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Background: LRFN4, characterized by leucine-rich repeats and fibronectin type

III domains, has been implicated in various human diseases. However, its role in

immune regulation and cancer prognosis remains unclear.

Methods: We performed a comprehensive analysis using datasets from The

Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Genotype-

Tissue Expression Project (GTE x), UALCAN, Star Base, and Comparative

Toxicogenomics Database (CTD), and observed significant dysregulation of

LRFN4 in multiple cancers compared to normal tissues.

Results: LRFN4 expression was strongly correlated with clinical prognosis,

immune subtypes, molecular subtypes, immune checkpoint (ICP) genes, tumor

mutational burden (TMB), microsatellite instability (MSI), and immune infiltration,

which were measured by ESTIMATE scores. Moreover, LRFN4 expression was

associated with the presence of tumor-infiltrating immune cells, particularly in

gastrointestinal tumors, reflecting immune cell genetic signatures. Validation

through fluorescence multiplex immunohistochemistry confirmed that the

association of LRFN4 protein expression with the clinicopathological features

and the immune microenvironment of gastric cancer. Flow cytometry analysis

indicated that LRFN4 inhibited apoptosis in gastric cancer cell lines while

enhancing cell cycle arrest in the S phase. Western Blot analysis demonstrated

a positive correlation between the high expression of LRFN4 and the expression

levels of cyclin D1 as well as CDK4. In contrast, a negative correlation was

observed between the high expression of LRFN4 and the expression level with

cleaved-caspase-3 levels.

Conclusion: These findings suggest that LRFN4 may serve as a novel biomarker

for cancer prognosis and a potential target for immunotherapy.
KEYWORDS

LRFN4, pan-cancer analysis, TCGA, immunotherapy, tumor microenvironment,
prognostic biomarker
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1 Introduction

Cancer remains a major global public health challenge, with its

complexity stemming from diverse tumorigenic processes and

molecular mechanisms. Conducting pan-cancer analyses of tumor-

related genes is critical for understanding their roles in clinical

prognosis and identifying the molecular pathways driving

oncogenesis. Such analyses establish a robust foundation for the

discovery of therapeutic targets and the development of novel

treatment strategies (1–3). Recent advances in immunotherapy,

particularly with immune checkpoint inhibitors targeting PD-1/PD-

L1 and CTLA-4, have transformed the management of advanced

cancers (4, 5). Despite these successes, the tumor microenvironment

(TME) poses substantial challenges, mediating resistance and

variability in treatment efficacy. The TME consists of a complex

interplay between tumor cells, immune cells, stromal components,

and soluble factors, such as cytokines and chemokines. Tumor cells

manipulate the functions of immune and stromal cells by the secretion

of growth factors and cytokines, creating an environment favorable to

tumor progression and immune evasion. These interactions highlight

the pressing need to identify novel prognostic biomarkers to enhance

the precision and efficacy of immunotherapy (6).

LRFN4 protein, also known as leucine-rich repeat and

fibronectin type III domain-containing protein 4, is distinguished

by the presence of leucine-rich repeats and a fibronectin type III

domain (7, 8). It plays a significant role in various cellular processes,

including cell proliferation, cell cycle regulation, and the

modulation of cellular inflammation. Numerous studies have

investigated LRFN4, establishing a functional connection between

LRFN4 and the development of tumors, including in colon cancer,

lung cancer, and leukemia. For example, in colon cancer, LRFN4

has been shown to promote cell proliferation through regulating

specific signaling pathways. In lung cancer, its overexpression has

been associated with enhanced cell invasion ability. In leukemia,

LRFN4 might contribute to tumorigenesis by disrupting the normal

regulation of hematopoiesis (9–11). This study presents a

comprehensive summary of current evidence derived from

cellular and animal experiments, highlighting the association

between LRFN4 and different types of cancer.

This study represents the first pan-cancer analysis of LRFN4

utilizing data from the TCGA project and the GEO database.

Additionally, we integrate a broad array of investigations,

including gene expression, survival status, DNA methylation,

genetic alterations, protein phosphorylation, immune infiltration,

and associated cellular pathways, to elucidate the potential

molecular mechanisms through which LRFN4 may influence the

onset or clinical prognosis of various cancers.
2 Materials and methods

2.1 Gene expression analysis

RNA-sequencing (RNA-seq) data for 33 tumor types were

downloaded from the Cancer Genome Atlas (TCGA) database (12),
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which provides a comprehensive functional genomics data set

encompassing various tumors, facilitating robust pan-cancer analyses.

The STAR alignment pipeline was used to process the data, and

transcripts per million (TPM) expression values were extracted. Data

analysis and visualization were conducted using R software (version

4.2.1). Statistical tests based on data characteristics were performed

using the stats (version 4.2.1) and car (version 3.1-0) packages.

Analyses not meeting statistical requirements were excluded (13).

The Wilcoxon rank sum test was used for group comparisons

application. The expression profile of LRFN4 in cancer cell lines was

analyzed using the Cancer Cell Line Encyclopedia (CCLE) database.

For tumors lacking normal tissue data (e.g., TCGA-GBM,

TCGA-LAML), GEPIA2 was employed to compare TCGA tumor

samples with GTEx normal tissues, using a P-value cutoff of 0.01

and a log2FC threshold of 1 (14, 15). The correlation between

LRFN4 expression-pathological staging was assessed using

GEPIA2’s “Pathological Staging Chart,” generating normalized

(log2 [TPM + 1]) violin plots for stages I-IV. GEPIA2 was utilized

for TCGA-GTEx data integration, with figures based on log-

transformed values [log2(TPM + 1)].
2.2 Survival prognosis analysis

ROC analysis with the pROC package was used to evaluate

LRFN4’s ability to distinguish tumors from normal tissues. Data

from UCSC XENA, where TCGA and GTEx datasets were

processed into TPM format via the Toil pipeline (16, 17).

Prognostic Analysis, RNA-seq and clinical data from TCGA

exploring overall survival (OS) and disease-free survival (DFS).

