proliferation (92).
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The angiogenic functions of TANs are primarily associated with

two well-established pro-angiogenic factors, VEGF andMMP9 (93–

95). The transcriptomic study revealed the enrichment of pathways

conducive to angiogenesis and development in TANs.

Bioinformatics analysis and functional validation demonstrated

that osteopontin and Mmp14, another two angiogenic factors,

exhibit the most significant induction effect, effectively regulating

endothelial cell activity in CRC. The CRC niche drives pro-

angiogenic transcriptional programming in TANs (96), offering a

novel strategy for CRC treatment based on the pro-angiogenic

properties of TANs.
Antitumoral role of neutrophils in CRC

Most studies on the role of neutrophils in tumors have primarily

reported their promotion of tumor development; however, they

indeed possess anti-tumor functionality in CRC (Figure 4). This is

intricately associated with the complex TME, tumor stage, and

neutrophil heterogeneity.

Neutrophils possess high plasticity and can transit into different

anti-tumor roles. Studies have demonstrated a significant increase

of CD177+ neutrophils in CAC and CRC tissues. Furthermore,

patients with high infiltration of CD177+ neutrophils (>8 cells/HPF

in CRC sections) exhibited improved 5-year overall survival (OS,

80.4% versus 69.3%, P = 0.007) and 5-year disease-free survival

(DFS, 81.7% versus 71.6%, P = 0.010). Subsequent investigation

confirmed the ability of CD177+ neutrophils to inhibit epithelial cell

tumorigenesis (97). Additionally, a study reported that TANs with

high levels of ICAM-1 and CD95 displayed an anti-tumor

phenotype and were found to infiltrate the invasive edge of early

colon tumors, suggesting their potential role in combating the

disease at an early stage (98). The strong colocalization of HLA-

DR+ neutrophils and CD8+ T cells in COAD indicates a spatial

association between antigen-presenting neutrophils and T cells.

HLA-DR+ neutrophils can widely trigger T cell activation, antigen

reactivity, and cytotoxicity, promoting T cell response and playing a

synergistic role in immunotherapy (23). Transcriptome analysis

revealed dysregulation of genes involved in antimicrobial and

inflammatory processes in neutrophil-deficient colon tumors. The

mechanism study demonstrated that polymorphonuclear

neutrophils in early colon tumors inhibited the proliferation and

aggressiveness of tumor cells by suppressing IL-17-mediated

bacteria-dependent inflammatory response and the expansion of

B cells in the colon (99).

IL-22 is generated by various immune cells in innate and

adaptive immune systems, including group 3 innate lymphoid

cells, NK cells, and CD8+ T cells (100, 101). Combined survival

analysis revealed that the protective performance of IL-22 in CRC

relied on the presence of neutrophils. IL-22 can stimulate the

secretion of chemokines CXCL1, CXCL2, and CXCL3 by colon

tumor cells for recruiting neutrophils. IL-22 augmented the T cell

response through the recruitment of beneficial neutrophils

(CD66b+ cells) and contributed to favorable 5-year OS (58%

versus 43%, P = 0.004) (38). Co-cultivation with CD66b+

neutrophils enhanced the response of CD8+ T cells to the T cell
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receptors, leading to increased activation and proliferation of CD8+

T cells, and expanding the population of cells exhibiting the “central

memory” phenotype characterized by CD45RO/CD62L expression

(102). A recent study has demonstrated that neutrophil-deficient

mice (Csf3r−/−mice) showed higher susceptibility to carcinogenesis.

Neutrophils may confer protection against intestinal inflammation

and CAC by modulating the gut microbiome and initiating

activation of an gd T cells-derived IL-22-dependent tissue repair

approach (103). IL-22 has been demonstrated to accelerate the

development of CRC (104–106), which contradicts the previously

mentioned association between IL-22+ cell infiltration and

improved prognosis. This indicates that the interaction between

neutrophils and IL-22 within the established TME exerts

multifaceted effects on tumor progression.
Neutrophils-targeted CRC therapies

Given the multifaceted roles of neutrophils in the pathogenesis and

progression of CRC, this review provides several novel insights for

developing clinical treatment strategies for CRC patients. Neutrophils
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are essential components of the host’s defense against infection (24),

and their depletion could result in significant immunosuppression.

