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Shantou, China, 2Department of Radiation Oncology, Cancer Hospital of Shantou University Medical
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Background: Head and neck squamous cell carcinoma (HNSCC) is a highly

aggressive and heterogeneous malignant tumor. Mast cells are one of the

immune cells widely distributed in the tumor microenvironment (TME), and

their immune response with various immune cells is essential in promoting or

inhibiting tumor growth andmetastasis. However, the role played by mast cells in

HNSCC has yet to be fully clarified.

Methods:We identifiedmast cell marker genes using single-cell RNA sequencing

(scRNA-seq) from the GSE103322 of the GEO database. The HNSCC data from

the TCGA databases was divided into training and validation groups. Cox

regression and LASSO regression analyses were used to screen the

prognostically relevant mast cell-related genes (MRGs) to construct a

prognostic signature and differentiate risk groups. The receiver operating

characteristic (ROC) and calibration curves were used to test the model’s

accuracy. We revealed the immune landscape of HNSCC by immune

infiltration, immune checkpoint levels, ESTIMATE, and TIDE analyses. Drug

sensitivity analyses were used to understand the sensitivity of different risk

groups to drug therapy.

Result: The 14-MRGs prognostic signature classified patients into high- and low-

risk groups, and the overall survival (OS) of the low-risk group was significantly

higher than that of the high-risk group (p < 0.05). The areas under the ROC

curves of the nomogram were 0.740, 0.737 and 0.707 at 1-, 3-, and 5-year, and

they also showed better detection efficacy in the validation group than other

independent predictors. The low-risk group had richer immune cell infiltration

and higher immune scores. The lower TIDE score in the low-risk group

demonstrates that patients in this group were less prone to have immune

escape and more likely to benefit from immunotherapy. In addition, the low-

risk group was more sensitive to a broader range of drugs than the high-

risk group.
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Conclusion: We combined scRNA-seq data and bulk RNA-seq data to construct

a 14-MRGs-based prognostic model capable of well predicting the prognosis of

HNSCC patients. This model may also help identify patients who can benefit

from immunotherapy.
KEYWORDS

mast cell, head and neck squamous cell carcinoma, single-cell sequencing, immune
infiltration, immunotherapy
1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a

malignant tumor that occurs in the oral mucosal epithelium,

nasopharynx, oropharynx, hypopharynx and larynx and accounts

for 90% of head and neck tumors (1). Globally, there are

approximately 890,000 new cases and 450,000 deaths of HNSCC

in 2022, and the incidence is expected to increase by 30% by 2030

(1, 2). The highly aggressive nature of HNSCC makes it a

considerable challenge to treat. In the past two decades, immune

checkpoint inhibitors (ICIs) have opened new horizons and become

one of the main cancer treatment methods (3). In particular, the

discovery of CTLA-4 and PD-1/PD-L1, as well as the molecular

targeted therapies pembrolizumab and navulizumab, have

improved the overall survival of patients with metastatic or

recurrent HNSCC (4, 5). However, due to tumor heterogeneity

and differences in patient response to ICIs therapy, a minority of

patients benefit in the long term. The objective remission rates

(ORR) of advanced patients are only 15-23% (4–6), and about 60%

develop resistance to immunotherapy (7). Therefore, identifying

reliable biomarkers to predict patient survival and find a suitable

treatment for patients is essential to improve survival and outcomes.

In recent years, mast cells have received increasing attention

due to their dual role in promoting tumor development and

enhancing anti-tumor immunity, which may be closely related to

tumor type, mast cell distribution, tumor stage, mast cell status, and

their interactions with other immune cells in TME (8). Studies have

shown that mast cells exhibit different functions in various cancers,

such as lung, breast, renal, and prostate (9–13). In HNSCC, the role

of mast cells varies depending on the specific conditions of the

TME, and existing research results show significant contradictions

(14). Liang et al.’s study found that mast cell infiltration was more

abundant in HNSCC tumor tissues than adjacent non-tumor tissues

(15). However, another study indicated that mast cells in OSCC

tumor tissues were reduced compared to normal tissues (16).

Additionally, the distribution of mast cells in HNSCC may be

related to specific tissue sites and influenced by external factors.

Cosoroabă et al.’s research found that mast cell enrichment was

more significant in squamous cell carcinoma (SCC) of the lip than

the tongue, pharynx, and larynx, possibly due to long-term sunlight
02
exposure inducing mast cell recruitment (17). Mast cell infiltration

may also be related to the tumor stage of HNSCC and affect patient

survival prognosis. Jin et al. observed that resting mast cell

infiltration significantly decreased in advanced T-stage HNSCC

and speculated that resting mast cells might suppress HNSCC

progression (18). Brockmeyer et al. showed that patients with

high mast cell density in tumor-associated stroma had longer OS.

Mast cells in different states, such as resting or active, also

potentially impact the progression of HNSCC and the survival

prognosis of patients. Jin et al.’s study further indicated that a high

abundance of activated mast cells was associated with poorer OS in

the high-risk group (19). In studies constructing prognostic models

for OS in HNSCC patients, Ding et al. and Fan et al. also reached

similar conclusions (20, 21), suggesting that activated mast cells

may potentially promote the progression of HNSCC. However,

some scholars hold different views. Chen et al. found in their study

constructing a risk model of senescence-associated genes in HNSCC

that the high-risk group had a higher proportion of resting mast

cells and lower levels of infiltrating activated mast cells (22), and

Tao et al.’s study also confirmed this finding (23). Thus, the impact

of mast cells in different states on the occurrence, development, and

survival prognosis of HNSCC needs to be comprehensively

analyzed in conjunction with the specific conditions and multiple

factors in the TME.