GEPIA2 provided OS and DFS maps, stratifying cohorts into high-

and low-expression groups (14). To further validate our findings,

supplementary survival analysis was conducted using the Kaplan-

Meier plotting tool, with data sourced from the GEO database. This

analysis aimed to assess the prognostic significance of LRFN4

expression across multiple cancer types.
2.3 Immune and molecular subtype
analysis

The TISIDB portal (http://cis.hku.hk/TISIDB/, accessed on

September 3, 2024) was utilized to investigate the relationship

between LRFN4 expression and the immune or molecular

subtypes of various cancers.
2.4 Biomarker efficacy analysis

The TCGA Pan-Cancer dataset (PANCAN, N = 10,535, G =

60,499) was used to investigate the relationship between LRFN4

expression and key therapeutic biomarkers, including tumor

mutational burden (TMB), microsatellite instability (MSI), and the

ESTIMATE scores . Express ion profi l es for the gene

ENSG00000173621 (LRFN4) were extracted, with samples were
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filtered to include only “Primary Blood Derived Cancer - Peripheral

Blood” and “Primary Tumor” types. Cancer types with fewer than

three samples were excluded, resulting in data for 37 cancer types.

TMB was calculated using MuTect2-processed simple nucleotide

variation data, and the “maftools” R package (18–20). MSI scores

were retrieved from TCGA’s public data. Tumor microenvironment

characteristics (ESTIMATE scores) were obtained through the

ESTIMATE algorithm (21, 22). All expression data were normalized

using a log2(x + 0.001) transformation before integration.
2.5 Genetic alteration analysis

The cBioPortal platform (https://www.cbioportal.org/, accessed

on September 3, 2024) was used to investigate LRFN4’s genetic

alterations in a pan-cancer cohort. We selected the “TCGA Pan

Cancer Atlas Studies” dataset to characterize mutation frequencies,

mutation types, and copy number alterations using the “Cancer

Types Summary”module. The Simple Nucleotide Variation Level 4

dataset from the GDC portal, which was processed by MuTect2, was

used. Mutation data were annotated with protein domain

information using the “maftools” R package (version 2.2.10) to

map mutations to specific protein domains (19, 20). Mutation

hotspots within critical functional domains were identified,

highlighting potential targets for further experimental validation.
2.6 Immune gene correlation analysis

A correlation analysis was performed to investigate the relationship

between LRFN4 expression and immune checkpoint genes using the

standardized pan-cancer dataset from the UCSC database (https://

xenabrowser.net, accessed on September 3, 2024). Specifically, we

utilized the TCGA TARGET GTEx dataset (PANCAN, N=19,131,

G=60,499) (17). The gene ENSG00000173621 (LRFN4) along with

60 immune checkpoint-related genes, including 24 inhibitory and

36 stimulatory genes, as defined in The Immune Landscape of

Cancer (23), were extracted. We focused on samples derived from

primary solid tumors and primary hematologic malignancies (bone

marrow and peripheral blood), excluding normal tissue to ensure a

tumor-specific context. Expression values were log2(x+0.001)-

transformed to stabilize variance and improve data normalization.

Pearson correlation coefficients were calculated to quantify the

relationship between LRFN4 and immune checkpoint genes. We

further applied this methodology to analyze the correlation between

LRFN4 and five immune pathway marker gene sets. The following

selects eight widely - studied immune checkpoint - related genes to

specifically analyze their correlations with LRFN4.
2.7 Immune infiltration analysis

The xCell method (23), as implemented through the IOBR R

package (24) (version 0.99.9), is employed to deconvolute gene

expression data into immune infiltration scores for 67 immune and
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stromal cell types, thereby assessing immune cell infiltration in

tumor samples.In addition, we utilized the “immune-gene” module

of the TIMER2 web server (http://timer.cistrome.org/, accessed on

September 4, 2024) to investigate the association between LRFN4

expression and immune cell infiltration across TCGA tumor types,

with a focus on key cell subsets such as CD8+ T cells and cancer-

associated fibroblasts (CAFs) (25). We focused our analysis on

seven gastrointestinal cancers (esophageal, gastric, colorectal, liver,

biliary tract, pancreatic, and small intestine cancers) due to their

high incidence and mortality rates, as well as the availability of

comprehensive data from public databases such as GEO and TCGA.

These cancers share common features in the tumor microenvironment

and immune response, making them ideal for investigating the role of

LRFN4 in immune cell infiltration and tumor progression.Key

immune cell subsets such as CD8+ T cells and cancer-associated

fibroblasts (CAFs) (25) play a critical role in shaping the

immunosuppressive TME. Immune infiltration was quantified using

multiple computational algorithms, including TIMERCIBERSORT

(25), CIBERSORT-abs, QUANTISEQ (26), xCell (23),

MCPCOUNTER (27), and EPIC (28). This multi-algorithm

approach ensured a comprehensive assessment of immune

infiltration. Spearman rank correlation tests, adjusted for tumor

purity, were applied to obtain P-values and partial correlation

coefficients (cor).
2.8 Enrichment analysis

PPI analysis of LRFN4 (Homo sapiens) was conducted using

the STRING database (https://string-db.org, accessed on September

4, 2024) (28), with parameters set to an interaction score ≥ 0.150

(low confidence), and incorporating evidence-based edges, 50 first-

shell interactors, and experimental validation as sources. The top

100 genes most strongly correlated with LRFN4 across TCGA

datasets were identified using the GEPIA2 web tool (http://

gepia2.cancer-pku.cn, accessed on September 4, 2024) (14) via the

“similar gene detection” module. Pearson correlation (log2 TPM

values) between LRFN4 and these genes was computed. Heatmaps

showing partial Spearman correlation coefficients and adjusted p-

values for tumor purity were generated by the “Gene_Corr”module

of TIMER2 (http://timer.cistrome.org, accessed on September 4,

2024) (29). Overlapping genes between LRFN4-binding proteins

and LRFN4-correlated genes were determined using Jvenn (https://

bioinfo.genotoul.fr/jvenn, accessed on September 4, 2024), and

subjected to KEGG pathway enrichment analysis (30–32), and

enriched terms visualized using a cnetplot (circular = F,

colorEdge = T, node_label = T).

All analyses were executed in R 3.6.3 (64-bit), considering P <

0.05 as statistically significant.
2.9 Cell culture

Human gastric cancer cell lines, HGC-27 and MKN-45, were

procured from QINGQI (Shanghai) Biotechnology Development
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Co., Ltd. The cells were cultured in 1640 medium (SH30027.01,

HyClone, China) supplemented with 10% fetal bovine serum

(SH30396.02, HyClone, China) and 1% penicillin-streptomycin

mixture (SV30010, HyClone, China). The cultivation occurred at

37°C in a 5% CO2 incubator (Jiemei Electronics, CI-191C). The cell

culture medium was refreshed every two days, and the cells were

employed for subsequent experiments upon reaching the

exponential growth phase.
2.10 Construction of gastric cancer cell
models

MKN-45 cells in the logarithmic growth phase were seeded into

culture vessels until 50% - 70% confluence was achieved.