Although existing studies indicate that neutrophils contribute to tumor

progression, clinical trials targeting neutrophils remain limited due to

concerns about inducing neutropenia. The lack of widely recognized

subgroup markers hinders a comprehensive understanding of the

heterogeneity of neutrophils, making therapies targeting specific

subgroups of neutrophils difficult. Therefore, most research has

focused on inhibiting neutrophil-associated molecules known to

promote tumor growth and aggressiveness (107). Therefore, we

mainly review the clinical studies of key molecules or pathways

related to neutrophil function. While not directly depleting

neutrophils, these interventions can elucidate the effects of

neutrophil-associated targeted or combination therapies on CRC,

highlighting their potential to guide clinical therapies.

The importance of the CXCR1/2-IL8 axis in neutrophil chemotaxis

and the multiple pro-tumor functions mediated by this axis (35–37)

make CXCR1/2-IL8 a desirable therapeutic target. Other classical

cytokines such as G-CSF, TGF-b, and VEGF are closely related to

the functional status of neutrophils during tumor development (68,

108, 109) and are also important therapeutic targets in CRC treatment.
FIGURE 4

Antitumoral role of neutrophils in CRC. CD177+ neutrophils can inhibit epithelial cell tumorigenesis. Neutrophils characterized by ICAM-1 and CD95
infiltrate the invasive edge and restrain the development of early colon tumors. Neutrophils inhibit tumor growth by suppressing IL-17-mediated
bacteria-dependent inflammatory response and the expansion of B cells. T cell-derived IL-22 stimulates the secretion of CXCL1/2/3 from tumor
cells, then recruits CD66b+ neutrophils. These CD66b+ neutrophils inhibit tumor progression by augmenting the CD8+ T cell response and
expanding the “central memory” population. Neutrophils could modulate the gut microbiome-related intestinal inflammation and activate an IL-22-
dependent tissue repair approach.
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Researchers have found that neutrophils from CRC samples strongly

express Bv8/PROK2, while inhibition of G-CSF or Bv8/PROK2 can

improve the efficacy of anti-VEGF antibodies and prevent the

emergence of drug resistance. The G-CSF/Bv8/PROK2 axis holds

potential as a therapeutic target for CRC when combined with anti-

VEGF agents (110). In both colitis and CAC models, neutrophil

infiltration and pSTAT3 expression increased as the disease

progressed. This suggests that neutrophils may promote the

transition from colitis to CRC through the JAK/STAT pathway (40).

Several clinical trials have explored these targets in depth (Table 1).

Studies have shown neutrophils participate in the inhibitory

immune microenvironment through the CD80/CD86-CTLA4

pathway, resulting in poor response to immune checkpoint inhibitors

(ICIs) in MSI-H patients. In a mouse CRC model, blocking the CD80/

CD86-CTLA4 axis under inflammatory conditions improves tumor

response to PD-1 blocking (86). The PD1/PD-L1 axis is commonly

associated with immune escape and tumor progression. Studies of

mouse breast cancer have revealed that tumor cells expressing PD-1

inhibit the cytotoxicity of neutrophils and enhance their metastatic

potential through the PD-L1/PD-1 axis. PD-L1+ neutrophils are less

cytotoxic than PD-L1 neutrophils, and blocking the PD-L1/PD-1

interaction can enhance the anti-tumor cytotoxicity of neutrophils

(111). PD-L1+ neutrophils in HCC patients can effectively inhibit the

proliferation and activation of T cells, and blocking PD-L1 can partially

reverse this inhibition (112). In a mouse model of CRC, tumor-derived

G-CSF induces neutrophils to express PD-L1 through the STAT3

pathway, and neutrophils promote tumor by inhibiting anti-tumor

immunity of NK cells dependent on PD-L1/PD-1. Neutrophil depletion

combined with anti-PD-L1 can improve the survival of the mice with

CRC (113). These strongly suggest that the PD1/PD-L1 axis is an

important therapeutic target under conditions of neutrophil infiltration,
Frontiers in Immunology 09
and targeting TANs may be an important strategy to prevent PD1/PD-

L1-associated tumor immune evasion.