Mast cells participate in and regulate the biological activities of

other immune cells by releasing bioactive mediators, thereby

affecting the progression of tumors. For example, histamine

promotes the shift in the Th1 and Th2 ratio by increasing the

intracellular cyclic adenosine monophosphate content, suppressing

the Th1 phenotype and enhancing the Th2 phenotype, thereby

promoting tumor development (24). Furthermore, the synapse-like

structures formed between mast cells and dendritic cells facilitate

antigen transfer and promote T cell activation, enhancing anti-

tumor immunity (25). In summary, the role of mast cells in the

occurrence and development of HNSCC is diverse and complex,

and further exploration is needed.

The appearance of single-cell RNA sequencing (scRNA-seq)

technology could assist us in characterizing tumor cells, immune

cells, and stromal cells at the level of cellular resolution, describing

the tumor heterogeneity (26), which has helped us to study cell
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clusters and their subgroups. In this study, we integrated scRNA-

seq and bulk RNA-seq data from public datasets to construct a

prognostic model based on mast cell-related genes (MRGs), predict

patient outcomes, and reveal the immune landscape of HNSCC to

identify patients who may benefit from immunotherapy.
2 Materials and methods

2.1 Data source

The scRNA-seq data containing 5902 cells from 21 HNSCC

patients were downloaded from the GSE103322 of the Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

database. Bulk-RNA-seq data and clinical information were

obtained from the Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) database, and data of 516 HNSCC patients

with complete survival status and clinicopathological information

were retained. To minimize the influence of irrelevant factors

arising from the original count values, we converted the count

data from TCGA to TPM data and performed a log2 (TPM+1)

transformation. Additionally, we used the “removeBatchEffect”

method to eliminate batch effects among samples from

different sites.
2.2 Quality control of scRNA-seq data and
identification of cell clusters

The scRNA-seq data were processed using “Seurat” in the R

project (27). Clusters with fewer than three cell counts were

excluded. We retained cells with gene counts of more than 200

and less than 5000 and cells with less than 5% of mitochondrial

genes. The data were normalized using the “NormalizeData”

function to ensure the cells were comparable before feature

extraction. The “FindVariableFeatures” function was used to find

the top 2,000 highly variable genes. Then, we applied the

“ScaleData” method to scale all the genes so that the same gene

could be comparable in different samples. The “RunPCA” function

was used to perform principal component analysis (PCA) on the

2,000 highly variable genes selected above, and the JackStraw plot

identified the top 15 dimensions with p < 0.05. Cells were clustered

using the “FindNeighbors” and “FindClusters” methods with a

resolution of 0.4. Uniform Manifold Approximation and

Projection (UMAP) is a new visualization and scalable

dimensionality reduction algorithm. Compared to t-SNE, UMAP

retains a more global structure, has superior runtime performance,

and is more scalable (28). We used UMAP to visualize cell clusters.

Genes with | log fold change | > 0.25 and at least 25% in the cluster

were considered differentially expressed by the “FindAllMarkers”

function. The cell clusters were annotated based on the known

marker (29–32) and corrected using the CellMarker database

(http://xteam.xbio.top/CellMarker). Finally, we used a threshold

of | log2 fold change | > 1 and FDR < 0.05 to screen MRGs.
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2.3 Prognostic signature construction

The 516 HNSCC patients’ data with complete survival and

clinical information were divided into a training group (n = 322)

and a validation group (n = 194) using the “caTools” method in a

7:3 ratio. In the training group, we used least absolute shrinkage and

selection operator (LASSO) regression analysis to avoid overfitting

and reduce genes. In order to assess the predictive significance of

MRGs for OS in HNSCC patients, we conducted univariate Cox

regression analysis and identified the prognostic genes with p <

0.05. Stepwise multivariate Cox regression analysis identified genes

for the construction of prognostic signatures. MRGs-Riskscore were

calculated for each patient based on regression coefficients and gene

mRNA expression with the following formula:

MRGs − Riskscore  =  o∞
n=1½coefficient(n)*expression(n)�

Patients were classified into high- and low-risk groups based on

the cut-off values calculated by the X-tile software. Kaplan-Meier

survival curves were plotted using the “survival” function to

visualize the difference in survival between the two risk groups. In

addition, we depicted risk factor association plots to show the

distribution of patients. The same regression coefficients and cut-

off value were used for the validation group to test the risk

stratification ability of the prognostic signature. The “ggpubr”

method was used to generate boxplots to explore the relationship

between MRGs-Riskscore and clinicopathological factors such as

age, gender, stage, T-stage and N-stage.
2.4 Independent prognostic analysis and
construction of nomogram

We performed an independent prognostic analysis of the 14-

MRGs prognostic signature and clinicopathological factors. The

Cox regression analysis was used to identify factors that had an

independent effect on the patient’s prognosis. Characteristics with p

< 0.05 in the multivariate Cox regression analysis were considered

to be independent prognostic factors. In order to clarify the clinical

value of the prognostic signature, we constructed a nomogram

using the “rms” package, and calibration curves were used to

evaluate the relationship between predicted and actual

probabilities at 1-, 3-, and 5-year. The C-index and receiver

operating characteristic (ROC) curves were drawn to assess the

power of the nomogram and other independent prognostic factors

in predicting the OS of patients.
2.5 Immune infiltration analysis and
immune landscape

CIBERSORT is a deconvolution algorithm based on the principle of

linear support vector regression, providing a gene expression signature

matrix for 22 immune cells, which can be used to evaluate the relative
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abundance of different cell types in complex mixed tissue samples (33).

We analyzed the infiltration of 22 immune cell types between high- and

low-risk groups by CIBERSORT. In addition, we used six other immune

infiltration algorithms to further reveal immune infiltration, such as

CIBERSORT-ABS (33), XCELL (34), TIMER (35), QUANTISEQ (36),

MCPCOUNTER (37), and EPIC (38). Since immune checkpoints

played a crucial role in patient response to immunotherapy, we

analyzed the expression levels of classical immune checkpoints in

high- and low-risk groups. Correlation analysis among model genes

and immune cells helped to understand cellular regulation by MRGs.