Subsequently, an overexpressed lentivirus at an MOI of 20 was

introduced for cell infection. After 48 hours, the cells were cultured

in puromycin-containing medium for an additional 48 hours to

select for successfully transfected cells, with the survival of virus-

infected cells after puromycin treatment indicating successful

transfection. The same procedure was performed for LRFN4

overexpression in the HGC-27 cells. For gene knockdown, an

shRNA sequence targeting LRFN4 (shRNA1212: CCATAACCT

TATTGACGCACT) was designed and integrated into a lentiviral

vector. Subsequent experiments involved three groups for MKN-45

cells: Control, OE-NC, and OE-LRFN4, and for HGC-27 cells, the

groups were Control, shNC, and shLRFN4.

The efficiency of LRFN4 knockdown and overexpression

models was assessed through quantitative polymerase chain

reaction (qPCR) and Western blot (WB) analyses. RNA was

extracted post-treatment, reverse transcribed to cDNA and

subjected to qPCR using LRFN4-specific primers with GAPDH as

a reference. The DDCt method determined relative mRNA levels.

Protein lysates from treated cells were separated by SDS-PAGE,

transferred to membranes, and probed with LRFN4 and GAPDH

antibodies. Densitometry quantified LRFN4 protein expression

relative to GAPDH.
2.11 Flow cytometry analysis for cell
apoptosis and cell cycle detection

Cell lines with stable LRFN4 overexpression, LRNF4

knockdown, and corresponding controls were cultured separately

at 37°C under 5% CO2 until suitable density was achieved. For

apoptosis analysis, the culture medium was removed, and cells were

washed twice with PBS to eliminate residues. Trypsin was added for

cell detachment, and the resulting suspension was centrifuged at

1000g for 5 minutes. The supernatant was discarded, and the cell

pellet was resuspended in PBS to a concentration of 1×106 cells/ml.

A 100 ml aliquot of the suspension was transferred to a flow tube,

mixed with 5 ml of Annexin V-FITC and 5 ml of PI staining solution,
and incubated at RT in the dark for 20 minutes. After adding 400ml
of PBS, flow cytometry was used to detect and record the proportion

of Annexin V-FITC and PI positive cells. Flow cytometer software
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distinguished early apoptotic (Annexin V+/PI-), late apoptotic

(Annexin V+/PI+), and normal cells (Annexin V-/PI-). The

apoptosis proportions of different groups were compared to assess

the impact of LRFN4 manipulation.

For cell cycle analysis, exponentially growing cell lines

(LRFN4 overexpression, knockdown, and control) were

processed similarly. After cell pellet collection, pre-cooled 70%

ethanol was added, and cells were gently mixed by pipetting and

fixed at 4°C overnight. Cells were centrifuged at 1200g for 3

minutes to remove ethanol, washed twice with PBS, incubated

with PI dye solution (containing RNase A) at RT in the dark for 30

minutes. The stained cell suspension was filtered into a loading

tube for flow cytometry detection and fluorescence signal

recording. The software was used to analyze cell cycle phase

distribution (G0/G1, S, G2/M) (Figure 1).
2.12 Fluorescence-based mIHC analysis

Gastric cancer patient tissue arrays were sourced from

Beijing Mescape Biotechnology Co., Ltd. The submitted

samples were preserved in 4% paraformaldehyde. Following

fixation, these specimens underwent meticulously trimmed,

dehydrated, embedded, sectioned, stained, and sealed, strictly

adhering to the standard operating procedures (SOP) of the

pathology laboratory of the unit for detailed examination. The

expression and localization of the target gene LRFN4 were

analyzed using Visiopharm Intelligent Full-line AI Digital

Pathology Quantitative Analysis Software. Additionally, SPSS

was employed to analyze the relationship between LRFN4 gene

expression and patient demographic variables such as gender,

age, and clinical stage.
2.13 Western blot analysis

Cells were harvested at the logarithmic growth phase. The

procedure involved washing with PBS, lysing with RIPA buffer on

ice (30 min), scraping, centrifugation (12,000 rpm, 4°C, 5 min).

Subsequent steps included an additional centrifugation (5000 rpm,

4°C, 5 min), lysis with RIPA (ice, 20–30 min), sonication, and

further centrifugation (12,000 rpm, 4°C, 10 min). Protein

concentrations were determined using a BCA kit with BSA

standards, samples were mixed with reagent and incubate at 37°C

(30 min), followed by absorbance measurement at 562nm. Samples

were then mixed with 5× loading buffer, boiled, and centrifuged.

Prepare gels, load samples, electrophorese (80 V to 120 V), transfer

proteins to a 0.2 mm PVDF membrane (100 V, 1 h). Blocking was

performed with 5% non-fat milk in PBS-T (room temperature, 1 h/

4°C overnight), followed by incubation with appropriately diluted

primary and secondary antibodies, and washing with PBS-T. Mix

ECL solutions A and B, applied to the membrane (1 min), wrap,

expose film (1-5min), develop, and fix. In the Western blot analysis,

we used Abcam antibodies for target protein detection. The

Cleaved-Caspase-3 (ab2303, 1:500), Caspase 3 (ab90437, 1:1000),
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Cyclin D1 (ab226977, 1:500), Cdk4 (ab108357, 1:1000), anti -

LRFN4 (ab106369, 1:1000), and anti - GAPDH (ab8245, 1:3000)

antibodies were applied.
2.14 Statistical evaluation

The data are expressed as mean values ± standard deviation (SD),

with all experiments conducted in triplicate. All statistical evaluations

were carried out using GraphPad Prism 7.0, SPSS (version 22.0), or R

software (version 4.1.2). A significance threshold was set at P < 0.05.

The following notation indicates statistical significance: ns for not

significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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3 Results

3.1 Differential expression of LRFN4 in pan-
cancer

This study investigated the potential role of human LRFN4 in

tumor development and progression by referencing its mRNA

(NM_001363524.2) and protein (NP_001350453.1) sequences.