Other functions of TANs are currently under investigation in

preclinical studies. PAD4 expressed in neutrophils plays an important

role in forming NETs (114). Studies on nude mouse xenograft models

have shown that GSK484 (PAD4 inhibitor) can improve the

radiosensitivity of CRC, inhibit NET formation, and inhibit tumor

growth (115). F. nucleatum infection can induce PD-L1 expression by

activating the NF- kB/STAT3 signaling in neutrophils, and

CX3CR1+PD-L1+ neutrophils infiltration promotes CRC metastasis

and weakens the efficacy of immunotherapy. Treatment with

doxycycline eliminated F. nucleatum intracellular, thereby reducing

CX3CR1+PD-L1+ neutrophils populations and slowing F. nucleatum-

promoted tumor growth and metastasis in mice (116). This suggests

that the combination of antibiotics and ICIs may benefit such patients.

It should be noted that it has been reported that the combination of

anti-TGF-b and anti-PD-L1 therapies may lead to tumor resistance,

which has been linked to the upregulation of CR-related metabolic

pathways in mice (117). It is recommended that researchers and

clinicians should employ a multifaceted approach to assess patient

status and develop a precise medical strategy when formulating

combination drug regimens targeting TAN.
Role of neutrophils in prognosis

Multivariate survival analysis found that the high levels (more than

60 per TMA spot) of intratumoral CD66b+ neutrophil was an

independent risk factor for adverse overall patient survival (hazard

ratio [HR]: 2.040; 95% confidence interval [CI]: 1.186–3.843; P=0.010)

(118). Multivariate Cox analysis demonstrated that high levels of intra-
TABLE 1 Clinical trials based on neutrophil-targeted CRC therapies

Class of target Agents Cancer applications Phase Clinicaltrails.gov number and status

CXCR1/2 Inhibitor SX-682 Metastatic CRC phase II NCT04599140
(Recruiting)

IL-8 inhibitor BMS-986253 Stage I-III phase II NCT03026140
(Recruiting)

TGF-b pathway inhibitors Vactosertib Locally advanced/
Metastatic CRC

Phase Ib NCT05400122
(Recruiting)

STAT3 pathway inhibitors TTI-101 Advanced CRC Phase I NCT03195699
(Active, not recruiting)

BBI-608 MSS, refractory CRC Phase II NCT03647839
(Completed)

VEGF inhibitors Tivozanib/
Bevacizumab

Metastatic CRC phase II NCT01478594
(Completed)

Apatinib Locally advanced
dMMR/MSI-H CRC

phase II NCT04715633
(Active, not recruiting)

G-CSF Neupogen
(filgrastim)

Metastatic CRC phase II NCT00541125
(Completed)

Metastatic CRC phase II NCT06504901
(Not yet recruiting)
CXCR1/2, CXC chemokine receptor1/2; CRC, colorectal cancer; IL-8, interleukin-8; TGF-b, transforming growth factor-b; STAT3, signal transducer and activator of transcription 3; VEGF,
vascular endothelial growth factor; dMMR/MSI-H CRC, mismatch repair deficiency (dMMR) or high microsatellite instability (MSI-H) CRC; G-CSF, granulocyte colony-stimulating factor.
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tumoral CD66b+ neutrophils are significantly associated with decreased

OS and DFS (119). Interestingly, a separate study reported that co-

infiltration of CD66b+ neutrophils and CD8+ T cells is associated with a

more favorable prognosis compared to sole infiltration by CD8+ T cells

in CRC, potentially due to the complex interplay between these

immune cells (102). However, the investigation into the prognostic

role of neutrophil infiltration at intra-tumoral subsites in CRC revealed

that low levels (semi-quantitatively score, no/sporadic) of neutrophil

infiltration in the front of the tumor is an independent prognostic

factor for the poor prognosis of patients with early colon cancer (HR:

2.32, 95% CI: 1.45-3.73, P <.001) (120). These ostensibly contradictory

findings suggest that the prognostic role of neutrophils is multifaceted

and may be influenced by their infiltration sites within the TME and

their functional status.

The neutrophil-to-lymphocyte ratio (NLR) has been utilized in

various types of tumors as a prognostic indicator for poor survival,

and it can be employed to inform immune-related treatment

strategies and predict clinical outcomes (121–124). Colon cancer

patients with a high NLR (> 3.0) exhibit poor 5-year OS (87.0%

versus 94.5%, P = 0.042) and 5-year relapse-free survival (RFS)

(77.9% versus 87.8%, P = 0.032) (125). The high NLR serves as a

crucial prognostic indicator for advanced colon cancer, particularly

in the case of left-sided colon cancer (5-year OS: 86.4% versus

95.2%, P = 0.014; 5-year RFS:79.2% versus 87.3%, P = 0.047) (125).