The ESTIMATE algorithm (39) was used to assess the immune and

stromal scores. Tumor immune dysfunction and exclusion (TIDE) was

used to evaluate the likelihood of a patient’s response to

immunotherapy (40).
2.6 Drug susceptibility analysis

Applying the “oncoPredict” package, we evaluated the half-

maximal inhibitory concentration (IC50) of 198 drugs in the high-

and low-risk groups to understand the difference in sensitivity

between the two groups of patients. These included clinically used

targeted and chemotherapeutic drugs such as cytarabine, gefitinib,

acitretin, etc. The data were obtained from the GDSC database

(https://www.cancerrxgene.org/).
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2.7 Statistical analysis

All R packages were run by RStudio (version 4.3.1). The SPSS

(version 25) was used for Cox regression and independent

prognostic analyses. The X-tile software was used to calculate cut-

off values. The Kaplan-Meier survival curves were compared using

log-rank tests. The wilcoxon test was employed to compare the two

groups. Correlation coefficients were calculated using spearman

correlation analysis. A significance threshold of p <0.05 was

established for determining significant differences.
3 Results

3.1 Identification of MRGs

The flowchart shows the major procedures of our study

(Figure 1). After quality control of scRNA-seq data (Figures 2A,

B), the expression matrix of genes from 4,033 cells was retained. We

screened the top 2,000 highly variable genes and the top 15 PCA

(Figures 2C, D). The top 30 highly expressed genes of the first six

PCAs are shown in Figure 2E. All cells were divided into 15 cell

clusters and annotated as T/NK cells, B cells, epithelial cells,

fibroblasts, endothelial cells, macrophages, mast cells, and

monocytes (Figures 3A, B). The cluster 12 was identified as mast
FIGURE 1

Flowchart of this study.
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FIGURE 2

Quality control of scRNA-seq data. (A) The violin plots of RNA expression across different identities for features, counts, and mitochondrial
percentage. (B) The scatter plot showed the correlation analysis between the sequencing depth and the percentage of expressed genes and
mitochondria. (C) Top 2000 highly variable genes. (D) The Jackstraw plot illustrated principal component standard deviation, highlighting significant
components. (E) Top 30 highly expressed genes of the first six PCAs.
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cells (Figure 3C). Bubble plots demonstrated highly expressed genes

in each cell cluster (Figure 3D). In cluster 12, 253 genes were

screened according to the thresholds of | log2 fold change | > 1 and

FDR < 0.05. Mapped to the TCGA database gene list, 242 genes

were retained for subsequent analysis.
3.2 14-MRGs prognostic signature
construction and validation

The PCA plot of batch effect removal in the TCGA database is

shown in Supplementary Figure 1. The data of 516 HNSCC patients

in the TCGA were divided into training and validation groups in a

ratio of 7:3. Table 1 demonstrates the subgroups and basic

characteristics. We performed LASSO regression to screen out 25

OS-related MRGs from 242 genes (Figures 4A, B). By univariate

Cox regression analysis, we obtained 23 MRGs associated with the

OS of patients (Figure 4C, p < 0.05). The multivariate Cox

regression analysis further identified 14 OS-related MRGs to

construct a prognostic signature, including AREG, CD82,

DAPK1, FDX1, GLUL, HS3ST1, LAT, LIF, PTPN7, RASGEF1B,

SLC18A2, TBC1D14, TMOD1 and TPSD1 (Figure 4D, p < 0.05).

Table 2 shows the information of each prognostic gene. Kaplan-

Meier survival curves of each MRG are shown in Supplementary
Frontiers in Immunology 06
Figure 2. MRGs-Riskscore were calculated for each patient based on

regression coefficients and gene mRNA expression: MRGs-

Riskscore = 0.405 * exp (AREG) + 0.733 * exp (CD82) + 0.885 *

exp (DAPK1) + 0.596 * exp (FDX1) + 0.853 * exp (GLUL) + 0.561 *

exp (HS3ST1) - 0.749 * exp (LAT) + 0.893 * exp (LIF) - 0.489 * exp

(PTPN7) - 0.542 * exp (RASGEF1B) - 0.620 * exp (SLC18A2) -

0.731 * exp (TBC1D14) + 0.550 * exp (TMOD1) -0.540 * exp

(TPSD1). Patients were categorized into high- and low-risk groups

based on the optimal cut-off value (15.94). Survival analysis showed

that patients in the low-risk group had longer OS compared to the

high-risk group. In the validation group and the entire cohort,

survival analysis showed the same trends as in the training group

(Figure 4E). Risk factor correlation plots showed the distribution of

patients (Figure 4F).

We further analyzed the risk stratification of clinicopathological

factors. There was no significant difference between MRGs-

Riskscore and clinical characteristics, including age, gender and

stage T (Figures 5A, B, D). Patients with advanced stages had a

higher MRGs-Riskscore than stage I-II (Figure 5C, p = 0.03). In

addition, there was a higher MRGs-Riskscore in the N1-N3 stage

compared to the N0 stage (Figure 5E, p = 0.029). We performed an

independent prognostic analysis of MRGs-Riskscore and

clinicopathological factors. The results of univariate Cox analysis

showed that age, stage, T stage, N stage, and MRGs-Riskscore were
FIGURE 3

Identification of cell clusters by scRNA-seq technology. (A) A UMAP plot showed 15 clusters of data points in different colors, each representing a
cluster from 0 to 14. (B) A heatmap displayed gene expression levels across clusters with a color scale. (C) A UMAP plot labelled clusters with cell
identities such as T/NK, epithelial, and macrophage. (D) A dot plot showed average expression of various features across cell types, with dot size
indicating percent expressed and color intensity indicating expression level.
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correlated with OS (Figure 5F, p < 0.05). The results of stepwise

multivariate Cox regression analysis showed that age, N stage, and

MRGs-Riskscore were independent predictors of HNSCC patients

(Figure 5G, p < 0.05).
3.3 Nomogram construction and validation

In order to clarify the value of clinical application, we

constructed a nomogram based on independent predictors

(Figure 6A). Summing the corresponding scores of each indicator,

we could predict the survival rate of patients at 1-, 3-, and 5-year.