The expression profiles of LRFN4 across multiple cancer types

were analyzed using data from The Cancer Genome Atlas (TCGA)

(33). As depicted in Figure 2, LRFN4 expression was significantly

higher in specific cancers including bladder cancer (BLCA), breast

cancer (BRCA), cholangiocarcinoma (CHOL), colorectal
FIGURE 1

Elucidating the expression interrelationship between LRFN4 and apoptotic as well as cell-cycle-associated proteins in gastric cancer cell lines HGC-
27 and MKN-45 using western blot (WB) analysis. NS, Not Significant; *P < 0.05, **P < 0.01.
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adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and

neck squamous cell carcinoma (HNSC), liver hepatocellular

carcinoma (LIHC), lung adenocarcinoma (LUAD), rectum

adenocarcinoma (READ), lung squamous cell carcinoma (LUSC),

stomach adenocarcinoma (STAD), and uterine corpus

endometrial carcinoma (UCEC) compared to matched normal

tissues. LRFN4 is also widely expressed in various tumor cell

lines. (Figure 2).

To address the lack of matched normal tissues in certain

cancers, normal tissue data from the GTEx database was

integrated using the GEPIA platform (http://gepia.cancer-pku.cn).

This analysis revealed significant differences in LRFN4 expression

for diffuse large B-cell lymphoma (DLBC), glioblastoma (GBM),

lower-grade glioma (LGG), skin cutaneous melanoma (SKCM),

testicular germ cell tumors (TGCT), and thymoma (THYM)
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(Figure 3). Notably, LRFN4 expression was markedly reduced in

TGCT, thyroid carcinoma (THCA), and adrenocortical carcinoma

(ACC) tumor tissues.

Given the observed pan-cancer overexpression of LRFN4, its

association with cancer progression was further elucidated by

assessing its correlation with pathological staging. Using the

“pathological staging chart” module of GEPIA2, significant

correlations between LRFN4 expression and pathological stages

were identified in adrenocortical carcinoma (ACC), lung

adenocarcinoma (LUAD), kidney renal clear cell carcinoma

(KIRC), lung squamous cell carcinoma (LUSC), and ovarian

cancer (OV) (Figure 4). No significant correlations were observed

in other cancer types. These findings highlight the potential value of

LRFN4 as a biomarker for cancer progression and its implications

for therapeutic strategy formulation.
FIGURE 2

Differential expression of LRFN4. (A) Expression levels of LRFN4 (log2 TPM) in various tumor and normal tissues across TCGA and GTEx datasets.
(Red and blue boxes represent tumor and normal tissues, respectively. The statistical significance of differences between groups is indicated by P <
0.05, P < 0.01, and P < 0.001.) (B) Paired analysis of LRFN4 expression in individual tumor types. (Tumor and normal samples are represented by red
and blue, respectively. Statistical significance is indicated as described above P < 0.05, *P < 0.01, **P < 0.001, ***P < 0.001, and “ns” for non-
significant differences.) (C) Cancer Cell Line in LRFN4 expression.
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3.2 Diagnosis value of LRFN4 across
cancers

Receiver Operating Characteristic (ROC) curves (Figure 5) were

constructed to assess LRFN4’s diagnostic potential in distinguishing

tumors from normal tissues. LRFN4 demonstrated promising

diagnostic utility across multiple cancers, with Area Under the

Curve (AUC) values: ACC (0.819), BLCA (0.636), CHOL (1.000),

COAD (0.776), LAML (0.695), DLBCL (0.816), ESCA (0.910),

GBML (0.671), SARC (0.925), LUAD (0.711), OV (0.932), PRAD

(0.797), STAD (0.954), TGCT (0.983), THCA (0.844), and OSCC

(0.912), with AUC values closer to 1 indicating superior

predictive performance.
3.3 Prognostic significance of LRFN4
across cancers

Tumor samples were stratified into high- and low-expression

groups for analyses of overall survival (OS) and disease-free survival
Frontiers in Immunology 07
(DFS) using TCGA datasets. Results demonstrated significant

associations of high LRFN4 expression with poor OS in ACC (P

< 0.001), CESC (P = 0.032), LUAD (P = 0.029), and LIHC (P =

0.001) (Figure 6A). DFS analysis (Figure 6B) showed correlation

with worse outcomes for high LRFN4 expression in ACC (P = 1.5e-

05), PRAD (P = 0.00024), SARC (P = 0.0032), and UVM (P =

0.00012), while low LRFN4 expression was associated with poor

DFS in OV (P = 0.004) (34).

Using the Kaplan-Meier plotter tool, high LRFN4 expression

was associated with poor OS (P = 0.017), distant metastasis-free

survival (DMFS, P = 0.019), and recurrence-free survival (RFS, P =

0.049) in breast cancer, and with progression-free interval (PFI) in

various other cancer types. Conversely, low LRFN4 expression was

associated with poor OS in AML and OV (P < 0.05). High LRFN4

expression correlated with poor prognosis in gastric cancer (FP, P =

0.0011; PPS, P = 0.00018), ovarian cancer (RFS, P = 0.045), colon

cancer (relapse-free survival, P = 0.0019), and lung cancer (P =

0.00026) (Figure 7). Notably, low LRFN4 expression was related to

poor prognosis in colon cancer (P = 0.0028), but showed no

significant correlation with OS, PFS, RFS, or DSS in liver cancer.
FIGURE 3

LRFN4 expression in specific tumor and normal tissues based on TCGA and GTEx datasets. (A) LRFN4 expression levels (log2 TPM + 1) in tumors with
sufficient matched normal samples. Red and blue boxes represent tumor and normal tissues, respectively. Sample sizes are indicated below each
tissue type (num(T) for tumor and num(N) for normal). (B) Analysis of tumor types with limited normal sample availability. Statistical significance is
indicated as P < 0.05 (*). Bars represent interquartile ranges.
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These findings suggest that LRFN4’s prognostic significance is

tumor-type specific, indicating its potential as a prognostic

biomarker across various malignancies.
3.4 Associations of LRFN4 with immune
and molecular subtypes

Using the TISIDB portal, the association of LRFN4 with

immune subtypes was examined across various cancers, including
Frontiers in Immunology 08
ACC, BLCA, BRCA, CESC, CHOL, KIRP, KIRC, LIHC, LUAD,

LUSC, PAAD, PRAD, SARC, STAD, TGCT, THCA, and UCEC

(Figure 8). Significantly, LRFN4 expression was associated with

immune subtypes, indicating its potential role in regulating

immune responses in cancers.