Multivariate analysis showed that increased NLR (> 5.0) in CRC

liver metastasis was associated with poor 5-year OS (27% versus

47%, P < 0.01) and 5-year DFS (6% versus 37%, P < 0.01) (126). Low

baseline NLR (<5.11, HR: 0.42, 95% CI: 0.21-0.84, P = 0.014) and

early NLR reduction after two courses of immunotherapy (HR: 0.33,

95% CI: 0.18-0.61, P < 0.001) were significantly associated with

better outcomes in CRC patients. Among them, patients with a low

baseline NLR and an early decline in NLR exhibited the longest

median OS (n = 53, median OS = 29.63 months) (127). Further

analysis showed that a combination of NLR and tumor mutation

burden provided additional predictive capacity (127). Currently,

several clinical studies have investigated the practical clinical

significance, including the exploration of NLR (NCT05673343,

NCT06495827), combination of NLR with C-reactive Protein

(NCT05129046), and neutrophils-circulating tumor cells analysis

(NCT05793775) in diagnosis and prediction of advanced CRC.

Further research on neutrophil-related genes in CRC patients

identified 17 genes significantly associated with OS. Based on these

17 genes, a prognostic risk score (PRS) system was developed.

Patients in the high-PRS group were more likely to experience

tumor recurrence and metastasis. However, high-PRS group

patients showed improved response to immunotherapy, possibly

due to increased tumor mutation burden and MSI. Therefore, the

PRS can serve as a prognostic model for guiding individualized

treatment for colon cancer patients (128).

Neutrophil infiltration can also predict the response of CRC

patients to the drug therapies. A study revealed that neutrophil

infiltration increases in stage I-III CRC but decreases significantly in

stage IV, possibly indicating immune escape in advanced disease. In

stage III CRC, high TAN infiltration is linked to a favorable

response to a 5-fluorouracil-based chemotherapy regimen

(better DFS, HR: 0.42, p = 0.01), suggesting that evaluating
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TAN infiltration may help identify patients who would benefit

from this therapy (129). Due to neutrophil-associated

immunosuppression, local inflammatory conditions in MSI-H

CRC can hinder tumor response to ICIs, potentially leading to

ICI resistance. It has been demonstrated that inflammation

infiltration and high NLR (> 3.0) are clinical features of adverse

ICI reactions in MSI-H CRC (86).
Conclusion and prospects

CRC is characterized by chronic inflammation, which is thought

to function in tumor progression and metastasis. The neutrophils are

vital for forming the inflammatory TME via the action of NETs, their

interaction with the gut microbiota, and crosstalk with other cells

such as tumor cells, T cells, and macrophages. However, neutrophils

exhibit a dual role in cancers, which may be achieved through two

mechanisms (13, 18, 23): (1) Neutrophils themselves possess

heterogeneity, with different subtypes performing distinct functions;

(2) Neutrophils undergo reprogramming within the TME. The

function of neutrophils might result from a combination of these

two mechanisms, which requires more evidence.

In CRC, TANs play a crucial role in the immune evasion

mechanism during therapy by shaping an immunosuppressive

microenvironment and promoting tumor resistance to immune

checkpoint therapy through inflammation response. Targeting the

molecules of the pathways involved in TANs-mediated tumor

progression and therapeutic resistance can lead to the

development of multiple synergistic therapeutic strategies. Several

approaches have been explored for targeting TANs (107, 130): (1)

Inhibition of TANs enrichment, proliferation, and polarization

(131); (2) Suppression of neutrophil-induced immune escape,

especially enhancing reaction of tumor cells to ICIs (132); (3)

Inhibition of other key molecules associated with neutrophil

function (133); (4) Utilization of neutrophils as drug delivery

carriers based on their innate inflammatory response sensitivity

and ability to cross physical barriers (134, 135). These pathways

alone or in combination may bring breakthroughs in treating CRC.

The anti-tumor effect of neutrophils in CRC should not be

disregarded, and it is worth considering amplifying the antagonistic

effect of specific neutrophils subtypes to control the progression of

CRC. Furthermore, a study has demonstrated that in successful

immunotherapy for mice with lung tumors, neutrophils

characterized by interferon-stimulated genes rapidly accumulate in

tumor tissues and exhibit an anti-tumor phenotype (136). Another

perspective suggests that T cells can eliminate tumor cells with high

antigen density, while neutrophils kill tumor antigen escape variants,

and immunotherapy with the combination of the two can eliminate

highly heterogeneous tumors (137). Therefore, immunotherapy that

induces anti-tumor T cells can be combined with therapy that

optimizes the anti-tumor function of neutrophils, which may lead

to more durable tumor control following treatment.