The calibration curves demonstrated excellent consistency

between the nomogram predicted probabilities and the actual

observations at 1-, 3-, and 5-year OS. The same performance was

observed in the validation group and the entire cohort (Figures 6B–

D). The C-indices of nomogram, MRGs-Riskscore, age, and N stage
Frontiers in Immunology 07
were 0.69565382, 0.67153782, 0.57232907, and 0.57672068,

respectively (Figure 6E). In the training group, the AUC of the

nomogram at 1-, 3-, and 5-year were 0.740, 0.737, and 0.707

(Figures 6F–H). In the validation group, the AUC at 1-, 3-, and

5-year were 0.669, 0.704, and 0.707 (Figures 6I-K), and in the entire

cohort, the AUC at 1-, 3-, and 5-year were 0.712, 0.717, and 0.681

(Figures 6L-N). Nomogram have a more favorable predictive

performance than other clinicopathological factors.
3.4 Immune cells infiltration and immune
landscape in HNSCC

In the TME, intercellular communication is closely related to

tumor progression. We used CIBERSORT to reveal the immune

infiltration of HNSCC in different risk groups. As shown in

Figures 7A, B, there were eight types of immune cells separately,
TABLE 1 Clinicopathologic information and subgroups of HNSCC patients.

Patient
characteristics

Training group Validation group Entire cohort P value

n=322 % n=194 % n=516 %

Age 0.113

≤74 287 89.13 159 81.96 446 86.43

>74 35 10.87 35 18.04 70 13.57

Gender 0.960

Female 84 26.08 51 26.29 135 26.16

Male 238 73.92 143 73.71 381 73.84

Stage 0.110

I 16 4.97 11 5.67 27 5.23

II 47 14.60 35 18.04 82 15.89

III 53 16.46 40 20.62 93 18.02

IV 206 63.97 108 55.67 314 60.86

T 0.390

T1 31 9.63 20 10.31 51 9.88

T2 95 29.50 61 31.44 156 30.23

T3 73 22.67 48 24.74 121 23.45

T4 123 38.20 65 33.51 188 36.44

N 0.513

N0 135 41.93 86 44.33 221 42.83

N1 49 15.22 31 15.98 80 15.50

N2 131 40.68 73 37.63 204 39.54

N3 7 2.17 4 2.06 11 2.13

Vital status 0.896

Alive 184 47.14 112 57.73 296 57.36

Dead 138 42.86 82 42.27 220 42.64
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with significant differences between the high- and low-risk groups in

the training and validation groups. At the same time, in the entire

cohort, there were 13 types (Figure 7C). Immune cells with significant

infiltration differences in all three groups contained resting CD4+

memory T cells, follicular helper T cells (Tfhs) and regulatory T cells
Frontiers in Immunology 08
(Tregs). In addition, we found that in the validation group and the

entire cohort, resting and active mast cells showed opposite trends in

infiltration between the two risk groups.

We used six other immune infiltration algorithms and found

that the low-risk group had a richer infiltration of anti-tumor
FIGURE 4

Construction and validation of prognostic signature. (A, B) LASSO regression analysis identified signature genes. (C) Univariate Cox regression
analysis screened prognostic genes (p < 0.05). (D) Multivariate Cox regression analysis screened prognostic genes (p < 0.05). (E) Kaplan-Meier
survival curves assessed the ability to stratify patients by prognostic signatures in the training, validation and entire cohorts. (F) Risk factor correlation
plots in the training, validation and entire cohorts.
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immune cells, such as CD8+ T cells, CD4+ T cells, active NK cells

and B cells (Figure 7D). The high-risk group mainly consisted of

cancer-associated fibroblasts (CAFs), neutrophils, endothelial cells,

and some immune cells in a resting state. Correlation analysis

between 22 immune cell types showed that CD8+ T cells, CD4+

memory T cells, Tfhs, Tregs, NK cells, macrophages, eosinophils,

and neutrophils were correlated with mast cells. This correlation

may be related to mast cells in an active or resting state (Figure 7E).

Correlation analysis of the 14 MRGs with immune cells showed a

strong correlation of AREG and PTPN7 with a wide range of

immune cells (Figure 7F).

The expression of 31 immune checkpoints between high- and

low-risk groups was shown in the box plot (Figure 8A). Highly

expressed in the high-risk group were CD276, CD44, JAK1,

KIR3DL1, LAMA3, NRP1, PVR, TNFSF18, TNFSF4, TNFSF9,

VTCN1, and YTHDF1, while in the low-risk group, CD27,

CD40LG, CD8A, IFNG, IL12B, LAG3, and PDCD1 showed high

expression. In the correlation analysis (Figure 8B), AREG, PTPN7,

RASGEF1B, LAT and GLUL were highly correlated with several

immune checkpoints, especially AREG and PTPN7, suggesting that

these genes may mainly influence the expression of immune

checkpoints. The ESTIMATE analysis revealed that MRGs-

Riskscore was positively correlated with stromal scores and

negatively correlated with immune scores (Figure 8C). What is

more, the low-risk group had lower TIDE scores (Figure 8D, p =

0.0014) and immune exclusion scores (Figure 8E, p = 0.00014), as

well as higher T-cell dysfunction scores (Figure 8F, p = 0.0047). The

MRGs-Riskscore was positively correlated with the TIDE score

(Figure 8G), suggesting that low-risk patients are more likely to

benefit from immunotherapy.
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3.5 Drug susceptibility analysis in high- and
low-risk groups