LRFN4 expression was found to differentiate among different

molecular types in cancer types such as ACC, BRCA, COAD, ESCA,

GBM, LGG, LIHC, LUSC, OV, PCPG, SKCM, STAD, and UCEC

(Figure 9). These findings suggest a close relationship between

LRFN4 expression and molecular subtypes, contributing to the
FIGURE 4

Correlation of LRFN4 expression with pathological staging.
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molecular classification of tumors.Overall, these results imply the

potential of LRFN4 as a biomarker for immune and molecular

subtype classification of various cancers.
3.5 Relationships of LRFN4 with TMB, MSI,
and ESTIMATE scores

The expression of LRFN4 was examined for its relationship with

TMB, which affects immunotherapy efficacy. LRFN4 expression

correlated positively with TMB in ACC, LGG, LUAD, LUSC,

PCPG, PRAD, SARC, STAD, and THYM, and negatively with

KIRP (Figure 10A).A positive correlation was found between MSI

and LRFN4 expression in BRCA, CESC, ESCA, HNSC, KICH,

LUAD, LUSC, PRAD, STAD, TGCT, THCA, and THYM

(Figure 10B). The relationship between LRFN4 and the three
Frontiers in Immunology 09
scores from the ESTIMATE algorithm was examined. A

significant positive correlation was confirmed in UCEC, CHOL,

KICH, DLBC, ACC, PCPG, LAML, UCS, OV, READ, MESO,

BLCA, SKCM.P, KIRC, HNSC, and KIRP (Figure 10C),

suggesting LRFN4’s potential role in anti-tumor immunity

through influencing the TME composition.
3.6 Data analysis of LRFN4 genetic
alterations

Using TCGA cohort data, we analyzed the genetic alteration

status of LRFN4 across multiple tumor types. As depicted in

Figure 11C, the highest frequency of LRFN4 mutations, surpassing

5%, occurred in Head and Neck Squamous Cell Carcinoma

(HNSCC), where alterations were predominantly classified as
FIGURE 5

Diagnostic potential of LRFN4 assessed by ROC analysis. Receiver Operating Characteristic (ROC) curves assessing the diagnostic performance of
LRFN4 in distinguishing tumors from normal tissues. The Area Under the Curve (AUC) values are reported for various cancers, with values closer to 1
indicating better diagnostic accuracy.
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“mutation.” In gastric cancer, “amplification” represented the main

type of copy number alteration (CNA), with mutation frequencies

approximating 2% (Figure 11C) (35). These results indicate a

widespread spectrum of genetic changes of LRFN4 across different

cancers, suggesting its potential role in tumorigenesis. A
Frontiers in Immunology 10
comprehensive analysis of LRFN4 gene alteration types, locations,

and cases is shown in Figure 11A. Amplification was observed as the

most prevalent alteration type. Domain-specific changes, such as

Q48*p of the fn3 domain (Figure 11B), were detected in isolated cases

of lung adenocarcinoma (LUAD) and stomach adenocarcinoma
FIGURE 6

Prognostic significance of LRFN4 expression in cancer. (A) Kaplan-Meier survival analysis showing overall survival (OS) stratified by high and low
LRFN4 expression in various cancers. (B) Disease-free survival (DFS) analysis depicting the relationship between LRFN4 expression and
DFS outcomes.
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(STAD), potentially leading to missense mutations in the LRFN4

gene, highlighting the diverse genetic landscapes associated with

LRFN4 alterations.

To explore the clinical relevance, we examined the association

between LRFN4 alterations and survival outcomes across various

cancers. Despite the unavailability of certain data, such as rectum

adenocarcinoma (READ) on the cBioPortal platform (36), the

prevalence of LRFN4 alterations in digestive system malignancies

was evaluated, showing an overall incidence of 3% (Supplementary

Figure S1A).

The impact of LRFN4 gene alterations on expression levels was

also evaluated. (Supplementary Figure S1B) For instance, copy

number variations (CNVs) (37) were less frequent in colorectal

adenocarcinoma (COAD) and pancreatic adenocarcinoma

(PAAD). Notably, the correlation between LRFN4 expression

levels and clinical features in COAD and PAAD was found to be

weaker, as these tumor types exhibited fewer CNVs. These findings
Frontiers in Immunology 11
suggest that genomic alterations of LRFN4 are common across

cancers and may affect its expression, contributing to the regulation

of cancer progression.
3.7 Pan-cancer correlations between
LRFN4 and immune genes

Co-expression analyses of LRFN4 and ICP genes were

performed across 33 tumor types. As shown in Figure 12A,

almost all ICP-related genes exhibited significant co-expressed

with LRFN4, except in LUSC and SARC, where a negative

correlation was observed. In other tumor types, a positive

correlation with LRFN4 was found (P < 0.05). These findings

imply that high LRFN4 expression could predict immunotherapy

responses targeting ICP genes, indicating its potential as a novel

therapeutic target in immunotherapy (5). Interestingly, LRFN4
FIGURE 7

Additional survival analyses of LRFN4 expression in cancer. Kaplan-Meier plots derived from the GEO database were utilized to evaluate the
prognostic significance of LRFN4 expression in relation to overall survival (OS), distant metastasis-free survival (DMFS), and recurrence-free survival
(RFS) across a spectrum of cancer types.
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showed limited co-expression with ICP genes in READ and MESO,

suggesting suboptimal immunotherapy responses for patients with

high LRFN4 expression in these tumors. These results highlight

LRFN4’s complex role in the tumor immune microenvironment

and its potential as a prognostic biomarker or therapeutic target in

human cancer immunotherapy.
Frontiers in Immunology 12
To further explore LRFN4’s role in immune regulation,

Pearson correlation coefficients between ENSG00000173621

(LRFN4) and marker genes of five major immune pathways

were calculated (38). Except for CESC, KIPAN, and LUSC

where negative correlations were observed, most immune-

related genes positively correlated with LRFN4 expression
FIGURE 8

LRFN4 expression and immune subtypes correlation. C1, wound healing.C2, IFN-gamma dominant. C3, inflammatory. C4, lymphocyte depleted. C5,
immunologically quiet.C6, TGF-b dominant.
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across tumor types (P < 0.05) (Figure 12B). These findings

suggest an intricate link between LRFN4 and immune

microenvironment, highlighting its cancer-specific influence on

immune pathway activation. A comprehensive and extensive

correlation has been identified between LRFN4 and immune

checkpoint genes. (Figure 12C).
Frontiers in Immunology 13
3.8 Correlation between LRFN4 and
immune cell infiltration in the tumor
microenvironment

Significant correlations were identified between LRFN4

expression and immune cell infiltration across all 44 cancer types
FIGURE 9

LRFN4 expression and molecular subtypes correlation.
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(39, 40), showing notable positive associations with certain immune

cell types (e.g., MEP cells, MSC cells, Th1 cells, Th2 cells) and

significant negative correlations with others (P < 0.05) (Figure 13A).