Neutrophils remain technical challenges in study due to their

fragility, short lifespan, and low RNA content. Although mouse

models are commonly employed for studying human tumors, they

do not accurately reflect the in vivo conditions. Research has
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demonstrated that human neutrophils selectively release active

neutrophilic elastase to eliminate various cancer cells while

sparing non-cancer cells; however, this property is absent in

mouse neutrophils (138). Therefore, there is a pressing need to

develop reliable research techniques for studying human-derived

TANs to obtain more credible insights into the mechanisms by

which TANs regulate cancers. To simulate the in vivo environment

more accurately, we propose that organ-on-a-chip represents an

advanced model for in vitro research of neutrophils. It is feasible to

recreate a TME on a microfluidic chip, presenting significant

application potential (139). Intravital microscopy (IVM)

combined with fluorescent neutrophil reporter mice enabled real-

time visualization of neutrophil dynamics in tumors. Commonly

used in vivo imaging techniques include confocal and multiphoton

microscopy. Imaging techniques can broaden our understanding of

how neutrophils are involved in cancer development, providing a

powerful tool for neutrophilic research (140). The microbiome is

involved in the establishment of the TME. The microbiome can

trigger the immune system response directly or influence the

functional state of immune cells via metabolic processes and

metabolites (141). The combination of microbiome and

immunotherapy is also a direction that researchers should keep

exploring (142). Proteomic, biomechanical, and functional analyses

can elucidate neutrophil heterogeneity in systemic lupus

erythematosus, offering another possible method to investigate

neutrophil heterogeneity in CRC (143).

In recent years, scRNA-seq technology has been utilized for the

analysis of TAN characteristics in tumors, revealing the

heterogeneous subtypes within the TME and elucidating the role

of each subtype in tumor development and response to therapy (21,

22). Despite extensive studies on consensus molecular subtype

classification of CRC (144–146), there is a lack of comprehensive

analysis on TAN subtypes using scRNA-seq, which could provide

valuable insights into assessing CRC prognosis and treatment based

on TAN heterogeneity. The following directions can be considered

for scRNA-seq of neutrophils from CRC patients: (1) Identify the

TAN subtypes in human CRC; (2) Characterize molecular markers

specific to each TAN subtype, with a focus on the pro-tumor

subtype; (3) Investigate the differentiation pathways that lead to

the development of pro-tumor neutrophil subtype; (4) Examine the

metabolic reprogramming in tumor-promoting TANs and evaluate

how these metabolic changes significantly influence immune cell

function; (5) Analyze the interactions between specific TAN

subtypes and other immune cells such as T cells and NK cells; (6)

Based on these findings, explore strategies to block key molecules

involved in the differentiation pathway of pro-tumor neutrophils.

For instance, inhibiting upstream regulators and disrupting the

active metabolic programs of TANs can suppress the pro-tumor

functions and immunosuppressive activities of neutrophils, thereby

identifying potential TAN-related therapeutic targets for CRC.

ScRNA-seq research of neutrophils poses several challenges due

to their biological characteristics, functional heterogeneity, and

technical limitations. Neutrophils are fragile and short-lived cells

(with a half-life of 7 to 10 hours) (147) and have low mRNA content

(0.33 mg per million cells) (148), challenging the isolation of

neutrophils and the subsequent extraction of RNA. In a recent
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study, the lack of crucial biomarkers could restrict the accuracy of

identifying the cells among neutrophil subsets with similar

transcriptomic characteristics (149). ScRNA-seq is also insufficient

to fully capture the spatiotemporal characteristics of neutrophils. The

transcriptomes of neutrophils can vary depending on their activation

states and microenvironment, making it difficult to comprehensively

describe their transcriptional landscapes at the single-cell level (21).

Existing datasets lack spatial information regarding tissue distribution

and cell-cell interactions; fortunately, rapidly evolving spatial

profiling technologies may address these limitations (150). Other

inherent limitations of scRNA-seq technology should not be

overlooked, including its limited sensitivity, scale, accuracy, and

noise introduced by single-cell RNA preamplification (151).

Overcoming these challenges requires a robust experimental design,

advanced computational methodologies, and a profound

understanding of neutrophil characteristics.
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