Sensitivity analyses of 198 drugs in the high- and low-risk

groups showed that 92 drugs had statistically significant differences

in IC50 (Figure 9A). Of these, The high-risk group was more

sensitive to 18 drugs, while the low-risk group was sensitive to 74

drugs. Among the commonly used targeted and chemotherapeutic

agents, the high-risk group was sensitive to cytarabine, nilotinib,

dasatinib and vorinostat (Figures 8B–E). Those sensitive in the low-

risk group were gefitinib, axitinib, lapatinib, osimertinib and

afatinib (Figures 8F-J).
4 Discussion

HNSCC is a highly heterogeneous and aggressive tumor. Currently,

ICIs are a major treatment for HNSCC. However, the therapeutic effect

is not optimistic. Mast cells are one of the widespread immune cells in

the human body, and their tumor-promoting and anti-tumor-

enhancing immunity exerted in the TME in various ways

demonstrates their potential as a target for tumor immunotherapy. In

this study, we attempted to construct a prognostic model for HNSCC

based on MRGs to predict the OS of patients and reveal the immune

infiltration and landscape of HNSCC to screen patients who might

benefit from immunotherapy.

In order to have a deeper understanding of each gene, we

investigated the role of 14-MRGs in cancers. In our study, survival

analysis showed that LAT, PTPN7, RASGEF1B, SLC18A2,

TBC1D14, and TPSD1 were protective factors and associated

with longer OS, while higher expressions of AREG, CD82,

DAPK1, FDX1, GLUL, HS3ST1, LIF, and TMOD1 were

associated with shorter OS. It has been reported that AREG,

CD82, LIF, TBC1D14, TPSD1, DAPK1, FDX1, GLUL, and

HS3ST1 affected the survival prognosis of HNSCC patients.

AREG encodes proteins that are members of the epidermal

growth factor (EGF) family and regulate proliferation, apoptosis

and migration in different cell types. High expression of AREG was

correlated with a poorer OS in HPV-associated HNSCC (41).

Several studies have also shown that AREG is a poor prognostic

factor in HNSCC (42–44). In addition, mast cells are a potential

major source of AREG (45). LIF is a pleiotropic factor that has been

shown to be associated with poor tumor prognosis in a wide range

of tumors (46–48). Dayson et al. suggested that radiotherapy may

have enhanced the immunosuppression of HNSCC, induced

significant LIF gene signaling, and reduced the role of cytotoxic

lymphocytes (49). LAT, PTPN7, RASGEF1B, SLC18A2, and

TMOD1 have not been reported in HNSCC. LAT is a connexin

for T-cell activation. Phosphorylated LAT can bind to various

signaling proteins to form a multiprotein complex, which plays

an essential role in T-cell activation and regulation and promotes

the cytotoxicity of CD8+ cytotoxic T lymphocytes (CTLs) (50).
TABLE 2 Fourteen MRGs associated with prognosis in HNSCC patients.

Gene Coefficient HR(95%CI) P value

AREG 0.405 1.499 (1.004-2.240) 0.048

CD82 0.733 2.081 (1.410-3.070) 0.000

DAPK1 0.885 2.422 (1.387-4.230) 0.002

FDX1 0.596 1.815 (1.199-2.748) 0.005

GLUL 0.853 2.347 (1.405-3.918) 0.001

HS3ST1 0.561 1.752 (1.008-3.046) 0.047

LAT -0.749 0.473 (0.275-0.813) 0.007

LIF 0.893 2.443 (1.574-3.792) 0.000

PTPN7 -0.489 0.613 (0.415-0.908) 0.014

RASGEF1B -0.542 0.582 (0.389-0.871) 0.008

SLC18A2 -0.620 0.538 (0.339-0.854) 0.009

TBC1D14 -0.731 0.481 (0.325-0.713) 0.000

TMOD1 0.550 1.733 (1.144-2.623) 0.009

TPSD1 -0.540 0.583 (0.396-0.857) 0.006
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PTPN7 is involved in immune infiltration and is strongly correlated

with immunothermal tumors in breast cancer (51). In digestive

tract cancer (52), bladder cancer (53) and glioma (54), PTPN7 can

serves as a predictive tumor biomarker. TMOD1, a member of the

encoded pro-regulatory protein family, plays a vital role in

regulating the organization of actin filaments. High expression of

TMOD1 has been confirmed to correlate with tumor growth and

enhanced lymph node metastasis (55, 56).
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These findings are consistent with our study. It is worth noting

that several studies have shown that PTPN7 is an unfavorable

prognostic factor in tumors, contrary to our results, which suggest

that the role played by PTPN7 in tumors and the mechanisms

affecting prognosis are complex. We need further in vivo and in

vitro experiments to clarify the function of PTPN7 in HNSCC. In

correlation analyses, we found that AREG and PTPN7 are highly

associated with a wide range of immune cells and immune
FIGURE 5

Clinical pathological risk stratification and independent prognostic analysis. Stratified risk of patients in different clinicopathological subgroups,
including (A) age, (B) gender, (C) stage, (D) T stage and (E) N stage. (F, G) Univariate and multivariate Cox regression analyses to select features with
independent prognostic ability.
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FIGURE 6