The deconvo_mcpcounter method (27) was employed to further

analyze the correlation between LRFN4 expression and immune cell

populations in seven digestive system cancers:

Hepatocellular carcinoma (LIHC): Significant positive

correlations were observed between LRFN4 and various immune

cell types (T cells, CD8+ T cells, cytotoxic lymphocytes, B lineage

cells, NK cells, monocytic lineage cells, myeloid dendritic cells,

endothelial cells, and fibroblasts).Esophageal cancer (ESCA):
Frontiers in Immunology 14
Correlations were found with T cells, CD8+ T cells, B lineage

cells, and myeloid dendritic cells. Prostate adenocarcinoma

(PRAD): LRFN4 was associated with T cells, CD8+ T cells,

cytotoxic lymphocytes, B lineage cells, NK cells, myeloid dendritic

cells, neutrophils, endothelial cells, and fibroblasts. Stomach

adenocarcinoma (STAD): Significant associations were observed

with T cel ls , neutrophils , and fibroblasts . Pancreatic

adenocarcinoma (PAAD): Positive correlations were noted with

CD8+ T cells, cytotoxic lymphocytes, B lineage cells, NK cells,

myeloid dendritic cells, neutrophils, endothelial cells, and

fibroblasts (Figure 13B).
FIGURE 10

LRFN4 expression and biomarkers of therapeutic efficacy. Correlation analysis between LRFN4 expression and key therapeutic biomarkers, including
(A) Tumor Mutational Burden (TMB), (B) Microsatellite Instability (MSI), (C) the ESTIMATE score.
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3.9 Enrichment analysis of LRFN4-
associated correlations

To elucidate the molecular mechanisms of LRFN4 in

tumorigenesis, analyses for LRFN4-binding proteins and
Frontiers in Immunology 15
correlated genes were performed, followed by pathway

enrichment studies.

Using STRING, 50 LRFN4-binding proteins (supported by

experimental evidence) were identified, with their interaction

network shown in Figure 14A (41). Venn diagram analysis
FIGURE 11

Genetic alteration analysis of LRFN4 across pan-cancer cohort. (A) Mutation hotspot mapping in the LRFN4 gene, with mutation sites mapped to
functional protein domains. (B) 3D structural model of LRFN4 showing mutation locations. (C) Mutation frequency of LRFN4 across cancer types in
the TCGA cohort.
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revealed TPX2 and KIF18B as common genes between LRFN4-

binding proteins and correlated gene sets. (Figure 14B) The

heatmap (Figure 14C) indicated positive correlations of LRFN4

with these five genes across most analyzed cancer types. From

TCGA tumor expression data via GEPIA2, the top 100 genes
Frontiers in Immunology 16
positively correlated with LRFN4 expression were determined,

among which TPX2 (R = 0.36), KIF18B (R = 0.39), RCE1 (R =

0.53), PCNXL3 (R = 0.49), and SAMD1 (R = 0.48) showed

significant correlations (P < 0.001) (Figure 14D). KEGG and GO

enrichment analyses were further performed by integrating the
FIGURE 12

Correlation between LRFN4 and immune-related genes. (A) Pearson correlation analysis of LRFN4 with inhibitory and stimulatory immune
checkpoint genes. (B) LRFN4 correlation with immune pathway marker gene sets. (C) Expression of LRFN4 in relation to immune checkpoint-
associated genes across cancer types.
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LRFN4-binding protein dataset with the top 100 LRFN4-correlated

genes. KEGG enrichment (Figure 14E, (42) suggested LRFN4’s

potential involvement in tumorigenesis through pathways like the

cell cycle, cell senescence, and chemokine signaling. GO analysis

(Figure 14F) showed that associated genes participate in cell

proliferation processes, including mitosis and chemokine

signaling, underscoring LRFN4’s essential role in cell mitosis and

proliferation. Overall, these results highlight LRFN4’s potential as a

key regulator in tumor pathogenesis and its value in cancer

prognosis and therapy.
3.10 Impact of LRFN4 protein on
clinicopathologic features and immune
infiltration in STAD

We detected the expression of LRFN4 protein in 80 cases of STAD

tissues using fluorescence-based multiplex immunohistochemistry

(mIHC) and confirmed these findings. LRFN4 protein was localized

in both the cytoplasm and the interstitium (Figure 15A). (Table 1)

Furthermore, LRFN4 protein expression exhibited significant

associations with vascular invasion, tumor size, and TNM

stage (Table 2).
3.11 Influence of LRFN4 protein on
apoptosis and cell cycle kinetics in STAD
cells

Flow cytometry was employed to detect specific alterations in

apoptosis and cell cycle progression in STAD cells following the

knockdown and overexpression of LRFN4. The results indicate that

the knockdown of LRFN4 significantly promotes apoptosis in STAD

cells and markedly reduces S phase arrest. This suggests that LRFN4

may enhance the survival of gastric cancer cells by inhibiting apoptosis

andmay play a role in regulating the cell cycle, particularly during the S

phase. Its knockdown impedes the normal progression through the S

phase, thereby impacting the cells’ proliferative capacity. Future studies

should further investigate the molecular mechanisms by which LRFN4

regulates apoptosis and cell cycle regulation. (Figures 15B, C).

The Western Blot analysis indicated a positive correlation

between high LRFN4 expression and the levels of cyclin D1 and

CDK4, suggesting that LRFN4 may contribute to the promotion of

cell cycle progression. In contrast, a negative correlation was

observed between elevated LRFN4 expression and cleaved-

caspase-3 expression, indicating that LRFN4 might inhibit

apoptosis by suppressing caspase-3 activation. These findings

underscore the potential of LRFN4 as a therapeutic target in

cancer treatment (Figure 1).
4 Discussion

Cancer - related research has consistently remained a primary

focus in the contemporary medical field. Data from the TCGA,
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CCLE platforms, and GEO databases were utilized, along with

molecular characteristics such as gene expression, genetic

alterations, DNA methylation, and protein phosphorylation, to

conduct an in-depth examination of the LRFN4 gene across 33

distinct tumor types. This investigation focused on the relationship

between LRFN4 expression and tumor immunity, specifically

through infiltration correlation analysis. This study represents the

first comprehensive pan-cancer analysis of LRFN4, aiming to

systematically characterize its expression pattern and prognostic
Frontiers in Immunology 18
significance. The results reveal that LRFN4 is significantly

differentially expressed across various tumors, with expression

levels substantially higher than those in paired normal tissues.

These findings confirm the widespread occurrence of aberrant

LRFN4 expression in cancers. It is postulated that the LRFN4

protein could serve as a potential biomarker for screening

multiple tumors and likely plays a critical role in tumor initiation

and progression. As a member of the leucine - rich repeat and

fibronectin type III domain-containing family and a type I
FIGURE 14

LRFN4-related gene enrichment analysis. (A) Protein-protein interaction (PPI) network for LRFN4 using STRING. (B) Venn diagram showing overlap
between LRFN4-binding proteins and LRFN4-correlated genes. (C) Heatmap of LRFN4-correlated genes using TIMER. (D) Scatter plot of Pearson
correlation analysis between LRFN4 and top 100 correlated genes from GEPIA2. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of LRFN4-related genes. (F) Gene Ontology (GO) enrichment analysis of LRFN4-related genes.
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transmembrane glycoprotein, LRFN4 may interact with diverse

cellular components within the tumor microenvironment (TME).

For example, its extracellular leucine-rich repeats might interact

with growth factors or cell-surface receptors, while the fibronectin

type III domain could participate in cell-matrix or cell-cell
Frontiers in Immunology 19
interactions. These interactions potentially activate oncogenic

signaling pathways, facilitating cancer development. Previous

reports on lung, colon, and breast cancers have demonstrated that

LRFN4’s ability to enhance cell proliferation, invasion, and

chemotherapy resistance, suggesting its involvement in multiple
FIGURE 15

Influence of LRFN4 on apoptosis and cell cycle dynamics in STAD cells. Fluorescence-based multiplex immunohistochemistry (mIHC) analysis of
LRFN4 protein expression in stomach adenocarcinoma tissues, correlating with clinicopathological features and immune cell infiltration. (A) Flow
cytometry analysis demonstrating the effects of LRFN4 knockdown and overexpression on apoptosis and cell cycle progression in stomach
adenocarcinoma (STAD) cells (B, C). NS, Not Significant. ****p < 0.0001.
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oncogenic pathways (43, 44). A structurally similar protein has been

shown to promote cell proliferation by binding to the epidermal

growth factor receptor and activating the downstream PI3K-AKT

pathway, and it is possible that LRFN4 may operate via a

comparable mechanism. However, the precise molecular

mechanisms underlying these effects remain unclear. It is

plausible that LRFN4 modulates key signaling cascades involved

in cell growth, survival, and motility, such as the MAPK, Wnt/b -

catenin, or TGF - b pathways, which are crucial for maintaining

normal cell homeostasis. Dysregulation of these pathways by

LRFN4 could shift the balance towards uncontrolled cell growth

and transformation.

The significant association between LRFN4 expression and

pathological stages in specific tumors, including ACC, LUAD,

KIRC, LUSC, and OV, strongly indicates that LRFN4 could serve

as a valuable biomarker for monitoring disease progression.

However, the variable correlation between LRFN4 expression and

overall survival (OS) and disease-free survival (DFS) across different

cancer types underscores its complex prognostic value. In colorectal

cancer, high LRFN4 expression is associated with favorable OS,

while in ACC, CESC, LUAD, and LIHC, it predicts a poor

prognosis. This variability can be attributed to the distinct

molecular and cellular landscapes of different tumors.
Frontiers in Immunology 20
Each cancer type possesses unique genetic mutations, epigenetic

modifications, and microenvironmental factors that can influence

the function of LRFN4. For example, in tumors with high levels of

certain growth factors, LRFN4 may interact with these factors in

distinct ways, leading to divergent effects on cellular behavior.

Although the receiver operating characteristic (ROC) analysis

supports the potential of LRFN4 as a prognostic biomarker, its

predictive ability is confounded by factors such as tumor

heterogeneity, immune infiltration, and genetic alterations.

Tumor heterogeneity can lead to variations in LRFN4 expression

within a single tumor, making it difficult to accurately assess its

prognostic value. Immune infiltration can modulate the tumor

microenvironment, and LRFN4 may interact with immune cells

in a context-dependent manner. Genetic alterations can also affect

LRFN4 expression and function. Therefore, a comprehensive

evaluation of these factors is essential when evaluating the

prognostic significance of LRFN4. It is likely that LRFN4 interacts

differentially with the TME or cellular machinery depending on the

cancer type, ultimately influencing patient outcomes in

various ways.

LRFN4’s upregulation in the THP-1 monocyte cell line, and its

role in regulating trans endothelial migration and cell elongation of

THP - 1 cells, suggests a significant involvement in monocyte and
TABLE 2 Comparison of LRFN4 positive rates.

LRFN4 Positive Rates

n Low High X2 Statistical Value P

Total 80 41 (51.2) 39 (48.8) – –

Gender
Male 53 29 (54.7) 24 (45.3)

0.756 0.385
Female 27 12 (44.4) 15 (55.6)

Age
<55 37 15 (40.5) 22 (59.5)

3.160 0.075*
≥55 43 26 (60.5) 17 (39.5)

Immunohistochemistry
None 41 26 (63.4) 15 (36.6)

4.981 0.026*
Yes 39 15 (38.5) 24 (61.5)

TNM Stage
T1+T2 23 17 (73.9) 6 (26.1)

6.636 0.010*
T3+T4 57 24 (42.1) 33 (57.9)

Stage
I+II 15 12 (80) 3 (20)

6.108 0.013*
III+IV 65 29 (44.6) 36 (55.4)

Survival Status
No 44 29 (65.9) 15 (34.1)

8.410 0.004*
Yes 36 12 (33.3) 24 (66.7)
fr
*P < 0.05.
TABLE 1 Comparison of baseline data between the patient group and the healthy control group.

Cancer Group (n = 80) Para - cancer Group (n = 80) Statistical Value P Value

Number of LRFN4 - positive cells 80.5 (41.5,136.5) 108 (76,140.25) Z=1.818 0.003*

Total number of cells 13128.5 (5844,18149.5) 10157.5 (7386.75,13621.75) Z=1.660 0.008*

Positive rate of LRFN4 0.78% (0.34%,1.35%) 0.94% (0.65%,1.54%) Z=1.581 0.013*
*P < 0.05.
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macrophage migration, processes that are closely associated with

the TME (10, 11). Given the crucial role of immune cells in tumor

biology, LRFN4 may profoundly influence the function and

behavior of tumor-associated macrophages (TAMs) and other

immune cells. It could modulate immune cell migration,

infiltration, and activation through multiple mechanisms. For

instance, LRFN4 might interact with chemokine receptors on

immune cells, guiding their movement towards the tumor site.