Construction and validation of nomogram. (A) Nomogram prediction models were developed to forecast the OS of HNSCC patients at 1-, 3-, and
5year (*p < 0.05, **p < 0.01, ***p < 0.001). (B-D) Calibration curves at 1-, 3-, and 5-year in the training, validation, and entire cohorts. (E) The C-
index over ten years for different predictors. ROC curves evaluated the predictive performance of prognostic factors at 1-, 3-, and 5 years in the
(F-H) training, (I-K) validation, and (L-N) entire cohort.
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FIGURE 7

Immune infiltration and correlation analysis. The infiltration of 22 immune cell types between high- and low-risk groups in the (A) training, (B)
validation and (C) entire cohorts. (D) Seven immune infiltration algorithms. (E) Correlation analysis of 22 immune cell types (*P < 0.05, **P < 0.01,
***P < 0.001). (F) Correlation analysis of 14 MRGs and 22 types of immune cells (*P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 8

Immune checkpoint expression and prediction of immunotherapy response. (A) Differences in immune checkpoint expression between high- and
low-risk groups (*p < 0.05, **p < 0.01, ***p < 0.001). (B) Correlation analysis of 14 MRGs and differentially expressed immune checkpoints (*p <
0.05, **p < 0.01, ***p < 0.001). (C-E) Correlation analysis of MRGs-RiskScore with stromal score, immune score, and ESTIMATE score. (F-H) Analysis
of TIDE, exclusion score, and dysfunction score in high- and low-risk groups. (I) Scatter plot of correlation between MRGs-RiskScore and TIDE.
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FIGURE 9

Drug susceptibility analysis. (A) A statistically significant difference in IC50 between high- and low-risk groups for 92 drugs (*p < 0.05, **p < 0.01,
***p < 0.001). Targeted drugs that are sensitive to the (B-E) high-risk group and (F-J) low-risk group.
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checkpoints, suggesting that they may be involved at the molecular

level in regulating cellular interactions as well as immune

checkpoint expression in the TME of HNSCC.

Immune cells in TME play a vital role in the dynamic

progression of HNSCC (57). We found that more immune cells

were enriched in the low-risk group through immune infiltration

analysis. Tregs, Tfhs, and resting CD4+ memory T cells significantly

different between high- and low-risk groups in three sets. In tumor

development, the surrounding microenvironment produces cross-

linkages and gradually creates conditions conducive to tumor

growth and invasion. This process is achieved by depleting anti-

t umor immune c e l l s (ma in l y T ce l l s ) t o p romot e

immunosuppression. For example, PD-L1 binding to PD-1 leads

to T cell dysfunction by reducing T cell receptor (TCR) signaling

and promoting differentiation into Tregs, making immune escape

easy (58, 59). Tregs can produce the immunosuppressive cytokines

IL-10 and TGF-b to deplete IL-2, constituting the CD3+CD4+

subpopulation to suppress the activity of effector T cells and

effective anti-tumor immune response (60). Our study showed a

significant infiltration difference of CD8+ T cells between high- and

low-risk groups. Thus, CD8+ T cells may be depleted by Tregs.

Depletion of CD8+ T cells and other essential components of anti-

tumor immunity may be the main reason for the limited efficacy of

long-term immunotherapy in humans (58). However, under

specific circumstances, Tregs can inhibit the malignant

transformation of tumors (61). Some studies have reported that

high levels of Tregs in HNSCC are associated with longer

recurrence-free survival (RFS) and OS, which may be closely

related to high levels of CD4+CD25+Foxp3+Tregs in TILs (60).

Several other studies have demonstrated that high levels of Tregs

infiltration can improve the OS of HNSCC patients. What is more,

Foxp3+Treg is considered a good independent prognostic factor for

HNSCC (62–64). Thus, specific phenotypes of immune cells

determine their function in tumors. Tfhs play different roles in

Tfh cell-derived tumors, B-cell lymphomas, and solid organ tumors.

In HPV+HNSCC, CD4+ Tfh cells can assist in efficiently activating

TIL-B, thereby enhancing anti-tumor immunity (65). The

differentiation of resting CD4+ memory T cells into Th cells with

different phenotypes may provide new directions for the

mechanism and immunotherapy of HNSCC (66).

In our study, there was no significant difference in mast cell

infiltration between the high-risk and low-risk groups in the

training group. This may be due to the larger tumor

heterogeneity among the patients in this group, which reduces the

statistical significance. Secondly, the sample size of this group may

not be sufficient to detect significant infiltration differences.

Nonetheless, mast cells in different states in the training group

still show an infiltration trend, activated mast cells infiltrate more in

the high-risk group, while resting mast cells are more abundant in

the low-risk group. The results of multiple immune infiltration

algorithms demonstrated that the low-risk group generally had a

richer infiltration of anti-tumor immune cells, such as CD8+ T cells,

CD4+ T cells, active NK cells, B cells, and so on. The ESTIMATE

showed that the MRGs-Riskscore were negatively correlated with
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the immune scores. Higher immune scores are usually associated

with a favorable prognosis (67, 68). It illustrated why the OS and

prognosis of patients in the low-risk group were better than those in

the high-risk group. In addition, the lower TIDE score and immune

exclusion score in the low-risk group suggest that patients in this

group are less likely to experience immune escape and have a

greater chance of benefiting from immunotherapy. The higher T-

cell dysfunction score in the low-risk group may be related to

suppressed T-cell function due to high Tregs infiltration.

After activation in the tumor microenvironment (TME), mast

cells can release various mediators through degranulation,

participating in physiological and pathological activities. For

example, they can release molecules that promote tumor

angiogenesis, such as vascular endothelial growth factor-A

(VEGF-A), transforming growth factor-b (TGF-b), heparin,

interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9),

trypsin-like proteases, and chymotrypsin (69). They can also

release vascular endothelial growth factor-C (VEGF-C) and

vascular endothelial growth factor-D (VEGF-D) to promote

lymphangiogenesis, enhancing the tumor’s distal infiltration

ability (70, 71). In addition, mast cells can secrete different

cytokines to recruit CD8+ T cells or immune cells with

suppressive phenotypes, such as tumor-associated macrophages

(TAMs) and myeloid-derived suppressor cells (MDSCs), to the

tumor periphery, achieving anti-tumor immunity or enhancing

immune suppression (72, 73). In our study, active mast cells and

resting mast cells were correlated and showed opposite trends with

a variety of immune cells such as T cells, B cells, NK cells and

macrophages, indicating that mast cells in certain states may release

factors to communicate with other immune cells, thereby

promoting or inhibiting tumor progression. Phenotypic and

functional characterization of mast cells in different states is

essential to advance immunotherapy for HNSCC.

ICIs treatment is one of the main treatment methods for

HNSCC. It protects T-cell function by blocking the interaction

between inhibitory receptors and their ligands, thereby reducing

immune escape (74). Nivolumab and pembrolizumab are currently

commonly used anti-PD-1 drugs. However, the monotherapy or

combination application of ICIs from other pathways may provide

new directions for the immunotherapy of HNSCC. Wang et al.’s

research shows that CD276 is highly expressed in cancer stem cells

(CSCs). During the occurrence, progression, and metastasis of

HNSCC, CSCs evade immune system survei l lance by

upregulating the expression of CD276. Studies have shown that

targeting CD276 can significantly enhance the CD8+T cell-

mediated clearance of CSCs and inhibit the metastasis of HNSCC

(75). This discovery highlights the unique potential of CD276 in

HNSCC immunotherapy, making it a promising therapeutic target.

To study the impact of CD44+ tumors on tumor angiogenesis, Nils

Ludwig et al.’s research used tissue microarray technology

combined with immunohistochemical methods to analyze the

correlation between CD44 expression and microvessel density in

HNSCC samples. The results showed that CD44+ tumor cells can

secrete pro-angiogenic factors, thereby promoting angiogenesis in
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HNSCC. Based on this finding, CD44+ may serve as a potential

marker for tumor angiogenesis and become an important target for

anti-angiogenic therapy (76). The epidermal growth factor receptor

(EGFR) is a member of the tyrosine kinase family, which can

mediate cell proliferation and signal transduction after binding

with EGF. EGFR is overexpressed in 80%-90% of HNSCC cases and

is associated with poor OS and progression-free survival (PFS) (77,

78). Therefore, EGFR-targeted drugs such as cetuximab have

become one of the treatment options for chemotherapy-resistant

patients with HNSCC. Bonner et al.’s research explored whether

dual inhibition using cetuximab and JAK-STAT-3 inhibition

(JAK1i) could enhance the effect of cetuximab. The results

showed that the antiproliferative effect of cetuximab was

significantly enhanced after adding JAK1i, with greater

radiosensitization (79). LAG3 is mainly significantly expressed in

activated CD4+ T cells, CD8+ T cells and Tregs (80–82). LAG3 can

rapidly translocate to the cell surface after activation, and this

dynamic cell surface localization mechanism may be closely

related to regulating its immunosuppressive function (83).

Relatlimab is the first monoclonal antibody targeting LAG3 to be

approved by the FDA. In phase I and I/IIa clinical trials for HNSCC,

preliminary results indicate that relatlimab, whether used as

monotherapy or in combination with anti-PD-1, exhibits good

tolerability, efficacy, and controllable toxicity characteristics.

These findings suggest that the dual immunotherapy combination

of relatlimab and PD-1 has the potential to become a strategy to

overcome immunotherapy resistance, providing new ideas for the

immunotherapy of HNSCC (84). In our study, there were

significant differences in the expression levels of 19 immune

checkpoints between the high- and low-risk groups, distinguished

by the 14-MRGs prognostic signature. Selectively applying ICIs

therapy to patients in different risk groups may help improve

efficacy and reduce the risk of drug resistance.

We must acknowledge some limitations in this study. This

study is based on retrospective data from public databases.

Although we have assessed the robustness of the model through

internal validation by grouping and stratified analysis in the TCGA

dataset, due to the excessive number of model genes and the lack of

survival data of data sets, no suitable data sets have been found in

GEO or other databases for external validation, which is a deficiency

of this study. We will continue to seek appropriate independent

datasets to complete external validation. Future research should

include prospective validation with multicenter samples to enhance

the current model’s general applicability and improve its

clinical feasibility.
5 Conclusion

In this study, we applied scRNA-seq technology to identify

MRGs, constructed a 14-MRGs prognostic model for HNSCC, and

revealed the immune infiltration and landscape. These results

suggest that patients in the low-risk group have more prolonged
Frontiers in Immunology 16
survival and richer immune cell infiltration and are more likely to

benefit from immunotherapy, maybe provide appropriate and

effective treatment options for HNSCC patients.
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17. Cosoroabă RM, Gaje NP, Ceaus ̧u AR, Dumitru C, Todor L, Popovici RA, et al.
The mast cell reaction in premalignant and Malignant lesions of the head and neck.
Rom J Morphol Embryol. (2022) 63:407–11. doi: 10.47162/rjme.63.2.11
18. Jin Y, Qin X. Profiles of immune cell infiltration and their clinical significance in
head and neck squamous cell carcinoma. Int Immunopharmacol. (2020) 82:106364.
doi: 10.1016/j.intimp.2020.106364

19. Jin Y, Wang Z, Huang S, Liu C, Wu X, Wang H. Identify and validate circadian
regulators as potential prognostic markers and immune infiltrates in head and neck
squamous cell carcinoma. Sci Rep. (2023) 13:19939. doi: 10.1038/s41598-023-46560-8