Once in the tumor microenvironment, it could affect the

polarization of TAMs. It is hypothesized that LRFN4 promotes

the conversion of TAMs into immunosuppressive M2 - type

macrophages, which secrete cytokines such as interleukin-10 and

transforming growth factor-b that inhibit anti-tumor immune

responses. The positive correlation between LRFN4 expression

and immune cell markers, including CD4+ T cells, CD8+ T cells,

neutrophils, and macrophages, further validates its role in the

immune microenvironment.

In liver hepatocellular carcinoma (LIHC), the positive

correlation between LRFN4 and immunotherapy targets such as

PDCD1 and CTLA4 implies that LRFN4 can impact the interaction

between immune cells and tumor cells, potentially modulating the

efficacy of immune checkpoint blockade (ICB) therapy. This

interaction could involve LRFN4 - mediated regulation of

immune cell activation or tumor cell evasion mechanisms. The

specific correlation between LRFN4 expression and the expression

of immunosuppressive checkpoint proteins (ICPs) in most tumor

types, especially in LIHC, OV, and THCA, indicates that LRFN4

may be involved in immune evasion mechanisms. Tumors might

exploit LRFN4 to upregulate ICPs, thereby escaping immune

surveillance. This correlation can be leveraged for therapeutic

purposes. In-depth research on the relationship between LRFN4

and ICPs can help identify patients more likely to benefit from ICB

therapy. By targeting LRFN4, it may be possible to modulate the

expression or function of ICPs, thereby enhancing the anti-

tumorimmune response. However, the precise molecular

mechanisms underlying this interaction remain to be elucidated.

It is unclear whether LRFN4 directly binds to ICPs or operates

through intermediate signaling molecules to regulate ICP

expression. Further investigation is needed to clarify

these mechanisms.

TMB, defined as the total number of mutations per megabase in

the tumor genome’s exon region, is closely associated with tumor

neoantigen production and DNA repair defects (45). MSI, a

hypermutation phenotype resulting from MMR impairment, is

also relevant to ICI efficacy (46). The observed correlations

between LRFN4 expression and both TMB, as well as MSI, in

certain cancers suggest that LRFN4 can influence the

immunogenicity of tumors. TMB and MSI are important

determinants of the efficacy of immune checkpoint inhibitors

(ICIs), and LRFN4’s association with these factors suggests its

potential role in immunotherapy. Positive or negative correlations

of LRFN4 with TMB and MSI imply that LRFN4 may either

enhance or suppress the generation of tumor neoantigens or

affect DNA repair processes. For example, a positive correlation

with TMB could suggest that LRFN4 promotes the accumulation of
Frontiers in Immunology 21
mutations, leading to increased neoantigen production. Conversely,

a negative correlation might indicate that LRFN4 is involved in

DNA repair mechanisms. Additionally, the positive correlation of

LRFN4 with immune, stromal, and ESTIMATE scores suggests its

role in modulating the interaction between immune and stromal

cells within the TME. This modulation can contribute to the

nutritional complexity and heterogeneity of the TME, ultimately

affecting cancer prognosis and immunotherapy outcomes. For

instance, LRFN4-mediated interactions could lead to changes the

secretion of cytokines and growth factors in the TME, altering the

availability of nutrients and oxygen for both tumor and

immune cells.

The use of fluorescence-based mIHC technology in stomach

adenocarcinoma (STAD) tissues to study LRFN4 protein expression

and its correlation with clinical characteristics validates the

bioinformatics findings at the protein level. The correlation with

immune cell markers, especially macrophage infiltration, indicates

that LRFN4 could play a role in the local immune response in

gastric cancer. This aligns with its proposed role in modulating

immune cell migration and infiltration. The Western Blot analysis

reveals LRFN4’s dual role in regulating cell cycle progression and

apoptosis. High expression levels of LRFN4 are positively correlated

with increased levels of cyclin D1 and CDK4, suggesting that it may

promote cell cycle progression. Conversely, high LRFN4 expression

is negatively associated with decreased levels of cleaved-caspase-3,

indicating that LRFN4 may inhibit apoptosis by suppressing

caspase-3 activation. Moreover, the functional analysis using flow

cytometry in STAD cells upon LRFN4 knockdown or

overexpression provides valuable insights into its role in apoptosis

and cell cycle regulation. The enhanced apoptosis following LRFN4

knockdown suggests that LRFN4 might act as an oncogene by

inhibiting apoptotic pathways, thereby promoting cancer cell

survival. Its role in regulating S-phase arrest indicates that LRFN4

could be involved in cell cycle control, potentially through

interactions with cell cycle regulators. These findings support the

potential of LRFN4 as a potential therapeutic target and underscore

the importance of understanding its molecular interactions within

the context of gastric cancer biology. Future studies should further

investigate the molecular mechanisms by which LRFN4 influences

apoptosis and cell cycle dynamics. These findings provide a

foundation for future research, including a detailed exploration of

the specific mechanisms of action of LRFN4 in gastric cancer and an

evaluation of the therapeutic potential of LRFN4 inhibitors.

A key limitation of the current study lies in its reliance on

bioinformatics analyses. Although bioinformatics provides a broad

overview of LRFN4’s expression patterns and associations, it does

not directly elucidate the underlying molecular mechanisms. The

observed correlations and associations need to be confirmed

through experimental studies to confirm their biological

relevance. Additionally, the use of data primarily from the TCGA

database may introduce selection bias, as the sample population

might not fully represent the genetic and clinical diversity of cancer

patients. This could lead to overestimation or underestimation of

LRFN4’s roles in different cancer types. Future studies should

include a more diverse patient cohort and sample types, as such
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diversification can provide valuable insights and facilitate the

invest igat ion of the molecular dr ivers of LRFN4 in

tumor occurrence.
5 Conclusion

The present study strengthens the hypothesis that LRFN4 serves

as a prognostic biomarker for tumors and a prospective therapeutic

target. Future investigation should focus on the role of LRFN4

within the tumor immune microenvironment and its involvement

in tumor responses to immunotherapy. Such studies will contribute

to the development of novel treatment strategies aimed at

enhancing outcomes for cancer patients.
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