20. Ding Y, Chu L, Cao Q, Lei H, Li X, Zhuang Q. A meta-validated immune
infiltration-related gene model predicts prognosis and immunotherapy sensitivity in
HNSCC. BMC Cancer. (2023) 23:45. doi: 10.1186/s12885-023-10532-y

21. Fan X, Yang X, Guo N, Gao X, Zhao Y. Development of an endoplasmic
reticulum stress-related signature with potential implications in prognosis and
immunotherapy in head and neck squamous cell carcinoma. Diagn Pathol. (2023)
18:51. doi: 10.1186/s13000-023-01338-4

22. Chen F, Gong X, Xia M, Yu F, Wu J, Yu C, et al. The aging-related prognostic
signature reveals the landscape of the tumor immune microenvironment in head and
neck squamous cell carcinoma. Front Oncol. (2022) 12:857994. doi: 10.3389/
fonc.2022.857994

23. Tao ZY, Yang WF, Zhu WY, Wang LL, Li KY, Guan XY, et al. A neural-related
gene risk score for head and neck squamous cell carcinoma.Oral Dis. (2024) 30:477–91.
doi: 10.1111/odi.14434

24. Elenkov IJ, Webster E, Papanicolaou DA, Fleisher TA, Chrousos GP, Wilder RL.
Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2
receptors. J Immunol. (1998) 161:2586–93. doi: 10.4049/jimmunol.161.5.2586

25. Carroll-Portillo A, Cannon JL, te Riet J, Holmes A, Kawakami Y, Kawakami T,
et al. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T
cell activation. J Cell Biol. (2015) 210:851–64. doi: 10.1083/jcb.201412074

26. Qi Z, Barrett T, Parikh AS, Tirosh I, Puram SV. Single-cell sequencing and its
applications in head and neck cancer. Oral Oncol. (2019) 99:104441. doi: 10.1016/
j.oraloncology.2019.104441

27. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol. (2018) 36:411–20. doi: 10.1038/nbt.4096

28. Mcinnes L, Healy J. UMAP: uniform manifold approximation and projection for
dimension reduction. J Open Source Software. (2018) 3:861. doi: 10.21105/joss.00861

29. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. COVID-19 immune features
revealed by a large-scale single-cell transcriptome atlas. Cell. (2021) 184:5838.
doi: 10.1016/j.cell.2021.10.023

30. Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human
mast cell proteome reveals unique lineage, putative functions, and structural basis for
cell ablation. Immunity. (2020) 52:404–16.e5. doi: 10.1016/j.immuni.2020.01.012

31. Cai Z, Tang B, Chen L, Lei W. Mast cell marker gene signature in head and neck
squamous cell carcinoma. BMC Cancer. (2022) 22:577. doi: 10.1186/s12885-022-
09673-3

32. Zhang P, Liu J, Pei S, Wu D, Xie J, Liu J, et al. Mast cell marker gene signature:
prognosis and immunotherapy response prediction in lung adenocarcinoma through
integrated scRNA-seq and bulk RNA-seq. Front Immunol. (2023) 14:1189520.
doi: 10.3389/fimmu.2023.1189520

33. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-0114-2

34. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1

35. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive
analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol.
(2016) 17:174. doi: 10.1186/s13059-016-1028-7
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1538641/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1538641/full#supplementary-material
https://doi.org/10.1038/s41572-020-00224-3
https://doi.org/10.1038/s41572-020-00224-3
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1016/j.semcancer.2021.05.008
https://doi.org/10.1016/s0140-6736(18)31999-8
https://doi.org/10.1016/s0140-6736(18)31999-8
https://doi.org/10.1056/NEJMoa1602252
https://doi.org/10.1016/s0140-6736(19)32591-7
https://doi.org/10.3390/cancers16040703
https://doi.org/10.3390/pharmaceutics15061692
https://doi.org/10.3390/pharmaceutics15061692
https://doi.org/10.1016/j.humpath.2009.04.029
https://doi.org/10.1158/0008-5472.Can-11-1637
https://doi.org/10.2353/ajpath.2010.100070
https://doi.org/10.1007/s10517-017-3907-7
https://doi.org/10.1158/0008-5472.Can-21-3424
https://doi.org/10.1158/0008-5472.Can-21-3424
https://doi.org/10.3390/medicina60071173
https://doi.org/10.1042/bsr20192724
https://doi.org/10.3390/ijms24065931
https://doi.org/10.47162/rjme.63.2.11
https://doi.org/10.1016/j.intimp.2020.106364
https://doi.org/10.1038/s41598-023-46560-8
https://doi.org/10.1186/s12885-023-10532-y
https://doi.org/10.1186/s13000-023-01338-4
https://doi.org/10.3389/fonc.2022.857994
https://doi.org/10.3389/fonc.2022.857994
https://doi.org/10.1111/odi.14434
https://doi.org/10.4049/jimmunol.161.5.2586
https://doi.org/10.1083/jcb.201412074
https://doi.org/10.1016/j.oraloncology.2019.104441
https://doi.org/10.1016/j.oraloncology.2019.104441
https://doi.org/10.1038/nbt.4096
https://doi.org/10.21105/joss.00861
https://doi.org/10.1016/j.cell.2021.10.023
https://doi.org/10.1016/j.immuni.2020.01.012
https://doi.org/10.1186/s12885-022-09673-3
https://doi.org/10.1186/s12885-022-09673-3
https://doi.org/10.3389/fimmu.2023.1189520
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.3389/fimmu.2025.1538641
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1538641
36. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Correction to: Molecular and pharmacological modulators of the tumor immune
contexture revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:50.
doi: 10.1186/s13073-019-0655-5

37. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-
016-1070-5

38. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression data.
Elife. (2017) 6:2. doi: 10.7554/eLife.26476

39. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia
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